
Using LinkController

Michael De La Rue

Copyright c© 1997-2002 Michael De La Rue
Published by ...
Permission is granted to distribute and change this manual under the terms of the GNU
public license.
This manual is not yet complete, but it’s better than nothing.
Manual Revision Code: $Revision: 1.22 $

i

Table of Contents

Introduction . 1

1 Getting Started . 3

2 Configuration. 5
2.1 Interactive Configuration . 5
2.2 Setting Configuration Variables . 5
2.3 LinkController Configuration Variables . 5
2.4 Configuring Infostructures . 6

3 Advanced Configuration . 9
3.1 Advanced Infostructure Configuration . 9
3.2 Authorisation Configuration. 10
3.3 Configuring CGI Programs . 11

4 Using LinkController to Check Links. 13
4.1 Extracting Links . 13
4.2 Testing Links . 13
4.3 Reporting Problems . 14
4.4 Email Reporting of Newly Broken Links 15
4.5 Examining Individual Files . 16
4.6 Repairing Links . 16
4.7 Making Suggestions . 16
4.8 CGI Interface . 17

5 Interfacing to other programs 19

6 The Emacs Interface . 21
6.1 Finding Files with Broken Links . 21
6.2 Finding Broken Links in Files Within Emacs 21

7 Administration . 23
7.1 Setting up LinkController . 23
7.2 Default Installation . 23
7.3 User Administration . 23
7.4 Cron Scripts . 24
7.5 Link Database Maintenance . 24
7.6 Link Ageing . 24

Appendix A Robots and Sensible Behaviour . . 27

ii Using LinkController

Appendix B Uncheckable Links 29

Appendix C Absolute and Relative URIs 31

Appendix D Bugs and bug reporting 33

Appendix E History . 35
E.1 Acknowledgements . 35

Esoterica Internet Portugal . 35
IPPT PAN Poland . 36
The Tardis Project . 36
Other Free Software Authors . 36

Appendix F Invoking the LinkController
Programs . 37
F.1 Invoking link-report . 37
F.2 Invoking test-link . 38
F.3 Invoking extract-links . 39
F.4 Invoking fix-link . 40
F.5 Invoking check-page . 41
F.6 Invoking build-schedule . 42

Appendix G Packages Which Work With
LinkController. 43
G.1 The CDB utilities . 43
G.2 The Tie-Transact-Hash Perl Module and Programmes 43

Appendix H Terms . 45
H.1 Infostructure . 45
H.2 Link . 45
H.3 Resource . 45
H.4 URIs . 45
H.5 URLs . 45
H.6 URIs . 46

Program, Variable and File Name Index 47

Concept Index . 49

Introduction 1

Introduction

LinkController is a system for checking links.
Most HTML pages contain references to other HTML pages (links). These allow the

readers of those pages to locate other related resources (web pages etc.). Unfortunately
the location of ‘resources’1 can change, resources can disappear completely or the system
providing the resource can break. When this happens, the link which used to find them will
no longer work. The only reliable way to detect this problem is to periodically check over
the resources and take corrective action for the ones that have gone missing.

LinkController is designed to make that task much more efficient. It automates the task
of checking which links have been broken for a period of time and then of finding which
documents they occur in.

LinkController is copyrighted software and is distributed under the GNU Public License
which should have been included as the file ‘COPYING’ in the distribution.

1 resource is a general term for HTML pages and all of the other things that can be
referenced by URLs

2 Using LinkController

Chapter 1: Getting Started 3

1 Getting Started

This section of the manual assumes that the programs that make up LinkController are
already installed and working on your computer. If not, then See Section 7.1 [Setting up
LinkController], page 23. We assume the standard setup where your system administrator
runs the link checking for you. Other setups will need slightly different behaviour. Speak
to the person who set up link controller.

The first thing to do is to run configure-link-control to configure the system. This
will ask a series of questions about your configuration and create a configuration file which
will be used by the various programs which make up LinkController.

Next you have to work out which links you are interested in. Do this by extracting
the links from your web pages (see Section 4.1 [Extracting Links], page 13). The output
file from this with the list of links found will be stored in the location you gave during
configuration.

Assuming that you have the default install, your links will be automatically copied and
checked over time following that.

After a short time (about a day) you will begin to get information about links which
didn’t work with link-report --not-perfect. After some more time (a week or so) you
can use link-report to find out which links are really broken.

4 Using LinkController

Chapter 2: Configuration 5

2 Configuration

2.1 Interactive Configuration

The configure-link-control program can be used by users to configure LinkCon-
troller. This will ask you a series of questions and then generate a configuration file in your
home directory. This is a good way to start configuring LinkController.

The configuration that is controlled by this program is related to reporting and fixing
links. For other configuration see See Chapter 7 [Administration], page 23.

2.2 Setting Configuration Variables

If automatic configuration (see Section 2.1 [Interactive Configuration], page 5) doesn’t
work well enough for you, then you should manually change the configuration variables. All
of the variable information is stored in the file ‘.link-control.pl’ in your home directory
or ‘/etc/link-control.pl’ for system wide configuration. These locations are hardwired
into the LinkController system and should only change if your administrator has done
something strange. The configuration files are written directly in Perl (the programming
language LinkController is written in). You can set the configuration variables by putting
lines like this.

$::links=’/var/lib/link_database.bdbm’;

Please note the semi colon at the end of the line and the use of single quotes so that
Perl doesn’t do anything strange to your values.

2.3 LinkController Configuration Variables

This is a complete list of the configuration variables which a user should chnage in the
‘.link-control.pl’ file. See Section 2.2 [Setting Configuration Variables], page 5, for how
to do this.

$::user_address
is the email address which the robot declares to the world as it goes around
checking links. If you want to check links yourself, you must set this to a valid
email address, because if something goes badly wrong, it is the only way for a
user at another site to know how to contact you.

$::base_dir
This is the base directory for all of the configuration files. If this variable is
defined then the other variables will default as given below and do not need to
be set individually.

6 Using LinkController

$::links tells you what file is being used to store information about links. This could
easily be a shared database used by everyone on your system. Defaults to
‘$::base_dir/links.bdbm’.

$::schedule
tells the system where to find the schedule file used to decide which links should
be checked next and when that should be. You will need to set this and create
the file in order to do link checking. Defaults to ‘$::base_dir/schedule.bdbm’.

$::page_index
This variable tells LinkController where to find the index which lists which links
are contained on each page. Defaults to ‘$::base_dir/page_has_link.cdb’.

