
} w��������
��������������� !"#$%&'()+,-./012345<yA| FI MU
Faculty of Informatics

Masaryk University

Certification

by

Zdeněk Říha

FI MU Report Series FIMU-RS-98-07

Copyright c© 1998, FI MU December 1998

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Certification . 4
1.3 Bindings of a certificate . 5
1.4 Identifiers . 7
1.5 Conclusions . 7

2 X.509 8
2.1 X.509 standard . 8
2.2 SSL . 10
2.3 PKIX . 12

2.3.1 The form of the certificate 12
2.3.2 Certificate Extensions 14
2.3.3 Certificate revocation lists 16
2.3.4 Validation of a certification chain 17

2.4 Critical notes on X.509 . 18

3 SPKI 23
3.1 Introduction . 23
3.2 SDSI . 23
3.3 Certificates . 26
3.4 5-tuple reduction . 26
3.5 Authorization flow . 26
3.6 Discussion . 27

4 PGP 28
4.1 The web of trust . 28
4.2 Revocations . 30
4.3 Discussion . 31

5 SKIP 32
5.1 Description . 32
5.2 Discussion . 33

2

6 PolicyMaker 35
6.1 Motivation . 35
6.2 The PolicyMaker Language 37
6.3 Discussion . 38

7 Conclusions 40

References 42

Introduction 3

Chapter 1

Introduction

1.1 Motivation

Modern wide area networks allow communication between two parties
that are located anywhere in the world. They are inexpensive and fast.
However without using cryptography, such communication is completely
open to be read by anyone else.

Traditional symmetric cryptography cannot usually be used because
this requires a safe exchange of the secret key. Fortunately, cryptography
has provided a solution with a technique called asymmetric cryptography
(also called public-key cryptography). Asymmetric cryptography allows
completely private communication between parties that have never met.
Public keys of both parties are publicly exchanged and then the secret key
is privately agreed upon. The combination of symmetric and asymmetric
cryptography is used for efficiency reasons. All communications after the
exchange of the public keys is encrypted and no one else can read (under-
stand) them. Still, the communication problem of the previously unknown
parties has not been solved entirely. The communicating parties cannot be
certain that the public keys they received really belong to the other party.
They also cannot be certain of the other party’s characteristics, or even
who or what the other party really is. One can have a perfectly private
communication with a thief, which is not much safer. Public-key cryp-
tography can make communication private, but not secure. For secure
communication, one needs to know the other’s party attributes, such as
their name, e-mail, account number, identity and authorizations.

Introduction 4

Insecure communication is a serious risk for most commercial applica-
tions. In banking, security is crucial for sales and the confidential exchange
of data between companies. What is needed is a method of verifying if an
attribute, such as a public key or an account number really belongs to the
other party. Only then can two previously unknown parties safely com-
municate for the first time.

Authentication has been traditionally based on knowledge of a shared
secret (e.g. a password), however this situation is beyond the usual con-
cept of authentication because the parties are considered previously un-
known. Instead there is a primary step called certification.

1.2 Certification

Certifications are specific procedures which compare references with mea-
surements that allow a party to bind an attribute to an unknown party.
Certification is similar to the measurement of distance. It cannot be abso-
lute. One always needs a reference. If the reference is incorrect, spoofed
or falsified, then the result will also be incorrect. For the measurements
of height or length there is a standard and easy reference, but for certifi-
cation there is no equally free, common, faithful and worldwide reference
available to all parties that wish to communicate.

Public-key cryptography was first introduced by Diffie and Hellman
in 1976. They believed they had radically solved the problem of the key
management. “The public key can be made public by placing it in a public
directory along with the user’s name and address.” This central authority
was known as the Public File, however the problem of the secure distribu-
tion of the Public File remained. In 1978 Loren Kohnfelder [MIT] invented
a new construct: ”The Public File digitally signs all of its transmission, so
that enemy impersonation of the Public File is precluded”. He called his
new construct a certificate. It is a digitally-signed data record containing
a name and a public key. (it is a public-key certificate). This is the history
of the first certificate.

Absolute certification methods are logically impossible because a cer-
tificate cannot certify itself. A reference is always necessary. There are
three main types of methods that have been proposed to deal with this
concern:

Introduction 5

� Directory methods, based on Certification Authorities (CA): X.509
(e.g. SSL, PKIX)

� Referral methods, based on “introducers” of keys: PGP

� Collaborative methods: SKIP

Each of the above certification methods deals with the basic certifica-
tion problem in a different way. All of them are described in the following
chapters.

Certification is based on two different properties: trust (the qualitative
property) and keys (the quantitative property). In any certification system
the certificate’s trustworthiness is not magically infused from the certifi-
cate’s issuer. A certificate is trustworthy as decided by the user. He relies
on the information, he is the one at risk. The decision must be based on
the user’s trust in the certificate’s issuer and as a function of costs, risks,
situation and so on.

It is not easy to define trust. Here it is necessary to mention that most
protocols do not define what trust is. They only define the manner in
which to convey it. Such an approach ignores the properties of trust,
which can lead to security risk and a lack of standardization. This is one of
the basic contradictions in the protocols commonly used today and it may
cause other problems.

1.3 Bindings of a certificate

The X.509 certificate and other similar certificates bind a name to a public
key. The name is unique within a space and is called the Distinguished name
(DN). People often refer to such a certificate as an “identity certificate”,
but this is not correct. It cannot bind an identity to a key. It binds a name to
a key. This is a serious mistake. The problem lies in assuming that name
implies identity. The following chain of logical implications is mistakenly
used: Name! person! characteristics! identity.

The purpose of a common name is to identify someone. If there is
any confusion with the name, we adjust the name so that it continues to
function as an identifier. We are limited in the number of names we can re-
member, but for most of our lives and most of the human history we have
all had relatively small communities around us. The names are just large

Introduction 6

enough to avoid confusion in communities that are normally around us.
As a result, we are not normally troubled by name duplications. This leads
us to the logical implication name! person. We tend to assume that if we
know a person, we know their characteristics, such as marital status, fi-
nancial situation, their trustworthiness and so on. Thus we tend to extend
the definition to name ! person ! characteristics. The last implication
characteristics! identity is directly a matter of definition. The Webster’s
dictionary defines identity as “. . . distinguishing character or personality
of an individual . . . ” . Because a distinguishing character or personality
is one of those characteristics expected to be known about a person, this
definition of identity gives us a final implication, so that we obtain: name
! person ! characteristics ! identity. If names were globally unique
and unchanging, then we could be able to expect that, by definition, if the
names are the same then the people are also the same. This is not, how-
ever, the case.

The chain of logical implications name ! identity depends twice on
characteristics of small communities, but modern wide area networks,
such as the Internet, are not small communities.

The failure of the name ! identity assumption can be easily demon-
strated. I come to a CA and receive a certificate for (“Zdeněk Říha”, my
public key). I then go to a bank and ask for a list of all the accounts owned
by Zdeněk Říha. The fulfillment of my request would certainly be a secu-
rity policy violation.

In order to grant access or authorization, we must be able to identify
the recipient of that authorization. Imagine a bank granting electronic ac-
cess to check your account. You go to the bank and request that you be
issued a certificate to give you on-line access to your account.

The request is sent to the back room where the account information
(name and address) is used to look up your DN in a global directory of
certificates. From a list of available certificates, the bank office will come
up with a set of possible matches to that account owner. If there is none,
there is no security problem, because no certificate will be issued. If there
are multiple matches, then the bank policy will decide what happens. If no
certificate is issued, then there is no security flaw, but if “the most likely”
match is chosen and the appropriate certificate is issued, then this involves
a human guess and there is a security problem. If there is only one match
then the certificate is issued and is presumably correct, however the bank
cannot be sure that the match is really correct.