$::link_index
This variable tells LinkController where to find the index which lists which links
are contained on each page. This is used during reporting to create the list of
pages that should be repaired. It is also used during repair to decide which files
have to be repaired. The file can be regenerated by running extract-links.
Defaults to ‘$::base_dir/link_on_page.cdb’.

$::infostrucs
This variable points to the configuration file where definitions of infostructures
are should be put Section 2.4 [Infostructure Configuration], page 6. Defaults to
‘$::base_dir/infostrucs’.

$::link_stat_log
This variable is the name of a file where important link status changes will be
logged. The current definition is links which have just been discovered to be
broken. This can be used in email notification Section 4.4 [Email Reporting],
page 15. There is no default value for this file and it is not generated by default.

2.4 Configuring Infostructures

The infostructure configuration says where our web pages are stored and how they are
accessed. It is kept in a separate file defined by the $::infostrucs configuration variable.
The file is used by extract-links (see Section F.3 [Invoking extract-links], page 39) to
find which files to get links from; it is used by fix-link (see Section F.4 [Invoking fix-link],
page 40) to find out where files needing to be repaired are stored; it is used by check-page
(see Section F.5 [Invoking check-page], page 41) to work out the base URI for any file being
checked and finally it is used for certain reports in link-report (see Section F.1 [Invoking
link-report], page 37).

The format of the file is one line for each infostructure with configuration directives
separated by spaces. For example

directory http://example.com/manual /var/www/html/manual
www http://example.com/strange_database

The first directive describes how extract-links program should extract the links. It
currently has three possible values. The value www means to actually use the given URL to
download the web pages. The value directory means that extract-links should assume

Chapter 2: Configuration 7

that all of the files are stored in a directory and that the directory structure matches the
structure of the infostructure. The final value advanced allows for further configuration
at the cost of extra complexity. See Section 3.1 [Advanced Infostructure Configuration],
page 9, for more information about this.

In the case where we use the directory directive, a third directive is present on each
line with the full path to the base directory of the infostructure. In this case fix-link will
be able to repair broken links in these files and extract-links will use direct file access to
the file system when extracting links.

8 Using LinkController

Chapter 3: Advanced Configuration 9

3 Advanced Configuration

There are various advanced ways to configure LinkController. These are mostly not
needed for simple checking of a small collection of web pages. For larger sites and special
situations however, they may well make life much easier.

3.1 Advanced Infostructure Configuration

Using more advanced configuration it is possible to skip over certain resources when we
are doing link extraction and to ignore some of the links. You may want to skip over this
section initially and come back to it only when you find that there are links or pages being
checked that you would rather avoid.

For this section, we assume that you already know how to make basic Perl code. If not,
then please read through the Perl manual pages ‘perl’, ‘perlsyn’ and ‘perldata’. You
may find that the examples given below are sufficient to get you started.

In order to get extract-links to extract links using an advanced infostructure, you
must use the advanced keyword. In the infostructure file. Infostructures not listed there
will be ignored, but won’t cause any harm.

Advanced configuration is in the ‘.link-controller.pl’ configuration file by making
definitions into the %::infostrucs hash. These look like the following

$::infostrucs{http://www.mypages.org/} = {
mode => "directory";
file_base => "/home/myself/www",
prune_re => "^(/home/myself/www/statistics)" #ignore referrals

. "|(cgi-bin)", #do CGIs separately
resource_exclude_re => "\.secret$", #secrets shouldn’t stay secret
link_exclude_re => "^http://([a-z]+\.)+example\.com",

};

$::infostrucs{http://www.mypages.org/cgi-bin/} = {
mode => "www";
resource_exclude_re => "query", #query space is infinite!!

};

There are a number of keywordss that can be used.

‘mode’ This decides how to download the links. Either ‘www’ or ‘directory’.

‘file_base’
If defined, this defines the directory which matches the URL where the infos-
tructure is based. This must be defined if the mode is set to directory.

‘resource_include_re’
If defined, this regular expression must be matched by the URL for every re-
source before links will be extracted from it.

10 Using LinkController

‘resource_exclude_re’
If defined, this regular expression must not be matched by the URL for every
resource before links will be extracted from it.

‘link_include_re’
If defined, this regular expression must be matched by every URL found before
it will be extracted and saved.

‘link_exclude_re’
If defined, this regular expression must not be matched by every URL found
before it will be extracted and saved.

‘prune_re’
Used only in directory mode, this will completely exclude all files and sub-
directories of directories matched by the regular expression.

N.B. the exclude and include regular expressions can be used together. For a match, the
include regular expression must match and the exclude must not match. In other words
excludes override includes.

In order for the infostructure to be used by extract-links an entry must still be made
in the ‘infostrucs’ file. For this use the advanced keyword. The second argument is a
URL used to look up the definition in the $::infostrucs hash.

advanced http://www.mypages.org/
advanced http://www.mypages.org/cgi-bin/

The URL used here must match exactly the one used in the hash. It is important to note
that ‘directory’ and ‘www’ definitions in the ‘infostrucs’ file will override any advanced
configuration given.

3.2 Authorisation Configuration

One problem when checking links, especially within an intranet situation is that some
pages can be protected with basic authentication. In order to extract links from those pages
or to simply know that they are there, we have to get through that authentication. By using
the advanced Authorisation Configuration we can give LinkController authority to access
these pages and allow link checking to work as normal.

Using this method to allow LinkController to work in an
environment with authentication is inherently a security issue since
authentication tokens must be stored, effectively in plaintext, in
files. This risk may, however, not be much higher than the one that you
currently accept, so this can be useful

We can store the authentication tokens simply in the %::credentials hash which we can
create in the ‘.link-controller.pl’ configuration file. The keys in the hash are the exact
realm string which will be sent by the web server. Each value of this hash is a hash with
a pair of keys. The ‘credentials’ key should be associated to the authentication token.
The ‘uri_re’ key should be a regular expression which matches the web pages you want to
visit. For security reasons it shouldn’t match any others.

Chapter 3: Advanced Configuration 11

$::credentials = {
my_realm => { uri_re => "https://myhost.example.com",

credential => "my_secret" }
});

As a sanity check, every ‘uri_re’ will be tried on ‘http://3133t3hax0rs.rhere.com’
and ‘http://3133t3hax0rs.rhere.com/secretstuff/www.goodplace.com/’. If the ex-
pression matches then the credentials will be ignored. If you know enough to do this safely
then you should definitely know how to get past this check. The owners of the domain
‘3133t3hax0rs.rhere.com’ will just have to hack the code..

For more discussion about the security risks and how to mitigate them see the file
‘authorisation.pod’ included with the LinkController distribution. If you didn’t under-
stand the security risk from the above description then probably you should consider avoid-
ing using this mechanism.

3.3 Configuring CGI Programs

The CGI programs use the same configuration variables as the other programs, however,
to avoid any confusion and related security problems, a perl script should be written which
has the configuration variables hard wired in then runs the appropriate CGI program.
configure-link-cgi is a program designed to set up such a script.

FIXME: this section needs to be rewritten.

12 Using LinkController

Chapter 4: Using LinkController to Check Links 13

4 Using LinkController to Check Links

This chapter covers in reasonable detail how to use each of the programs in LinkCon-
troller.

4.1 Extracting Links

This section is written assuming that you are using a standard HTML infostructure in
a directory or on the World Wide Web

The first part of using link controller is to extract the links. When doing this, a pair of
index files is built which list which URLs happen on which pages along with a file listing
all of the URLs in the infostructure.

FIXME: compare and contrast multi-user configuration with single user
The first stage of the process is done by extract-links1.
There are two modes for extract links directory and www. The key difference between

them is that the latter actually downloads from a server so it is less efficient but will work
in more circumstances and is more likely to represent your site as seen by users. This is
assuming that all of your WWW pages are interconnected so it can find them.

FIXME : need to describe modes of operation of extract link
extract-links creates three files. The first two files (‘*.cdb’) are the index files for

your infostructure and are located wherever you have configured them to by default they
are called ‘link_on_page.cdb’, ‘page_has_link.cdb’. The third file is the database file
‘links.db’. extract-links can also optionally create a text file which lists all of the URLs
in the infostructure, one per line.

There are a number of other ways of using extract-links and it has many options.
See Section F.3 [Invoking extract-links], page 39, for more information about using extract
links.

4.2 Testing Links

If you are using someone else’s link information then you may be able to skip this part
and go straight on to the next one on generating reports. If not then the next stage is to
test your links using test-link.

Testing links takes a long time. Reporting of broken links will not begin until after several
days. This is a deliberate feature of LinkController. Most problems that will be found in a
well maintained web page will be temporary configuration or system problems. By wainting

1 the command names in link controller are quite long.. you might want to make your
life easier by using command completion which will finish what you have started.. once
you’ve typed a little of the command use escape escape or tab depending on your shell..
if this doesn’t work then you may like to upgrade to a newer shell such as bash or zsh.

14 Using LinkController

to report problems we give people responsible for the other end of the problem link a chance
to repair their resources. Once we have made this decision, we may as well check slowly
and in a way which will reduce the amount of network bandwidth LinkController uses at a
given time and so its impact on other people’s Internet usage.

The key program which you want to use is test-link. I run this from a shell script
which directs its output to a log file

FIXME actually I now just use a cron job.
#!/bin/sh
#this is just a little sample script of how I run the program.

LOGDIR=$HOME/log
test-link >> \

$LOGDIR/runlog-‘/bin/date +%Y-%m-%d‘.log 2>&1
#assumes the use of a gnu style date command which can print
#out full dates.

And I run this shell script from my ‘crontab’ with a command like this
42 02 * * * /..directories./run-daily-test.sh

The string /..directories./ should be replaced with the directory where you have the
script. Remember to make the script executable.

This will now run until completion each night. However, you should make sure that it
does actually finish. If you have too many links to check in the given time, then you can
end up with a backlog and the system will take a long time to stop. To avoid this, either
make testing less frequent or make checking run faster. This will have to be done by editing
the program itself at present.

The test-link program has a number of options. These control the limits on checking
and the speed of checking. See Section F.3 [Invoking extract-links], page 39, for more
information on these.

4.3 Reporting Problems

The easiest way to find out which links are broken is to use the command line interface.
The simplest report you can generate is just a list of all the known broken links. Do this
like so:

link-report

On the system I’m testing on right now, this gives:
broken:- file://ftp.ncsa.uiuc.edu/Web/httpd/Unix/ncsa_httpd/cgi

http://www.ippt.gov.pl/docs-1.4/cgi/examples.html
broken:- file://ftp.ncsa.uiuc.edu/Web/httpd/Unix/ncsa_httpd/curr
ent/httpd_1.4_irix5.2.Z

http://www.ippt.gov.pl/docs-1.4/setup/PreExec.html
broken:- file://ftp.ncsa.uiuc.edu/Web/httpd/Unix/ncsa_httpd/curr
ent/httpd_1.4_linux.Z

http://www.ippt.gov.pl/docs-1.4/setup/PreExec.html
broken:- file://ftp.ncsa.uiuc.edu/Web/httpd/Unix/ncsa_httpd/curr

Chapter 4: Using LinkController to Check Links 15

ent/httpd_1.4_osf3.0.Z
http://www.ippt.gov.pl/docs-1.4/setup/PreExec.html

broken:- file://ftp.ncsa.uiuc.edu/Web/httpd/Unix/ncsa_httpd/curr
ent/httpd_1.4_solaris2.4.Z

http://www.ippt.gov.pl/docs-1.4/setup/PreExec.html
broken:- file://ftp.ncsa.uiuc.edu/Web/httpd/Unix/ncsa_httpd/curr
ent/httpd_1.4_solaris2.4.tar.Z

http://www.ippt.gov.pl/docs-1.4/setup/PreCompiled.html
Sorry, couldn’t find info for url file://ftp.ncsa.uiuc.edu/Web/httpd/U
nix/ncsa_httpd/current/httpd_1.4_source.tar.Z
please remember to check you have put it in full format
broken:- file://ftp.ncsa.uiuc.edu/Web/httpd/Unix/ncsa_httpd/docu
ments/usage.ps

http://www.ippt.gov.pl/docs-1.4/postscript-docs/Overview.html
..etc...

Which just tells you which links are broken. We also know which page they are broken
on and can go and look at that on the World Wide Web or directly as a file on the server.

There are many different options which control the output of link-report. These
include options which select which kinds of problems to report, options which select which
pages to report from and options which allow other output formats such as HTML. See
Section F.1 [Invoking link-report], page 37, for more information about these.

For more advanced reporting and editing of documents with broken links you may want
to use the Emacs interface (see Chapter 6 [Emacs], page 21).

4.4 Email Reporting of Newly Broken Links

It’s possible to arrange automatic reporting by email of links which have become newly
broken. This is done by getting test-link to make a list of links that become broken using
the ‘$::link_stat_log’ variable (see Section 2.3 [Configuration Variables], page 5) and
calling link-report to report on those links.

Typically, you may don’t want to have a report every time that test-link runs, but
probably once a day instead. In this case, run a script like the following from your crontab.