Introduction 7

1.4 Identifiers

What is missing in the above example which is necessary for proper identi-
fication is a globally unique and universally used identifier of persons. There
are people that act as the Distinguished Names were such identifiers, but
this is not correct. Distinguished Names do not guarantee that some evil-
does is not capable of doing evil under one name, changing his name and
starting all over again with a new DN.

It is unlikely that we will ever see a global identifier. In the Czech Re-
public we have a birth number that is assigned to a person at birth and
remains the same for their whole lifetime. It works fine as a local identifier
within the country, although there were a few problems with its unique-
ness. In the U.S. the national social security number is used as an identifier.
Again, this works fine locally within the U.S. but there is no global identi-
fier for everyone on Earth. There are some countries where a national ID
is used, but where laws exist against being required to use these numbers
except for the official government purposes (e.g. social insurance numbers
in Canada). In such countries the national ID uniquely identifies a person,
but it cannot be universally used.

There are multiple competing CAs creating disjointed Distinguished
Name spaces and therefore a person is able to drop one DN and set an-
other, just by changing the CA. The notion of an inescapable identifier is
not close to realization and is not likely ever to be.

1.5 Conclusions

As we have already learned, the application of public-key systems re-
quires the user to be confident that the public key belongs to the correct
remote party be it a person or a system, which the asymmetric cryptog-
raphy mechanism will be used with. This confidence is obtained through
the use of public key certificates, which are data structures that bind pub-
lic key values to subjects. The binding is achieved by having a trusted
certification authority digitally sign such a certificate.

Each certificate has a limited validity period which is indicated in its
signed content. Because the certificate’s signature and the time validity
can be independently checked by a certificate-using user, certificates can
be distributed via insecure communications and systems.

X.509 8

Chapter 2

X.509

2.1 X.509 standard

The standard know as ITU-T X.509 (formerly known as CCITT X.509) or
ISO/IEC 9594-8, which was first published in 1988 along with the X.500
Directory recommendation, defines a standard for the certificate format.
The standard describes two levels of authentication:

� simple authentication using only a password as a verification of claimed
identity (this is not suitable for situations where the parties are con-
sidered previously unknown)

� the strong authentication that uses cryptographic techniques

The certificate format published in 1988 in the original version of the
standard is called as the version 1 format (X.509v1). When the X.500 was
revised in 1993, two more fields were added to the certificate structure. It
is referred as the version 2 format (X.509v2). These 2 fields are used to
support directory access control.

In 1993 the PEM (Privacy Enhanced Mail) proposal was first published.
Its public-key infrastructure was based on the X.509v1 certificates. Ex-
perience showed that v1 and v2 certificates need to be extended in sev-
eral aspects. ISO/IEC and ANSI X9 soon developed the X.509 version 3
(X.509v3) certificate format. The version 3 extends the previous version
(v2) by adding provision for additional extension fields.

Particular extension field types may be specified in standards or may
be defined and registered by any organization. X.509v3 was accepted as

X.509 9

a official standard in 1996.
A user who requires knowledge of a public key needs to obtain and val-

idate a certificate containing the required public key. It may happen that
the user does not already hold an assured copy of the public key of the
certification authority that signed the certificate. He will then need an ad-
ditional certificate to obtain that public key. Generally, a chain of multiple
certificates may be needed, consisting of the certificate of the public-key
owner signed by one CA and zero or more additional certificates of CAs
signed by other CAs. Such a sequence, called certification chain, is required
as the user initially has only a limited number of assured CA public keys.

The structure of CAs is hierarchical. There are three types of certifica-
tion authorities (according to X.509v1):

� Policy Registration Authority (PRA). This is the root of the certifica-
tion hierarchy at the first level. This authority issues only certificates
for the next level of authorities (PCAs). According to X.509v1 all the
certification chains start with this root authority.

� Policy Certification Authorities (PCA). They are at the second level of
the hierarchy and each PCA is certified by the root authority (PRA).
A PCA must create and publish a statement of its policy with respect
to certifying users or certification authorities. Distinct PCAs aim to
satisfy different needs of different users.

� Certification Authorities (CA). CAs are at the third level of the cer-
tification hierarchy and can also be at lower levels. Those at level 3
are certified by PCA. Certification Authorities usually represent par-
ticular organizations or their units.

Trust associated with a certification chain is implied by the PCA name.
The name rule ensures that CAs below one PCA are constrained to a lim-
ited set of entities they can certify. (e.g. a CA for an organization can only
certify entities in that organization’s name tree).

Privacy Enhanced Mail (PEM) as in RFC 1422 was based upon X.509v1
certificates, however the limitations of X.509v1 required a few structural
restrictions. The restrictions include:

� The strict top ! down hierarchy. All certification chains must start
from the root certificate.

X.509 10

� Naming rules to restrict the names of a CA’s subjects.

� Knowledge of individual PCA is required to decide if a chain can be
accepted.

Version 3 of X.509 solves these problems and that’s why newly de-
signed certification systems (such as PKIX) take advantage of the X.509v3.

When a certificate is issued, it is expected to be used for its entire period
of validity, however various circumstances may cause a certificate to be-
come invalid before it expires. Such circumstances might include change
of name, a change of association between the subject and the CA or com-
promise of the corresponding private key. Under these circumstances, the
CA needs to revoke the certificate.

X.509 defines one method of certificate revocation. This method in-
volves each CA periodically issuing a signed data structure called a cer-
tificate revocation list (CRL). A CRL is a time-stamped list of revoked cer-
tificates which is signed by a CA and made freely available in a public
repository. Each revoked certificate is identified by its certificate serial
number. When a user uses a certificate, it not only checks the certificate’s
signature and validity, but also obtains “suitably-recent” CRL and checks
that the certificate serial number is not on the CRL. The interpretation of
“suitably-recent” is dependent upon the local policy and usually means
the most recently issued CRL. Each CA issues a new CRL on a regular ba-
sis as stated in the CPL. Entries are added to the CRL as revocations occur
and an entry may be removed after the certificate expires. CRLs may be
distributed by exactly the same ways as certificates themselves (i. e. via
insecure communications and systems).

2.2 SSL

SSL (Secure Socket Layer) is not a socket protocol as the name might im-
ply. It is a protocol which may be placed between a reliable connection-
oriented network layer protocol (TCP/IP) and the application layer (e.g.
HTTP).

SSL provides for secure communication between client and server by
allowing mutual authentication, the use of digital signatures for integrity
and encryption for privacy. SSL is perhaps the widest used security proto-
col on the Internet today and implements X.509 certificates as interpreted

X.509 11

by the SSL’s proponent, Netscape. There are also other implementations
of SSL, such as the free implementation called SSleay, for example.

A certificate associates a public key with a subject which can be an
individual, a server or another entity. It is important to note, that SSL
claims that a certificate binds a public key to an identity. Such claims were
discussed in the introduction.

The information about the subject includes identifying information (DN)
and the public key. A certificate also includes the identification and signa-
ture of the CA that issued the certificate and the validity period. It may
also include administrative information such as a version or a serial num-
ber.

Subject: distinguished name, public key
Issuer: distinguished name, public key
Validity: not before �date �, not after �date �
Administrative info: version, serial number
Extended info

Distinguished names meet the X.509 standard and use the following
fields:

Abreviation Name of the field Example
CN Common Name Zdeněk Říha
O Organization or Company Masaryk University
OU Organizational Unit Faculty of informatics
L City or Locality Brno
SP State or Province Moravia
C Country (ISO code) CZ

A certificate authority may define a policy specifying which fields of
the distinguished names are required and which are optional. It may also
specify requirements of the field contents. As an example, the Netscape
browser requires that the Common name (CN) for a server certificate matches
a regular expression for the domain name of that server.

A CA may also issue a certificate for another CA. When examining
a certificate, the user may need to examine the certificate of the issuer
for each parent CA, until reaching one, which he has confidence in. This
presents the problem of who will issue, and sign, the certificate for the top-
level authority. In this case the certificate is “self-signed”, so the issuer of

X.509 12

the certificate is the same as the subject. As a result, the user must be very
careful in trusting a self-signed certificate.

Since the CA paradigm essentially relies on an authentication chain
which ends in another CA that certifies itself, the validity problem is shifted
from a local perspective to a global perspective, wherein the whole chain
depending on the final link. In the end, the possibility of fraud is high
since one weak link may compromise a whole chain of certificates.

Most SSL-capable browsers are pre-configured to trust “well known”
certificate authorities. As a result, if a certificate is acceptable by the Netscape
SSL product, it does not necessarily mean it will be considered acceptable
by products from Microsoft or RSA. From the beginning, the decision of
trust is completely removed from the user, which contradicts the fact that
the user should play the central role in decisions. Moreover, SSL does not
check certificate revocation lists (CRLs). So they are practically useless.

2.3 PKIX

2.3.1 The form of the certificate

PKIX is an Internet Draft. Internet Draft are working documents of the
Internet Engineering Task Force (IETF) and its working groups. The most
recent version at the time of writing is described here. That is the seventh
draft published on March 25, 1998.

The purpose of the PKIX is to specify a profile and certificate man-
agement system for use of the X.509 certificates within the Internet. It is
intended for those, who wish to make use of X.509 technology in applica-
tions such as WWW or e-mail.

The PKIX Internet Draft defines the Internet public key infrastructures
of the X.509 certificates and the corresponding CRLs. Public key certifi-
cates are based upon the X.509v3 certificate format, however the deploy-
ment of an X.500 directory system is not assumed. The use of an X.500
directory is not prohibited, but there are other ways of distributing certifi-
cates and CRLs.

Basing PKIX upon the new v3 of X.509 has a few advantages over PEM,
which was based upon the version 1:

� Certification chains do not need to start with the root CA anymore.

X.509 13

Starting with the public key of a local CA has certain advantages. In
many cases the local CA is the most trusted one.

� Name constraints may be imposed by appropriate name constraint
extension in the certificate, but it is not mandatory required.

� Policy extensions and policy mappings replace the PCA concept.

This enables a greater degree of automation. The client software can
decide whether the certification chain is acceptable based on the content of
the certificate instead of the knowledge of the PCAs. This permits the full
process of the certification chain validation to be implemented in software.

Let’s take a look at the actual format of the certificate. The following
picture shows its fields:

VER SN SGAL ISNA VAL SUNA ALID KEY
S
U
I
D

I
S
I
D

EXT
. . .

SGAL SG

The certificate consists of 3 basic parts: of the main body, of the sig-
nature algorithm identifier (SGAL) and the signature of the certifying CA
(SG). The main body of the certificate includes following fields:

� VER – version of the X.509 standard (may be v1, v2 or v3)

� SN – the serial number of the certificate (unique within the particular
CA)

� SGAL – algorithm identification for the signature of the CA

� ISNA – issuer name – the name of the entity who has signed the cer-
tificate. (If the name is specified in the ’issuer name’, it must contain
the X.500-style DN. The issuer name may also be specified in ’Issuer
Alt Name’ (e.g. Internet-style address.)

� VAL – period of validity. Consists of two dates, the first and the last
on which the certificate is valid.

� SUNA – subject name (similar conventions as for the issuer name)

X.509 14

� PKIN – subject public key info. Consists of the identification of the
algorithm (ALID) and the key itself (KEY).

� Subject Unique Identifier (SUID) and Issuer Unique Identifier (ISID).
These are part of the v3 standard, but the PKIX recommends that
they not be used.

� EXT – extensions. One or more certificate extensions (for version 3
certificates only). Each extension consists of an extension object ID,
extension value and the optional boolean ’crucial’.

2.3.2 Certificate Extensions

The certificate extensions defined for X.509v3 certificates provide meth-
ods for associating additional attributes with users or public keys, for
managing the certification hierarchy and for managing the CRL distribu-
tions. Each extension in a certificate may be designed as crucial or non-
crucial. The certificate-using system must reject the certificate if it encoun-
ters a crucial extension it does not recognize (while a non-crucial extension
may be ignored).

X.509v3 defines a set of standard extensions and permits the use of
additional “private” extensions. There are 14 standard extensions defined
in X.509v3 and one private defined by PKIX. CAs or clients do not have to
support all of them. The PKIX standard defines which extensions must be
supported.

Here is the list of the standard extensions:

� Authority Key Identifier – this extension helps to identify the public
key corresponding to the private key used to sign the certificate. It is
useful when the issuer has multiple signing keys.

� Subject Key Identifier – identifies the particular public key used in
an application

� Key Usage – defines the purpose of the key contained in the certifi-
cate (a key may be used for verifying digital signatures, providing
a non-repudiation service, encrypting user data, for the key agree-
ment, for verifying a signature on a certificate or verifying a signa-
ture on a CRL)

X.509 15

� Private Key Usage Period – permits the ability to specify a different
validity period for the private key than the certificate.

� Certificate Policies – is a sequence of one or more policy informa-
tion terms that indicate the policy under which the certificate has
been issued and the purpose for which the certificate may be used.
Two policy qualifiers are defined: “CPS pointer” contains a URI to
a Certification Police Statement (CPS) of the CA and “User Notice”
is intended to be displayed when the certificate is used.

� Policy Mappings – lists one or more pairs of object IDs. Each pair
includes an “Issuer Domain Policy” and a “Subject Domain Policy”.
The pair indicates that the issuing CA considers its policy equivalent
to the subject CA’s policy.

� Subject Alternative Name – allows additional identities to be bound
to the subject (e-mail address, DNS or IP address). The subject alter-
native name is considered to be definitively bound to the public key,
thus all parts of the alternative name must be verified by the CA.

� Issuer Alternative Name – is used to associate Internet identifiers
with the issuer

� Subject Directory Attribute – used only for local purposes

� Basic constraints – identifies whether the subject of the certificate
is a CA and specifies how deep the certification chain may exist
through this CA.

� Name constraints – indicates the name space within which all subject
names in subsequent certificates in a certification chain must be lo-
cated. This may apply to the subject DNs and/or subject alternative
names.

� Policy Constraints – can be used in certificates issued for CAs. It con-
strains the validation of certification chains in two ways: They can
be used to prohibit policy mappings or require that each certificate
in a chain must contain an acceptable policy identifier.

� CRL distribution points – this extension defines how the CRL infor-
mation is obtained

X.509 16

� Extended Key Usage Field – indicates for which purpose the certified
public key may be used (in addition to the basic purposes defined in
the “Key Usage” field).

And finally the private PKIX Internet extension:

� Authority Information Access – indicates how to access CA informa-
tion and services. These may include on-line validation services and
CA policy data.

2.3.3 Certificate revocation lists

The PKIX draft uses X.509v2 CRLs in the standard format without any
private Internet CRL extension.

CAs have to provide revocations, but they are not required to issue
CRLs if they provide other revocation methods. If they do issue CRLs
they are required to issue version 2 CRLs and specify the date when the
next CRL will be issued.

The format of v2 CRL is shown at the following picture:

VER SGAL ISNA TH
UP

NE
UP CSN RVDA EXT. . .