#!/bin/sh
STAT_LOG=$HOME/link-data/stat-log
WORK=$STAT_LOG.work
EMAIL=me@example.com
mv $STAT_LOG $WORK
if [-s $WORK]
then

link-report --broken --url-file=$STAT_LOG |
mail -s "link-report for ‘date‘" $EMAIL

fi

Every time that this script is run, it will rename the status change log file and then mail
a report with all of the new broken links to the specified email address.

16 Using LinkController

4.5 Examining Individual Files

When you have just written an HTML page, you often want to check it before you put
it up for use. You can do this immediately using the check-page program. Simply run
something like

check-page filename.html

And it will list all of the links that it is unsure about along with the line number the
problem occurred on. This program works particularly well when you editing with Emacs
(see Section 6.2 [check-page in Emacs], page 21).

4.6 Repairing Links

The program responsible for repairing links is fix-link. It simply accepts two URLs
and changes all of the occurrences of the first link in your documents into the second link.
It assumes that you have permission to edit all of the problem files and that there is a
replacement link. For example

fix-link http://www.ed.ac.uk/~mikedlr/climbing/ \
http://www.tardis.ed.ac.uk/~mikedlr/climbing/

Typed at the shell prompt would have updated the location of my Climbing pages when
they moved some while ago and

fix-link http://www.tardis.ed.ac.uk/~mikedlr/climbing/ \
http://scotclmb.org.uk/

fix-link http://www.tardis.ed.ac.uk/climb/ \
http://scotclmb.org.uk/

Will change them to the very latest location. More information about fix-link can be
found in See Section F.4 [Invoking fix-link], page 40.

At present, there’s no facility for automatically updating the databases when you do this.
Instead, you have to run extract-links after some time so that new links are noticed. In
practice this doesn’t matter because you shouldn’t be creating new pages with broken links
and can check that you don’t with check-page. A later version of LinkController will may
change this.

The other way to fix links is to edit the files by hand. This is the only solution where a
link has disappeared forever and so text changes have to be made to the web site. This can
be made more convenient by using the ‘link-report-dired’ emacs module included in the
distribution. This is covered elsewhere in this manual (see Chapter 6 [Emacs], page 21).

4.7 Making Suggestions

A link in the database can have suggestions associated with it. These are normally
alternative URLs which somebody or something has decided would make a good replacement
for the URL of the Link. Humans can add to the database with the suggest program. For
example use:

Chapter 4: Using LinkController to Check Links 17

suggest file://ftp.ncsa.uiuc.edu/Web/httpd/Unix/ncsa_httpd/current/htt
pd_1.4_linux.Z \

http://delete.me.org/
Link suggestion accepted. Thank you

If you try the same thing again you get
suggest file://ftp.ncsa.uiuc.edu/Web/httpd/Unix/ncsa_httpd/current/htt
pd_1.4_linux.Z \

http://delete.me.org/
Already knew about that suggestion. Thanks though.

These suggestions will make it easier for others to repair links, especially if they are
using the CGI interface.

4.8 CGI Interface

The CGI interface is not fully developed and has a number of issues related to security
to be considered. I have however used it and shown that it can work, so if you want to you
could try the same. The two programs fix-link.cgi and link-report.cgi replace the
normal ones fix-link and link-report. They should be interfaced through an HTML
page which feeds the needed information to link-report.cgi.

The main security question is how to do authentication of the user. This will have to be
set up using the features of the web server. You should not leave these programs available
for non-authenticated users since that would give them the ability to edit your web pages
directly and probably do worse.

18 Using LinkController

Chapter 5: Interfacing to other programs 19

5 Interfacing to other programs

Probably not all of your links are directly in web pages. If this is the case, it’s still
possible to use LinkController to check those links, but it won’t be possible to use the
repair facilities.

In this case, you have to generate the list of URIs you want checked yourself. This should
be a file with one URI per line. Then extract-links can be used to import those links
into LinkControllers database. For example, if you had put those links into the file ‘links’
the following command would import them.

extract-links --in-url-list=links

Now, when you want to report on your links you can give the links file as an argument
to link-report and it will only report those links which are in your file. This can be done
with the following command

link-report --url-file=links

The usual options can be given to control which links are reported for example
‘--all-links’ to list all links (see Section F.1 [Invoking link-report], page 37).

Another possibility for interfacing to programs is to use output from LinkController to
automatically remove links from your web pages. That would be a very suitable solution,
for example, if you keep a list of links to other related pages, but don’t mind if some of
them disappear temporarily.

In this case, it’s probably best to use the link-report option for machine oriented
output ‘--uri-report’ and to choose either the ‘--broken’ report for deleting links or the
‘--good’1 option to choose which links should be shown on your web pages. For example,
run something like the following each night from your ‘.crontab’ file.

link-report --url-file=links --uri-report --broken \
| automatic-link-deleter

You should probably mail someone with the information that the link has been deleted
so that if there’s an easy way to fix it they can do that.

1 Note: this option doesn’t output links which can’t be checked.

20 Using LinkController

Chapter 6: The Emacs Interface 21

6 The Emacs Interface

LinkController’s reporting system is designed to be independent of the interface to it,
and often the shell interface will be all that is needed. However another convenient interface
is through emacs. There are two parts to this integration.

6.1 Finding Files with Broken Links

There is a special Emacs mode called link-report-dired written for locating files with
broken links. The mode is based on find-dired and works very similarly. It runs the
program link-report with an option which makes it list file names in the same way as the
ls program does. The user can then move around the buffer as normal in Emacs and enter
files using a single key press (normally f).

6.2 Finding Broken Links in Files Within Emacs

The program check-page was specially designed so that it outputs in a format which
can be read by Emacs’ compile mode. You can use it within Emacs and then step from
error to error correcting them.

To do this, after you have set up your system and run ‘test-link’ a few times. checking
use the command M-x compile RET check-page filename RET . You will now see another
buffer open up with all of the errors shown there. You can use the key M-‘ (that’s a real
back quote, not an apostrophe) to step between errors.

The one problem with ‘check-page’ is that if you have just created a file containing new
links it should really verify them by testing each one. This makes it more suitable for use
during link correction of existing pages than during writing new pages.

22 Using LinkController

Chapter 7: Administration 23

7 Administration

There are various aspects of administration. This is mostly related to testing links.

7.1 Setting up LinkController

This chapter is aimed at administrators setting up LinkController or who want to have
a better understanding of the way that their installation is set up.

The first stage is to actually build and install the programs. This is covered in the
document ‘INSTALL’ which is included with the distribution.

Once you have installed the software, the next step is to configure LinkController so
that it knows where you have all of your data. The program default-install provides
one model of this.