. . .
SGAL SG

The CRL is signed by the issuing CA (SG) using the signing algorithm
SGAL. The body of the CRL consists of:

� VER – version (must be v2)

� SGAL – algorithm used by the CA to sign the CRL

� ISNA – issuer name (see the previous section)

� THUP – this update, the issue date of the CRL

� NEUP – next update, indicates the time/date by which the next CRLs
will be issued.

And the list of the revoked certificates follows. Each entry includes:

X.509 17

� CSN – Certificate Serial Number. Uniquely identifies the certificate
to be revoked

� RVDA – revocation date, the date on which revocation occurred

� EXT – extensions, associate additional attributes to a CRL entry

– Authority Key Identifier – identifies the signing key used to sign
this CRL

– Issuer Alternative Name – Internet name of the issuer of this
CRL

– CRL Number – monotonically increasing sequence number

– Issuing Distribution Point – a crucial extension that identifies
the CRL distribution point for a particular CRL

– Delta CRL Indicator – enables the distribution of CRL updates,
listing only new entries. The base used to create this difference-
only CRL must be specified.

– Certification issuer - used when the certificate issuer differs from
the CRL issuer

– Extensions – separate characteristics of particular CRL entries:

� Reason Code – identifies the reason for certificate revoca-
tion (e.g. key compromise, CA compromise, etc.)

� Hold instruction code – indicates an action to be taken after
encountering that the certificate has already been place on
hold

� Invalidity date – provides the date when the private key is
known or suspected to have been compromised.

2.3.4 Validation of a certification chain

The process followed for the certification chain verification involves check-
ing the binding of the subject name (a DN or an Alternative Name). The
binding is limited by constraints, which are specified in the certificates
forming the chain. The usage of basic constrains and policy constraints
enables to automate certification chain processing.

A certification chain is a sequence of n certificates Ci; i = 1::n where:

X.509 18

� C1 is the self signed certificate that all certification chains have to
start with (the public key it contains is already trusted). The C1 need
not be the root certificate, it may also be any local certificate.

� Cn is the end entity certificate

� for C1; : : : ;Cn holds that the subject of Ci is the issuer of Ci+1

The verification algorithm has to check that each certificate is correctly
signed, has not expired and has not been revoked. It must also check for
consistency in the name subtrees and process the policy information. If
any of these check fails then the end entity certificate cannot be accepted.

2.4 Critical notes on X.509

The main purpose of a certificate and the job of a CA is to bind a public
key to the name contained in the certificate. Third parties will believe that
some measure of care was taken to ensure that the binding name $ key
is valid. The method by which this association was verified, as well as
whether the DN really corresponds to a person or an e-mail address is
completely outside the scope of X.509.

The CA’s policy is specified in the “Certification Practice Statement
(CPS)”, which is defined by the CA itself. The X.509 says that “a certifi-
cation authority shall be satisfied of the identity of a user before creating
a certificate for it”. Therefore, the identity validation procedures are to be
satisfied according to the CA’s own self-defined rules (CPS). These rules
can be completely different for different CAs. The CPS is a governing law
that the CA presents to potential clients and represents a top-down frame-
work. The CPS mechanism was considered as a good way to introduce
flexibility in X.509 because each CA can have its own rules for different
needs, however such a mechanism is a “black hole” and cannot be har-
monized for different CAs. This attitude leaves ample room for strong
differences between CAs and for the “take-it-or-leave-it” attitude regard-
ing what a CA subscriber can expect. This attitude also cannot be scaled to
the global Internet because it is a doubtful that it could always be success-
fully applied between competing business or different countries. (These
problems have actually appeared and are caused by independent inter-
pretations of X.509 in different implementations).

X.509 19

Also, since X.509 certificates are not human readable, a user cannot
easily see what is being accepted. In fact he has to take it for granted that
it is correct. There is some room for doubt about what exactly an X.509
certificate is and why it is or is not acceptable, thus the X.509 certificates
fail to satisfy the most important issue – what has been certified.

There are many other conceptual points in X.509 as discussed in dis-
cussion groups or the MCG:

� How the validity of a CA certificate can be verified? The CAs are of-
ten self-certified or depend on a CA that is self-certified. In this case,
the validity problem is only shifted and the entire chain depends on
one final link.

The GTR [7] (Global Trust Register) group created a list of the most
important keys, that are commonly used today. This book is pub-
lished primarily in a non-electronic way and so helps users to obtain
the root keys in a relatively safe way.

� The client software is often forced to accept signatures that are “hard-
wired” into the software. In such cases the decision of trust is com-
pletely removed from the user, which contradicts the rule that the
user should always be central in the decision.

� There is also a question how one would distribute an updated top-
level CA certificate, when the expired certificate is “hardwired” into
the software. Unless there is a second trusted CA which can sign the
distribution, the new certificate cannot be certified.

� X.509 is based on X.500 in order to specify the DN naming scheme,
but X.509 is not completely defined. It has left room for different
readings of the proposed recommendations.

� When using SSL, the clients usually accept the server CA’s key sig-
natures in a list that uses indirect (and “soft-trust”) properties to link
certificates such that the client can accept an unknown CA if that
CA is trusted by a CA that the client trusts. This could possibly be
a very long chain starting from only one trusted CA. A good certifi-
cate list can decrease the number of untrustworthy entries in such
a chain. The job of providing a good certification chain is more chal-
lenging for the server than for the client. The server is not informed

X.509 20

by the client what CAs are preferred (CAs that are directly trusted by
the server or untrusted CAs directly trusted by a CA that the client
trusts and so on). The client can know which CAs are acceptable to
the server as the server sends a list of DNs. No such corresponding
list is sent in the other direction from the client to the server.

� The life of a certificate cannot extend beyond the life of the certificate
of the signing CA. After the expiration of the CA’s certificate one
should assume that the corresponding private key may have been
cracked or compromised (e.g. discarded without enough care). Any-
thing signed by that key thereafter should be viewed as a forgery. If
someone presents a certificate today that was signed by a key, whose
certificate expired last week, you have to assume that this is a forgery.
If you knew that this certificate was signed during the lifetime of the
signing CA’s certificate you could assume that it is authentic. The
problem is that there is no way to determine from the certificate ex-
actly when it was signed in relation to lifetime.

� The lifetime of a certificate is dependent on various factors. Math-
ematical analysis and simulation shows that optimal certificate life-
time can be as short a few weeks, while many current commercial
CAs use the lifetime of one or more years. It is evident that shorter
lifetime will result in higher overheads.

� One must have multiple copies of certificates, due to the use of differ-
ent non-communicating CAs which have different expiration dates.
The certificate must be substituted before it expires, while the older
one is still valid and is registered in someone’s files somewhere.

� The Certification Authority public key may be the target of an ex-
tensive cryptoanalytical attack. For this reason, CAs should use very
long keys and change them regularly. On the other side, the top-
level CAs are exceptions. It is not practical for them to change keys
frequently because their keys may be hard-coded into software and
distributed in various ways, and used by a large number of verifiers;
Thus those CAs that are most probable target for attacks, offer the
least level of protection.

� Certificates usually do not include much information about the sub-
ject to whom the certificate is issued. Certificates usually do not cer-

X.509 21

tify phone numbers, fax numbers, account numbers or addresses,
however such data may be crucial for identification or for establish-
ing a reliable contact. Certificates also do not allow for temporary
changes of personnel or other characteristics. Netscape has proposed
a new type of certificate that is used together with the X.509 certifi-
cate. This new certificate is known as an attribute certificate. Such
certificates have no associated key pair and they cannot be used to
establish “identity”. Other than this, there is not much difference
between a public key certificate and an attribute certificate and thus
everything one can include in an attribute certificate could also be
included in a public key certificate.

� CRLs are needed to inform that an otherwise valid certificate is not
valid anymore. This was first thought to be a positive aspect of re-
lying on CAs (as compared to PGP, for example), but it also creates
several unsolvable problems. The frequency of issuing CRLs should
be specified in the CA’s self-specified CPS, but there may be con-
siderable delay between the actual need to revoke a certificate and
the reflection of this need in a certification chain with different CAs
(There is no upper limit for such delays). The user is not able to
check CA’s certificates in a chain against revocation lists. Some peo-
ple even claim that CRLs are a solution to a non-existent problem.
The problem solved by CRLs is how to communicate that a certifi-
cate is no longer valid. If a certificate were really no longer valid, no
one would need to check the CRLs to know about it.

� There are basically two approaches how to check the validity of a
certificate. The first possibility is based on regular obtaining of the
CRLs, as they are published by the CA. When a certificate is pre-
sented its serial number is checked against the CRL. If there’s no
record in the CRL, the certificate is considered to be valid. The other
possibility considers the certificate invalid until the issuing CA con-
firms the validity of this certificate. This requires on-line access to
the CA’s database.

The latter approach provides for better security. Its benefit depends
on the frequency and reason for revoking keys. (The GTR project
didn’t register any important key revocation during its this year’s
survey, for example).

X.509 22

� When confronted with a risk situation, a normal business solution is
to rely on auditing, however auditing of CA’s certificates is a difficult
or even impossible task. This comes from the X.509 which allows
the CA’s policies to be built by the CA’s itself without any restric-
tions. The CPSs are indeed different and self-made by each CA and
they are not designed to be audited. Phillip Hallan-Baker, a Verisign
consultant, publicly noted that “there is not a defined standard for
CA practices against which a company might be audited. In effect,
each company states their own practices in their CPS. The CPS is not
a document designed for auditing use, however. It describes a “spec-
ification”. It does not describe DETAILS which may be checked by
a third party in a systematic manner.” The lack of any regulations
concerning the CA’s policies made a few countries (e.g. Germany
and the state of Utah in U.S.) to specify such regulations in their leg-
islative system.

� Another potential problem with CRLs is the risk of a CRL growing to
an entirely unacceptable size. In the versions from 1988 or 1993 of the
X.509 CRLs each CRL for the end-user certificates needed to cover
the complete set of end-users from a CA. Such populations can easily
grow into thousands or even hundreds of thousands of end-users.
The end-user CRL is therefore at risk of growing to such sizes which
might present major communication and storage overhead problem.
Since the release of the version 2 of the CRL it is possible to divide
the population of end users for one CA into a number of partitions.
Each partition is associated with one distribution point. Therefore
the maximum size of CRL is controlled by the CA.

Separate distribution points can also exist for different reasons of re-
vocation. The CRL of revocations resulting from key compromises
might be, for example, issued more frequently than the CRL for “rou-
tine” revocations.

X.509 is essentially a bag of bytes, meaning and validity of which strongly
depends on the CA. Moreover, one may trust the confirmation procedures
of the CA during certificate reliance, but one cannot rely upon them for
anything more than their value as a representation of the CA’s policy ex-
pressed (in most cases) in the CA’s own terms and rules. Therefore an X.509
certificate needn’t necessarily be meaningful or valid for the user’s pur-
poses.

SPKI 23

Chapter 3

SPKI

3.1 Introduction

SPKI (Simple Public Key Infrastructure) is an Internet draft. It is not yet an
Internet standard. Before Internet drafts can become Internet standard, the
IESG (Internet Engineering Steering Group) must accept them as proposed
standards. To date the IESG has not put this draft among the Internet
standards (neither did PKIX). The latest version of this working document
was published on March 11, 1998.

The SPKI working group proposes a simple model of PKI. It defines
a bare-bones certificate format that eschews all of X.509’s complexity, pre-
ferring to bind keys to authority and capability rather than identity. The
SPKI model is similar to the way in which people use credit cards today.
A person’s ability to use a credit card is the first step in authorization.
When a shop authorizes the use of the credit card, neither the shop nor
the credit card company uses identity to authorize such use. The user
either has the card or not and the card either has been revoked or not.
So the SPKI is based on capability, not identity. The SPKI proposal also
eliminates the idea of a hierarchy, proposing a very “flat” architecture in
which all certification, certificate retrieval and verification occur in an ad
hoc manner. The SPKI is also aligned with the SDSI (Simple Distributed
Security Infrastructure) created by Ron Rivest, one of the RSA inventors.

3.2 SDSI

Simple Distributed Security Infrastructure (SDSI – pronounced ”Sudsy”)
is a relatively new distributed security infrastructure. It was first pub-

SPKI 24

lished in April 1996 (in version 1.0) by R. Rivest and B. Lampson, along
with the work on the SPKI standard. The SDSI was redesigned to go well
with the SPKI. SDSI was practically merged with SPKI and the current
version of SDSI is 2.0.

SDSI combines a simple public-key infrastructure design with a means
of defining groups and issuing group-membership certificates. Its de-
sign emphasizes linked local name spaces rather than a hierarchical global
name space.

SDSI principals are public digital signature verification keys. These
public keys are central in SDSI. Everything is based around them. The no-
tion of an “individual” (a person, process or machine) is not required. Of
course, such individuals will actually control the associated private keys,
so that public/private keys can be viewed as “proxies” for such individu-
als.

Each principal is represented by a data structure that can be passed
around, such as:

(Principal:
(Public key:

(Algorithm: RSA-with-SHA-1)
(N : =0123456789abcde=)
(E : #11)))

A principal can also be the “value” for some name.
Each principal can make statements and requests on the same basis

as any other principal. No hierarchical global infrastructure is required.
In practice some principals will be more important than others, and SDSI
allows for some principals to have special status as “distinguished roots”,
allowing SDSI to accommodate “global names”, but this is for convenience
only.

SDSI signatures are quite flexible. Objects may be co-signed by sev-
eral signers and signatures may contain collections of relevant certificates.
Signatures may also have expiration dates and may require periodic re-
confirmation.

Certificates can be created and signed by anyone. In other words, ev-
eryone can be a “CA”. Which policies and procedures a principal follows
when issuing certificates is up to that principal to choose. They may de-
clare that some standard procedure must be used or they may issue cer-
tificates arbitrarily.

SPKI 25

There is no fixed “global” name space giving a unique name for prin-
cipals. The principal that someone calls Alice may be different from the
principal that I call Alice.

SDSI provides means for linking local name spaces. Each principal
can “export” his name/value bindings by issuing so called “name/value
certificate”. Thus if my local name Alice refers to a principal then I can
refer to the principal that Alice calls Bob as

(ref: alice bob) or Alice’s Bob .

Alice exports her binding by issuing a signed name/value certificate
that binds her local name Bob to that particular principal.

It is not necessary to have a symbolic reference as the first argument.
One can have an expression such as

(ref: principal alice) or principal’s alice,

where principal is an explicit principal, however people generally prefer
the symbolic form for clarity.

“Groups” are a fundamental part of the SDSI. For purposes of describ-
ing who is authorized to access certain data or perform an action, it is
usually simplest to define the group of authorized principals in one step
and then to place the group name on the appropriate access-control list
as a second step. This provides efficiency and reliability when the same
group of principals is authorized on many different ACL’s.

A SDSI group is typically a set of principals. Each group has a name
and a set of members. The name is local to the principal, who is the owner
of the group. The owner is the only one who may change the group defi-
nition.

One can define a group by listing its members:

(Group: Alice Bob)

or by giving algebraic expressions in terms of the other groups or princi-
pals:

(Group: (OR: Carol teachers))

SPKI 26

3.3 Certificates

Certificates in SPKI consist of the following five fields:

� ISSUER: a principal making the certificate’s statement

� SUBJECT: the thing about which the statement is being made. This
usually is a principal (or a name reducible to a principal).