7.2 Default Installation

Running default-install -all should set everything up correctly. There are various
variations on this command which do different things, but the summary is
• Create a linkcont user-id and group which will be used for running programs
• Create a working directory where LinkController will keep it’s data
• Create configuration files, especially /etc/link-control.pl
• Create cron scripts which will run LinkController automatically.

Using this command it is also possible to activate users and groups e.g. default-install
-user username or default-install -group groupname in which case the specified users
will become a member of the linkcont group.

7.3 User Administration

User administration is really only needed if you are running link testing centrally for
your users. This makes sense since it means that if several users have a link to the same
place (likely in any given site) then you will only have to check that link once.

In this case, the important question is which links are copied into the checking database.
This is controlled by the program copy-links-from-users and decides copies data from
users which are in the lnctusr group.

The command default-install can be used to manipulate which users are in the group
e.g. default-install --user username or default-install -group groupname in which
case the specified users will become a member of the lcntusr group.

Another form of user administration is limitation on which users have access to the
database. This can be done with normal file permissions. There isn’t any specific control
to stop users from seeing which links other users have put into the database.

24 Using LinkController

7.4 Cron Scripts

In order to be effective, link testing should be done every day. Furthermore, it is a good
idea to do the testing at low usage times, which normally means at night. For this reason
normally a cron script will be used.
• copy the links from each user with copy-links-from-users

• add them to the database with extract-links --in-url-list

• build a schedule for testing the links with build-schedule

• test the links with test-link

The program default-install can create these scripts Section 7.2 [Default Installation],
page 23.

7.5 Link Database Maintenance

For the most part the link database shouldn’t need much maintenance. There are a
number of cases where it might, however. If it becomes corrupt, you may try the db recover
command. Probably, however, it’s just better to recover the database and link checking
schedule from a recent backup. Time is not really critical since the work is normally easy
to regenerate. You should make sure that link checking doesn’t run in at the time you do
backups, however.

The other thing is that occasionally you may want to recover space in the link database
by dumping and un-dumping it. See the Berkeley database documentation for more details.

7.6 Link Ageing

Sometimes we have a link which is no longer in use within our infostructure. However,
it’s not a good idea to throw away information about it immediately. It could be that
certain files have been temporarily deleted and will come back. Alternatively, a link could
have been found broken and been corrected, but someone has a copy of the old page. When
they re-install the copy, we will have to deal with that link again.

If we had not kept that link around and they immediately do a link check on their
document they may see nothing wrong, and, because of the nature of LinkController, we
won’t start reporting the link as a problem until some days later, when we have confirmed
that it really is broken.

If, on the other hand, we keep checking all of the links which have ever been in our web
pages, we will cause ourselves considerable extra work.

To handle this, links are aged. Once a link has reached greater than a certain age,
test-link will not be checked it any more. Once the link has reached a much larger age,
it will be completely deleted from the link database. The age is reset to nothing each time
the link is extracted from the infostructure, so links which are still in use will continue to
be checked.

Chapter 7: Administration 25

In the meantime, the link will still be repeatedly scheduled based to it’s normal checking
time. This causes us to examine it quite regularly, but that is okay, since we won’t actually
check it.

By default links which have not been refreshed will be ignored after one week and will
be deleted from the database after two months.

26 Using LinkController

Appendix A: Robots and Sensible Behaviour 27

Appendix A Robots and Sensible Behaviour

The most important thing about a program like this is to realise that if you set it up
incorrectly and used it in the wrong way, you could upset a large number of people who
have set up their web servers in the assumption that they would be used normally by human
beings browsing through on Netscape.

It is true that LinkController is very careful to limit resource usage on remote sites, but
the other site may not know that or may have a real reason not to want their pages visited
too often.

Probably it’s true that the only safe way forward is for every WWW site to begin to set up
robot defences and detect when someone starts to download from them at an unreasonable
rate and then cut off the person doing the downloading. I suggest that you don’t make
people have to do this to protect themselves against you for at least two reasons.
• respect for the person’s time
• a wish not to be the person who is cut off

There are probably many other reasons, but that’s one for the good side in you and one
for the selfish. What more do you need.

For suggestions about what constitutes ‘correct’ behaviour, it’s worth seeing the Robots
World Wide Web page. http://www.robotstxt.org/wc/robots.html

There are a number of points which make LinkController relatively safe as a link. These
are all related to the design and limitations on test-link.
• test-link does not recurs. It only tests links that are specifically listed in the schedule

database.
• There is a limit to the number of links that will be tested in one run. This defaults to

1000, but can be configured.
• The schedule for link testing is designed to spread the testing of links across time
• The testing system will not test links at a given site faster than a certain rate.

The last limitation is inherited from the LWP::RobotUA module and the documentation
for that covers the details of how it works. test-link tries to re-order testing of links as
needed so that a limit on the rate of visits to one site does not cause a limit on overall
testing speed.

http://www.robotstxt.org/wc/robots.html

28 Using LinkController

Appendix B: Uncheckable Links 29

Appendix B Uncheckable Links

Some links can’t be checked because the target url doesn’t have an easy method of
verification or because the link checker doesn’t have the facilities needed for verification.
Examples of this include ‘mailto’ and ‘news’ URLs.

Although it’s possible to verify, to a certain degree, many mail addresses the only absolute
way to check that a mail address reaches the person it’s meant to reach is to send a mail
and ask for them to reply. Obviously, if everybody checking every link in the world started
to do this some unlucky recipients would get very upset at being bombarded with so much
mail.

A low level of verification could be done in some circumstances. This requires that the
persons actual mail server (the place where their mail is kept) can be contacted directly
and is willing to be helpful. This will be implemented in a later version of LinkController.

Checking news urls (not possible at the present moment anyway) requires access to a
correctly set up news server which has the feed for that newsgroup. Even then, it doesn’t
talk about the access for the end user.

Other links cannot be checked because libwww-perl doesn’t yet support them. In this
case the solution is to add support to libwww-perl.

30 Using LinkController

Appendix C: Absolute and Relative URIs 31

Appendix C Absolute and Relative URIs

LinkController is designed to handle absolute and relative URIs in a consistent but sen-
sible fasion, but unfortunately there isn’t any totally clear correct way. For link extraction
we simply conver relative URLs to absolute form. For link testing, this means that we
don’t ever think of relative URLs. For link fixing on the other hand the situation is more
complex. For this reason there is a --relative option to fix-link.

If we run fix-link without the --relative option then we only substitute absolute
links in the existing document to the link given on the command line. This is safer because
the subsitution is unlikely to mistake other strings which accidentally match the link.

If we run fix-link with the --relative option on the other hand then we will handle
relative links. What this means depends on whether the links to be fixed can be expressed
as links relative to the pages being fixed.