� DELEGATION: a boolean for propagating authorizations

� AUTHORIZATION: the specific authorizations being delegated in
this certificate. Authorizations in SPKI are defined explicitly.

� VALIDITY: data ranges and/or on-line validity test to determine the
certificate validity

These fields can be expressed as a 5-tuple: (�issuer�,�subject�,�deleg�,
�auth�, �validy�). The basic SPKI certificate is such a 5-tuple, signed
by the issuer.

3.4 5-tuple reduction

The process of validating a certification chain is called “5-tuple-reduction”.
The rules for reduction are simple:
Given (I1;S1;D1;A1;V1) and (I2;S2;D2;A2;V2) reduction is possible, S1 =
I2 ^ D1 = true. The result 5-tuple is then (I1;S2;D2;A;V) where A = A1 \

A2 and V = V1 \ V2. (Exact rules for evaluation of the�authentication�
and�validity� intersections are specified.)

3.5 Authorization flow

There does not need to be any such thing as a “root” key (“handed down
from God to be trusted for all purposes”). There is an algorithm running
on the user’s computer and this algorithm makes the decision. Certifi-
cates merely pass authorizations from the�issuer� to the�subject�, so
there needs to be a “left-most” certificate. The only usable structure is an
ACL entry. So all useful authorizations flow from an ACL entry through

SPKI 27

(one or more) certificates, until a 5-tuple of the following form is reached:
(self, �subject�, �delegation�, �auth�, �val�). The authorization
process then receives this result and acts on it.

3.6 Discussion

PKIX and SPKI are both Internet Drafts in the process to be accepted as
Internet standards, however the proposals of the PKIX working group are
largely based on the existing X.509 standard for PKI. It has only been for-
mally specified (and extended) for the Internet use by the IETF. SPKI on
the other side is relatively new and needs to gain significant support yet.
In each case the names behind the SPKI (B. Lampson from the Microsoft
and R. Rivest from the RSA) sound promising.

PGP 28

Chapter 4

PGP

4.1 The web of trust

Pretty Good Privacy (PGP) is a crypto software created originally by Phil
Zimmerman. The first version of PGP appeared in Internet in 1991 and
it has had quite thrilling history since. Nowadays, the PGP has become
a standard for privacy in e-mail communication.

PGP in its older versions (up to 2.6) used RSA (for public-key cryp-
tography) and IDEA (for symmetric cryptography). The current situation
is more complicated. Since version 5.0 PGP offers 3 algorithms for sym-
metric cryptography (CAST, IDEA and Triple-DES) and RSA was replaced
by Diffie-Hellman algorithm. The international versions of PGP (5.0i, 5.5i
and 6.0i), however, use both RSA and Diffie-Hellman algorithms to keep
the compatibility with older versions of PGP.

Along with the RSA the PGP system uses MD5 as the message digest
algorithm for digital signatures. In the 1996 a German cryptographer Hans
Dobbertin showed several weaknesses in the design of MD5 and that why
the new versions of PGP use SHA as the message digest algorithm (along
with the Diffie-Hellman encryption).

A user of a PGP system generates a (public key, secret key) pair and
then associates the public key with his unique ID in the recommended
form (name <e-mail address>). Keys are stored in key records. A pub-
lic/secret key record contains an ID, a public/secret key and a timestamp
of when the key was created. Public/secret keys are stored in public/secret
“rings”‘. Each user must store and manage a pair of keyrings.

PGP 29

If Alice has a good copy of Bob’s public-key record (e.g., a copy which
she has reason to be confident has not been tampered with since Bob gen-
erated it), then Alice can sign this copy of the public key and pass it to
Carol. Alice thus acts as an “introducer” of Bob to Carol. A signed key
record is called a key certificate. (Sometimes the word “certify” is used
as a synonym for “sign”.) The user must tell the PGP system which in-
dividuals he trusts as introducers and must certify (sign) the introducer’s
public-key records with his own secret key. Each individual associated
to a public key in the public key ring is assigned his ability to act as an
introducer. When a new key is added to the public key ring one of four
following attributes is assigned to it:

� completely trusted – if any other key is signed by this key, then the
new key can be added to the key ring. This means that Alice trusts
Bob for the validity of any key.

� marginally trusted – a key signed by this key must also be signed by
one (or more) other keys. In this case Alice does not trust Bob com-
pletely and needs to have his claims about keys confirmed by one or
more others.

� untrusted – this key cannot be used in determining whether other
keys can be added to the keyring. Alice does not trust Bob for valid-
ity of any key.

� unknown – the level of trust cannot be determined for this key. In
practice, this is the same as “untrusted”.

The above description bears a great deal of similarity to a description of
how two CA operators issuing X.509 certificates would cross-certify each
other, or how a CA would issue a certificate for a user. In the PGP case
the cross-certification is done at the user level and the assurance of user
identity is almost always low or anonymous. In the PGP model, each user
is, in effect, its own CA with full authority over how he assigns his trust.
This simplicity has allowed PGP to gain relatively widespread acceptance
on the Internet compared to other PKIs.

It is, however, important to note that PGP system assumes that the only
notion of “security policy” that needs to be supported is the verification
of a message sender’s ID. It is also necessary to note that Alice’s signa-
ture on Bob’s public key cannot be interpreted such that suggests Alice

PGP 30

trusts Bob’s personal integrity. Rather, the correct interpretation is that Al-
ice believes that the binding of Bob’s “identity” to the key is correct (the
problem of binding a public key to an identity was also discussed in the
Introduction).

Keyrings and degrees of trust are designed to allow each user to define
his own policy of such a very limited form. This narrow notion of policy
is appropriate to PGP, which was primarily designed to provide secure e-
mail for individuals, but it is insufficient for the broader range of secure
network services.

Trust is not transitive. The presumptions that Alice fully trusts Bob as
introducer and Bob fully trusts Carol do not automatically imply anything
about the degree of trust of Alice into Carol. The PGP system respects this
important property of trust and does not automatically consider trust to
be transitive.

A PGP certificate is not extensible. It usually contains only an e-mail
address, an optional photo (since version 6.0), the public key and an at-
tribute indicating the degree of trust; However an e-mail address is by
no means an accurate method of identifying someone, thus PGP cannot
provide strong authentication of “identity”.

The certificate’s lack of extensibility prevents PGP from being used
for applications beyond the casual e-mail communication. For example,
a bank cannot create a PGP bank account certificate for Alice’s public key
and a user signing Alice’s bank key has no way to say that this is the key
of the Alice’s bank. PGP does not allow a user’s trust to be delegated in
a discriminating fashion, even if such certificates were possible.

The PGP trust model is supported by a simple infrastructure. There
are Public Key Servers placed in well defined places on the Internet. These
servers respond to requests to add a key or to retrieve a key for a named
user. For server operations is (since version 6.0) used the PGP’s implemen-
tation of TLS (with 128 bit encryption).

These server do nothing else than storing and retrieving keys.

4.2 Revocations

PGP allows for issuance of “revocation certificates”. These are a special
kind of public key certificate that says that this public key should not be
used. A PGP key revocation certificate contains a copy of the public key

PGP 31

and is signed by the secret key. When a user obtains such a key revo-
cation certificate, he incorporates it into the keying and this prevents the
user from using the public key. The problem of revocation in PGP lies
in the distribution of revocation certificates, and therefore in the mainte-
nance of the chain. Adding, deleting or changing data is done by the users
themselves and in a happenstance pattern. There is no guarantee if and
when the chain is up-to-date and valid. Even if PGP enforces a model of
“hard-trust” to setup entries in the web of trust (and correctly recognizes
that trust is intransitive), it uses “soft-trust” to upkeep entries without dis-
cussing its validity or allowing the time factors. Once a certificate is added
to a user’s keying, it is considered valid until the user decides otherwise.

Another problem arises if you want to revoke a key that you no longer
have access to. You cannot create a revocation certificate since you cannot
control your key anymore. The older versions of PGP recommended to
create a key revocation certificate when creating a new key and store it in
a safe place for possible future use. This is not very helpful, because it is
probable that such a certificate would be lost together with the private key.

Since version 6.0 there is another possibility. When creating a new key
one can select one or more other keys for revoking the key. These “desig-
nated revokers” will be then able to create the revocation certificate for the
lost key.

4.3 Discussion

The PGP approach of trust works quite well in very small groups of users
(e.g., small company or department) where one person (or several people)
sign the certificates for local staff and the local security policy declares that
person(s) to be trusted. In effect, we obtain an organizational CA that signs
everyone’s keys and which is trusted by people within the organization.

Scaling the model to larger communities is not easy, because Alice from
the company A and Bob from the company B have no common point of
trust. What we need now is a cross-certificate, which would be the equiv-
alent of a higher level CA. The PGP system itself supports only a single
certificate to be attached to a message and so these certification paths can-
not be conveyed with the message.

SKIP 32

Chapter 5

SKIP

5.1 Description

Simple Key Management for Internet (SKIP) is key-management scheme
for network layer protocols. It is especially suited for use in conjunction
with a session-less datagram protocols (e.g. IPv4 or IPv6). SKIP is an open
standard and has the status of the IETF draft document.

There are a few ways the authenticated RSA public key can be used
to provide authenticity and privacy for a datagram protocol. However
such methods require use of a session key establishment protocol prior to
communication. This approach has a few drawbacks (related to dynamic
routing and crash recovery). Thus, due to the nature of IP network com-
munication the key management scheme must operate in a sessionless and
stateless manner.

The packet-encryption key can be encrypted with the recipient’s pub-
lic key and added to each IP packet. However this would mean consider-
ably high overhead caused by transmitting approx. 128-bit key with each
packet. The use of authenticated Diffie-Hellman (DH) public values can
avoid the need for pseudo-session state management between two parties
to establish and change packet encrypting keys.

Each IP source or destination has an authenticated Diffie-Hellman pub-
lic value. (SKIP supports even multicast IPs) This DH public value can
be authenticated in various ways (X.509, PGP and Secure DNS are sup-
ported). Thus there is a secret value i and a public value gi mod p associ-
ated with each IP address. Once n certificates are assigned to n IP nodes,

SKIP 33

n2 mutually authenticated pairwise keys arise. All this simply as a result
of the public value authentication process, because each pair of IP nodes
can compute the shared secret gij mod p. The symmetric keys derivable
from these shared secrets require no setup overhead except for the initial
authenticated public value distribution process.

All that is required for each party to compute the pairwise symmetric
key is to know the others party’s authenticated public key. Since there is
nothing secret about the DH public values, one natural way to obtain the
needy authenticated public value is to use a directory service (secure DNS,
for example).

The shared secret (gij mod p) is called the long-term secret and the
master-key Kij is derived from this shared secret. Kij is an implicit pair-
wise shared key, it does not need to be sent in any packet. Thus it can be
used as long as desired without any additional overhead.

Since it is desirable to keep Kij for a relatively long period of time, the
actual IP data traffic is not encrypted using the key Kij. Instead, only the
transient keys (Kp) are encrypted by this long-term key and the transient
keys Kp are used to encrypt the data traffic.

Clear IP header Encrypted Kp Encrypted IP packet

Both the keys Kij and Kp are used as keys for a symmetric key algo-
rithm. If the source node changes the packet encryption key Kp, the re-
ceiving IP node can discover this fact without having to perform a public
key operation. Optionally instead of using the authenticated public key
infrastructure one can manually distribute the master keys Kij. However
this is slow and awkward.

The implicit pairwise master keys can even be used to generate an ar-
bitrary number of implicit master keys by making the master key to be
a function of a counter. This counter can be easily constructed in a state-
less manner as the number of time units since an agreed-upon start time.

5.2 Discussion

SKIP is an interesting protocol, yet it has a few problems. Each node au-
thenticator derives its information from a type of a directory service. And

SKIP 34

a user needs a certificate to obtain the other’s party DH public value. It is
also necessary to note that all the security features that depend on certifi-
cates depend also on the data from the application layer. When the certifi-
cation of SKIP happens at the protocol level, the application program has
to complement the certification in a higher layer later, too.

SKIP is transparent to the user. Therefore the user has no practical way
to control the process, cannot decide which node authenticator is reliable,
can not exclude nodes, which have been affected by enemies, cannot in-
fluence the choice of certificates and so on.

The use of SKIP in commercial and other serious situations is difficult,
because the decisions are removed from the user, who should play the
central role in the certificate acceptance.

PolicyMaker 35

Chapter 6

PolicyMaker

6.1 Motivation

Identity-based certificates create an artificial layer of indirection between
the information that is certified (which answers the question “who it the
holder of this public key?”) and the question that a secure application
must answer (that is “can we trust this public key for this purpose?”).

Let’s consider the steps an application must go through to process a re-
quest based on a signed message from the holder of a traditional certifi-
cate.

obtain certificates and verify the signatures on certificates
+

verify that certificates are unrevoked
+

attempt to find a “trust path” to the certificate that is in question
+

extract names from certificates
+

lookup names in the database that maps names to actions they are trusted
to perform

+

determine whether the requested action is legal
+

proceed, if everything is valid

PolicyMaker 36

A more general system would integrate the specification of policy with
the binding of public keys to the actions they are trusted to perform. Pol-
icyMaker is such a system. It is a trust management system developed by
a group of people from the AT&T Laboratories[13], first presented at the
IEEE Symposium on Security and Privacy in May 1996.

PolicyMaker binds public keys to predicates that describe the actions
they are trusted to sign for, rather than to the names of the key holder.

Considerations such as personal identity and organizational level of
the approvers, which are only incidentally relevant to the question the
application is trying to answer, can be omitted altogether. This enables to
express security credentials and policies without requiring the application
to manage a mapping between personal identity and authority.

Simple policies and credentials can be stated simply, and existing PGP
or X.509 certificates that merely bind keys to IDs can be used by Policy-
Maker with only trivial modifications.

The PolicyMaker system provides a simple language to express con-
ditions under which an individual or an authority is trusted, as well as
conditions under which trust may be deferred. PolicyMaker enhances the
potential scope and form of security services by implementing trust man-
agement in a distinct software system. It frees the designers of services
from the need to handle security completely within applications.

PolicyMaker evaluates proposed actions by interpreting the policy state-
ments and credentials. Depending on the credentials and form of the
query, it can return either a simple yes/no answer or additional restric-
tions that would make proposed action acceptable.

Security policies and credentials are defined in terms of predicates,
called filters, that are associated with public keys. Filters accept or reject
action descriptions based on what the holders of the corresponding se-
cret keys are authorized to do. Security policies and credentials consist of
a binding between a filter and one or more public keys.

A local policy may trust third parties to issue credentials for others,
and it is possible to use filters that limit the extent to which these third
parties are trusted. Credentials themselves may also contain filters that
limit the actions their holder is trusted to perform. An action is considered
acceptable according to local policy if there is a “chain” from the policy to
the key(s) requesting the action in which all the filters along the chain are
satisfied.

PolicyMaker 37

6.2 The PolicyMaker Language

The basic function of a PolicyMaker system is to process queries. A query
is a request to determine whether a particular public key (or a sequence of
public keys) is permitted to perform a particular action according to local
policy. Queries are of the form

key 1, key 2, ..., key n REQUESTS ActionString

The semantics of action strings are determined by the applications that
generate and interpret them.