If the original (broken) link can be expressed as a relative link then we will do substi-
tutions where we find relative links. If the target (corrected) link can be expressed as a
relative link then we will always substitute broken links with a relative link.

Taken together, this means that if a resource has moved to the same server as your
pages, substitution with the --relative option will correction convert all of your absolute
links into relative links and if a resource has moved from your server to another then we
will correctly substitute relative links with absolute links.

The only undesirable effect would be if a resource is moved within your pages and you
have a mixture of relative and absolute links to that resource (e.g. for absolute links on page
which is mirrored on other sites). In this case, first do substitution without the --relative
option and then afterwards with the --relative option.

32 Using LinkController

Appendix D: Bugs and bug reporting 33

Appendix D Bugs and bug reporting

This version of LinkController is still in early development. There are many changes to
come. Undoubtedly there are many bugs in the software already and will soon be more.

A bug is when
• the software doesn’t do something the documentation says it should
• the software does something the documentation says it shouldn’t
• the software does something surprising and that isn’t documented
• the software does something strange but the documentation doesn’t explain why
• it is difficult or impossible to understand what the documentation is trying to say

some of these mean fixing the documentation and some the software. All of them are
bugs and should be reported and fixed.

If you find a bug, I will be grateful to hear about it. Even if you don’t know how to fix
it or anything, it is useful to know what is wrong so that other people don’t get caught out
but read the BUGS file first please. If the bug is listed there then the only useful thing that
you can do is fix it. If you do this and contribute it to me then that is very useful.

When you report a bug, please tell me what release of link controller you were using.
This is the number which was in the name of the file that LinkController came in. If your
problem was with a specific program, please also run ‘program --version’ and send the
output. This tells me exactly which version of that program you were running.

Since this is a developers release, I’d hope most users would be able to make some level
of fixes. If you do this, send me context differences (use ‘diff -u’ if it works or try ‘diff
-c’ otherwise). I use CVS, so as long as I know which version you have I will be able to find
the original file and see your changes. However it’s also important to explain them because
I won’t be able to use them unless I (relatively stupid computer type) understand them.

Send bug reports to the address you get by changing words into punctuation in the
following.

link minus controller at scotclimb dot org dot uk

This mailing address is sent only to me right now, but may become a list in future.
Use my (Michael De La Rue) personal address to contact me please. N.B. I am extremely
inefficient about answering email. Don’t worry if you don’t get a reply.

The ideas, and history

34 Using LinkController

Appendix E: History 35

Appendix E History

LinkController was originally inspired by MOMspider and having the MOMspider code
available was very useful when starting the creation of this kit, but, it shares almost no
code with MOMspider, other than what has comes to it from the LibWWW-Perl library.

Philosophically, the MOMspider heritage is obvious in the wish to handle big jobs ef-
ficiently. In the working practice there are far more differences than similarities, partly
caused by Perl language changes.

I decided to completely separate the exploration of the local infostructure, looking for
links to be checked, from the actual checking process. This means that checking can be
spread over a large number of days and still run efficiently.

The basic aim of this link checking kit is to be able to efficiently handle any size of link
checking job. At the bottom end we have checking new pages as they are written. Here
we want to use information from previous checks to avoid having to check all of each page
every time. At the other end we have massive info structures (sites) which deal in many
thousands of links and could not possibly all be checked in one day. For this latter case
the aim is to be able to efficiently spread the link checking load into all available low usage
periods.

My primary aim in writing this was not to write very efficient code for the small scale
case (takes minimum time to do everything), but rather code which would scale well. If
your system can check 1000 links in two days, it will hopefully be able to check almost 7000
links in two weeks. I’m trying to make sure all data structures which grow with the number
of links are kept on disk.

E.1 Acknowledgements

Although I wrote this system by myself, this would not have been nearly as easy and
almost certainly wouldn’t have ever been finished without the help of the following people
and organisations.

Esoterica Internet Portugal

Esoterica provided me with full access to the Internet in Portugal and use of their
computers for free which allowed me to keep up on both this software and the Linux Access
HOWTO. In particular I’d like to thank all of the members of staff who helped me very
much. These people include Mario Francisco Valente (the instigator of Mini Linux) who
first agreed to me using their kit, set me up to use their machines, and along with Luis
Sequeira provided a sounding board for some ideas. Luis also provided the odd lift home
in the evening. Also Martim de Magalhaes Pereira and Mr Mendes. See them all on

http://www.esoterica.pt/esoterica/quemsomos.html

For more about esoterica (Internet Services in Portugal) see:

http://www.esoterica.pt/esoterica/quemsomos.html

36 Using LinkController

http://www.esoterica.pt/esoterica/

These pages are in Portugese1 of course.

IPPT PAN Poland

Thanks go to IPPT PAN (part of PAN - Polska Akademia Naukowa) in Poland and
in particular Piotr Pogorzelski who allowed me use of facilities for testing this software,
provided a willing victim for having his web pages tested and made a number of suggestions
which have been incorporated into the software.

The Tardis Project

Supported by the Computing Science department of the University of Edinburgh, the
Tardis project provides an experimental framework in which students, former students and
other related people to do their own work on fully Internet connected Unix and Linux hosts.

The use of the facilities of the Tardis Project has made it much easier for me to develop
software like this. In particular, the large amount of disk space the administrators have
allow me to use is very useful.

Other Free Software Authors

It is through the software provided by the Free Software Foundation (such as the gcc
C compiler, Emacs, the file utilities), the authors of the various packages which make up a
working Linux System (Linux by Linus Torvalds, Alan Cox, etc.... filesystems and support
by Theodore Tytso, Stefan Tweedie etc.. Linux-Libc by HJ Lu, based on GNU glibc from
the FSF.. the list is indefinite) and the authors of Perl and its modules, especially Gisle
Aas and Martijn Kostler for LibWWW-Perl that I was able to set this up.

I’d particularly like to thank Tim Goodwin the author of the Perl CDB module who
made and accepted a number of alterations to that, at my request. These alterations made
this package simpler to write and easier to maintain.

The Free Software Foundation web pages are at
http://www.gnu.ai.mit.edu/

1 Whilst the above names are mangled here. See the correct versions in the original texinfo
or on the Web pages.

http://www.esoterica.pt/esoterica/
http://www.gnu.ai.mit.edu/

Appendix F: Invoking the LinkController Programs 37

Appendix F Invoking the LinkController
Programs

Because they use the Perl Getopt::Mixed module, all of the LinkController command
line programs respond to the standard POSIX style command line options. At least the
following two options will be implemented.

‘--help’ This option will give a list of all of the options understood by the program along
with brief explanations of what they do.