PolicyMaker processes queries based on trust information contained
in assertions. Assertions confer authority on keys. Each assertion binds
a predicate, called a filter, to a sequence of public keys, called an authority
structure. Assertions are of the form:

Source ASSERTS AuthorityStruct WHERE Filter

Source indicates the source of the assertion (either the local policy or
the public key of a third party). AuthorityStruct specifies the public key
or keys to whom the assertion applies. Filter is the predicate that action
strings must satisfy for the assertion to hold. Each assertion states that
the assertion source trusts the public keys in the authority structure to be
associated with action strings that satisfy the filter.

There are two types of PolicyMaker Assertions: certificates and policies.
A certificate is a signed message that binds a particular authority structure
to a filter. A policy also binds a particular authority structure to a filter.
Policies, however, are not signed. Because they originate locally, they are
unconditionally accepted locally.

Set of local policies forms the “trust root” of the machine and defines
the context under which all queries are evaluated. A query is a request for
information about the trust that can be placed in a particular (sequence of)
public key(s).

We may interpret the assertions as a directed graph D in which the
vertices are labeled by keys or policy sources and the arcs are labeled by

filters. If v
f
! w is an arc in D that is labeled by f , then there must be an

assertion whose source is the label of v, whose authority structure is the
label of w, and whose filter is f .

PolicyMaker 38

To process a query, the PolicyMaker system must find a chain v1 !

v2 ! : : : ! vx in D which v1 is a local policy source and vx = k. If the
query contains multiple keys k1; k2; : : : ; kn and the assertions contain com-
plex authority structures, then V(D) must include nodes that are labeled
by keys, policy sources or complex authority structures, and the chain
v1 ! v2 ! : : : ! vx must be such that vx is labeled by an authority
structure that accepts the input (k1; : : : ; kn).

The filters in certificate and policy assertions may take one of two forms.
The simplest form is a program that accepts or rejects action strings. The
second filter form not only accepts or rejects action strings, but may also
append annotations to an otherwise acceptable action string that indicates
restrictions.

PolicyMaker itself does not verify signatures on signed assertions or
queries. Signatures are verified by some external program or function
(e.g., PGP, PEM).

6.3 Discussion

The PolicyMaker approach has a few advantages compared with the tra-
ditional trust management approaches:

� certificates and policies are based on predicates written in a general
programming language;

� trust descriptions can be changed without altering the trust manage-
ment system;

� risks arising from one level of indirection (mapping of identities to
their authority) are eliminated;

� it requires designers of secure systems to consider trust management
explicitly.

Of course, PolicyMaker does not solve the entire trust management
problem neither does it guarantee that systems which use it will be secure.
Applications must define action description languages that accurately re-
flect the security semantics of the application.

PolicyMaker 39

The policy predicates and certificate assertions must be carefully writ-
ten to reflect the intentions of the policy. There are practically no restric-
tions on predicates, so it is possible to construct policies that have unfor-
tunate or unexpected consequences.

Conclusions 40

Chapter 7

Conclusions

The basic purpose of the certification is to verify that an attribute (such
as a public key) really belongs to an entity. Assured knowledge of the
other party’s public key is needed for secure communication between two
previously unknown parties.

The problem of certification is often discussed nowadays. It is rapidly
developing, two new Internet drafts were presented this year (1998).

There are many standards and so-called standards for public key in-
frastructure. They are based on various attitudes to trust and trust man-
agement. The best known standard is the ITU-T’s X.509. It is based on Cer-
tification Authorities, that bind distinguished names to public keys. X.509
is a recommendation which many implementations are derived from (e.g.
SSL, PKIX). The most important fact that is reprehended to X.509 is the
Certification Practice Statement of CAs. It is a self-created rule for all a CA
does. The rule can be different for different CAs and is not designed to be
audited. On the other side, out of all the systems offered today, the sys-
tems based on X.509 are the most acceptable for business purposes (e.g.
SET is derived from X.509).

PGP is based on “introducers” of public keys. PGP is very suitable
for small communities that want to exchange e-mail messages, but is not
extensible for larger communities or other purposes.

SPKI is an Internet draft that prefers to bind keys to authorities rather
than identities. It uses the flat (non-hierarchical) architecture called SDSI
(Simple Distribution Security Infrastructure) created by Ron Rivest and
Butler Lampson. The SPKI has not gained a widespread support by now,
but the names behind this standard might indicate that this will soon
change.

Conclusions 41

The PolicyMaker system enables the separation of security services
from applications and process them in a distinct system. PolicyMaker
processes the applications’ queries and returns either simple yes/no an-
swer or additional restrictions for acceptable actions. Processing queries
is based on trust information contained in assertions supplied by appli-
cations. The separation of the security services brings a few advantages,
but does not automatically solve the entire trust management problem.
The application must supply the PolicyMaker system with correct policy
predicates and certificate assertions, otherwise, PolicyMaker would not be
of any help.

References 42

References

[1] S. Garfinkel: PGP, encryption for everyone.
O’Reilly & Associates, Inc., Sebastopol, 1995

[2] A. Aziz: Simple Key-Management for Internet Protocols
http://www.skip.org/inet-95.html

[3] A. Aziz et al.: Simple Key-Management for Internet Protocols
http://skip.incog.com/spec/SKIP.html

[4] E. Gerck: Overview of Certification Systems: X.509, CA, PGP and SKIP
http://www.mcg.org.br/cert.htm

[5] M. Branchaud: A Survey of Public Key Infrastructures:
Pretty Good Privacy
http://www.xcert.com/˜marcnarc/PKI/thesis/pgp.html

[6] C. M Ellison et al.: SPKI Certificate Theory
http://csro.nist.gov/pki/

[7] R. Anderson et al.: Global Trust Register
http://www.cl.cam.ac.uk/Research/Security/Trust-Register/

[8] E. Gerck: Towards a Real-World Model of Trust: Process and Social
Reliance on Received Information
http://www.mcg.org.br/trustdef.htm

[9] N. Bohm: Authentication, Reliability and Risks
http://www.mcg.org.br/auth_b1.htm

[10] E. Gerck: The Meta-Certificate Standard FAQ
http://www.mcg.org.br/mcfaq.htm

References 43

[11] F. J. Hirsch: Introducing SSL and Certificates using SSLeay
http://www.camb.opengroup.org/www/prism/wwwj/

[12] R. Housley: Internet Public Key Infrastructure X.509 Certificate
and CRL Profile
http://csro.nist.gov/pki/draft-ieft-pkix-ipki-part1-07.txt

[13] Matt Blaze et al.: Decentralized Trust Management
http://dimacs.rutgers.edu/TechnicalReports/
abstracts/1996/96-17.html

[14] A. Young: Technologies to Support Authentication in Higher Education
http://www.ukoln.ac.uk/services/elib/papers/other/scoping/

[15] C. Ellison: Generalized Certificates
http://ftp.clark.net/pub/cme/html/cert.html

[16] R. Macgregor: SET Certification
http://www.redbooks.ibm.com/redbooks/SG244978/setbk24.htm

[17] J. Lewis: Public Key Infrastructure Architecture
http://www.tbg.com/samples/netsvcs/pkiarc.htm

Copyright c© 1998, Faculty of Informatics, Masaryk University.
All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

Publications in the FI MU Report Series are in general accessible
via WWW and anonymous FTP:

http://www.fi.muni.cz/informatics/reports/
ftp ftp.fi.muni.cz (cd pub/reports)

Copies may be also obtained by contacting:

Faculty of Informatics
Masaryk University
Botanická 68a
602 00 Brno
Czech Republic