‘--version’
This option will give some version information for the program.

You can use the ‘--help’ option to get help on each program, for example:
extract-links --help

You can then use that information to get the program to do what you want.

F.1 Invoking link-report

The ‘link-report’ program prints out status information about links allowing the user
to see what needs to be fixed. The default is to print out all of the broken and redirected
links that currently occur on the users web pages and which are either redirected or broken.

Before running ‘link-report’ you should probably use test-link (see Section F.2 [In-
voking test-link], page 38) to check which links are broken. That may not be needed if your
system administrator does it for you. After you have identified broken links you may want
to use fix-link (see Section F.4 [Invoking fix-link], page 40) to repair the broken links.

The primary configuration file used by link-report is the ‘.link-control.pl’ file. This
tells it where the schedule file and LinkController database are. See Section 2.2 [Setting
Configuration Variables], page 5, for how to control the contents of this file.

In the case of the ‘--long-list’ report, a second configuration file, the ‘infostrucs’
file, is used. This contains the information needed to know where to extract links from by
default. See Section 2.4 [Infostructure Configuration], page 6, for more details on configuring
this.

FIXME this section should give a better description of each option.
link-report [options]

-V --version Give version information for this program
-h --help --usage Describe usage of this program.

--help-opt=OPTION Give help information for a given option
-v --verbose[=VERBOSITY] Give information about what the program is

doing. Set value to control what information
is given.

-U --uri=URIs Give URIs which are to be reported on.
-f --uri-file=FILENAME Read all URIs in a file (one URI per line).
-E --uri-exclude=EXCLUDE RE Add a regular expressions for URIs to

38 Using LinkController

ignore.
-I --uri-include=INCLUDE RE Give regular expression for URIs to check

(if this option is given others aren’t
checked).

-e --page-exclude=EXCLUDE RE Add a regular expressions for pages to
ignore.

-i --page-include=INCLUDE RE Give regular expression for URIs to check
(if this option is given others aren’t
checked).

-a --all-links Report information about every URI.
-b --broken Report links which are considered broken.
-n --not-perfect Report any URI which wasn’t okay at last test.
-r --redirected Report links which are redirected.
-o --okay Report links which have been tested okay.
-d --disallowed Report links for which testing isn’t allowed.
-u --unsupported Report links which we don’t know how to test.
-m --ignore-missing Don’t complain about links which aren’t in the

database.
-g --good Report links which are probably worth listing.

-N --no-pages Report without page list.
--config-file=FILENAME Load in an additional configuration file
--link-index=FILENAME Use the given file as the index of which file

has what link.
--link-database=FILENAME Use the given file as the dbm containing

links.

-l --long-list Where possible, identify the file and long
list it (implies infostructure). This is used
for emacs link-report-dired.

-R --uri-report Print URIs on separate lines for each link.
-H --html Report status of links in html format.

F.2 Invoking test-link

The test-link program tests all of the links in the LinkController database storing
information about any problems found. It works as a robot contacting the servers where
the target of each link is stored and verifying that the resource the link points to is really
there.

Before running test-link you should probably use extract-links (see Section F.3
[Invoking extract-links], page 39) to collect all of the links you want to test and then
build-schedule (see Section F.6 [Invoking build-schedule], page 42).

The configuration file used by test-link is the ‘.link-control.pl’ file. This tells it
where the schedule file and LinkController database are. See Section 2.2 [Setting Configu-
ration Variables], page 5, for how to control the contents of this file.

FIXME this section should give a better description of each option.

Appendix F: Invoking the LinkController Programs 39

test-link [arguments]

-V --version Give version information for this program
-h --help --usage Describe usage of this program.

--help-opt=OPTION Give help information for a given option
-v --verbose[=VERBOSITY] Give information about what the program is

doing. Set value to control what information
is given.

--quite -q --silent Program should generate no output except in
case of error.

--no-warn Avoid issuing warnings about non-fatal
problems.

-c --config-file=FILENAME Load in an additional configuration file
-u --user-address=STRING Email address for user running link testing.
-H --halt-time=MINUTES stop after given number of minutes

--never-stop keep running without stopping
--no-robot Don’t follow robot rules. Dangerous!!!

-w --no-waitre=NETLOC-REGEX Home HOST regex: no robot rules..
(danger?)!!!

--test-now Test links now not when scheduled (testing
only)

--untested Test all links which have not been tested.
--sequential Put links into schedule in order tested (for

testing)
-H --halt-time=MINUTES stop after given number of minutes
-m --max-links=INTEGER Maximum number of links to test (-1=no limit)

Several of the options could potentially lead to overloading networks and even other
people’s computer systems:

Don’t use –no-robot, except for when you are doing local testing (that is, you aren’t
connected to the internet proper).

Don’t use –never-stop or –test-now except when you are watching what is happening.

Generally you should be somewhat careful about running this program since it does
automatically connect to other servers on the internet. Reasonable care has been taken
to ensure it does this in a responsible way, but you must make sure that anybody who is
inconvenienced has a good route for communicating this problem back to you.

F.3 Invoking extract-links

The extract-links program walks through the users web pages collecting all of the
links from those pages and storing them into a database for later checking by the test-link
program (see Section F.2 [Invoking test-link], page 38). It can also list the links found into
a given file.

40 Using LinkController

After running extract-links you should use build-schedule (see Section F.6 [Invoking
build-schedule], page 42) which will make sure that any new links discovered are scheduled
for checking..

There are two configuration files used by extract-links. The ‘.link-control.pl’
file is the first. This tells it where the various files it uses are. See Section 2.2 [Setting
Configuration Variables], page 5, for how to control the contents of this file. The second
file is the ‘infostrucs’ file. This contains the information needed to know where to extract
links from by default. See Section 2.4 [Infostructure Configuration], page 6, for more details
on configuring this.

FIXME this section should give a better description of each option.
extract-links [arguments] [url-base [file-base]]

-V --version Give version information for this program
-h --help --usage Describe usage of this program.

--help-opt=OPTION Give help information for a given option
-v --verbose[=VERBOSITY] Give information about what the program is

doing. Set value to control what information
is given.

--quiet -q --silent Program should generate no output except in
case of error.

-e --exclude-regex=REGEX Exclude expression for excluding files.
-p --prune-regex=REGEX Regular expression for excluding entire

directories.
-d --default-infostrucs handle all default infostrucs (as well as ones

listed on command line)

-l --link-database=FILENAME Database to create link records into.
-c --config-file=FILENAME Load in an additional configuration file

-o --out-url-list=FILENAME File to output the URL of each link found to
-i --in-url-list=FILENAME File to input URLs from to create links

F.4 Invoking fix-link

The fix-link program is designed to repair a broken links across all of the files which
LinkController is managing. It does this by looking up index files and seeing files contain
the broken link then doing a textual substitution in each of these files. This makes it much
faster than searching through all of the files in a set of web pages to see which pages have
the broken link.

In order to work properly, extract-links (see Section F.3 [Invoking extract-links],
page 39) must have been run first to build up the index databases used by fix-link.

There are two configuration files used by fix-link. The file ‘.link-control.pl’ is the
first. This tells it where the other configuration file and index files are. See Section 2.2
[Setting Configuration Variables], page 5, for how to control the contents of this file. The

Appendix F: Invoking the LinkController Programs 41

second file is the ‘infostrucs’ file. This contains the information needed to relate broken
links to the files which need to be repaired. See Section 2.4 [Infostructure Configuration],
page 6, for more details on confiuguring this.

fix-link [options] old-link new-link

-V --version Give version information for this program
-h --help --usage Describe usage of this program.

--help-opt=OPTION Give help information for a given option
-v --verbose[=VERBOSITY] Give information about what the program is

doing. Set value to control what information is
given.

-q --quiet --silent Program should generate no output except in
case of error.

--no-warn Avoid issuing warnings about non-fatal
problems.

--directory=DIRNAME correct all files in the given directory.

-r --relative Fix relative links (expensive??).
-t --tree Fix the link and any others based on it.
-b --base=FILENAME Base URI of the document or directory to be

fixed.

--config-file=FILENAME Load in an additional configuration file

F.5 Invoking check-page

Check page is useful where broken links in files need to be manually corrected. It outputs
a list of line numbers where interesting links occur allowing the user to find those lines and
correct the mistakes. The output format is compatible with the emacs compile mode which
allows fast access to the problem locations.

There are two configuration files used by extract-links. The file ‘.link-control.pl’
is the first. This tells it where the link database is. See Section 2.2 [Setting Configuration
Variables], page 5, for how to control the contents of this file. The second file is the
‘infostrucs’ file. This allows check-page to know what the base URI of the file being
checked is and so check relative links within the page corectly. See Section 2.4 [Infostructure
Configuration], page 6, for more details on configuring this.

check-page [options] filename...

-V --version Give version information for this program
-h --help --usage Describe usage of this program.

--help-opt=OPTION Give help information for a given option
-v --verbose[=VERBOSITY] Give information about what the program is

doing. Set value to control what information
is given.

42 Using LinkController

-r --redirect Report links which are redirected.
-m --ignore-missing Don’t complain about links which aren’t in

database.

--link-index=FILENAME Use the given file as the index of which
file has what link.

--link-database=FILENAME Use the given file as the dbm containing
links.

F.6 Invoking build-schedule

The build-schedule program makes a schedule for testing links. If run with no options
it will make sure that all the links in the LinkController database will be checked at some
point in the future.

Before running build-schedule you should probably use extract-links (see Sec-
tion F.3 [Invoking extract-links], page 39) to collect all of the links you want to test.
Afterwards you should use test-link to check which ones are broken (see Section F.2
[Invoking test-link], page 38).

The configuration file used by build-schedule is the ‘.link-control.pl’ file. This
tells it where the schedule file and LinkController database are. See Section 2.2 [Setting
Configuration Variables], page 5, for how to control the contents of this file.

build-schedule [options]

-V --version Give version information for this program
-h --help --usage Describe usage of this program.

--help-opt=OPTION Give help information for a given option
-v --verbose[=VERBOSITY] Give information about what the program is

doing. Set value to control what information
is given.

--quite -q --silent Program should generate no output except in
case of error.

--no-warn Avoid issuing warnings about non-fatal
problems.

-l --url-list=FILENAME File with complete list of URLs to schedule
-s --schedule=FILENAME Override location of the schedule
-t --spread-time=SECONDS Time over which to spread checking; default 10

days
-S --start-offset=SECONDS Time offset from now for starting work (can

be negative)
-d --ignore-db Set the time with no regard to curent setting
-i --ignore-link Set the time with no regard to link status

--no-warn Avoid issuing warnings about non-fatal
problems.

--config-file=FILENAME Load in an additional configuration file

Appendix G: Packages Which Work With LinkController 43

Appendix G Packages Which Work With
LinkController

LinkController uses several programs and can work with several others. This section
covers the most important ones.

G.1 The CDB utilities

In order to have LinkController working you must have installed these. It is worth
looking at the utilities that are provided, especially cdbdump which will let you look at the
contents of the file. You should be aware that cdbget program which is provided won’t be
able to get at the full contents of the index files since they contain repeated keys.

More information on cdb and new releases can be got from the www page.
http://cr.yp.to/cdb.html

When using link controller you are advised to use FreeCDB which, because of its better
license terms, has the extra guarantee that it will be possible for anybody to distribute fixed
versions and provide support for them.

http://packages.debian.org/freecdb

G.2 The Tie-Transact-Hash Perl Module and Programmes

This is a Perl module written by myself which includes a program which allows direct
examination and editing of Berkeley databases. It can be useful for debugging and correcting
problems in the LinkController Link database or schedule file.

Tie::TransactHash can be downloaded from CPAN, the Comprehensive Perl Archive
Network get there via:

http://www.perl.com/language/info/software.html

http://cr.yp.to/cdb.html
http://packages.debian.org/freecdb
http://www.perl.com/language/info/software.html

44 Using LinkController

Appendix H: Terms 45

Appendix H Terms

H.1 Infostructure

An infostructure is a concept which was introduced in Link Checking in the MOMspider
package. It is a collection of related resources. For us it’s mostly just a way of saying ‘web
pages’ but includes things like databases which may not have any real identifiable ‘pages’
that we can read through directly.

H.2 Link

The term link in LinkController is used for a connection between two resources. It’s
existence really comes from the ‘class’ or piece of type of computer data which is used to
store information about ‘links’. Properties of a link include:

H.3 Resource

A resource is almost anything. ‘It’ can range from a person to an HTML file to a
computer to a database or presumably eventually to phone numbers, possibly physical
hardware. This generality is a very important concept for the World Wide Web. Really the
key thing about a resource is that it can be ‘identified’. See Section H.5 [URLs], page 45,
for more details.

H.4 URIs

A URI or ‘Uniform Resource Identifier’ is a more generic form of the URL Section H.5
[URLs], page 45 which also includes URNs Section H.6 [URNs], page 46. It also allows links
to abstract objects which can’t be reached through a network server. Since all URLs are
URIs we mostly try to talk about URIs when we can since that includes both. Often people
say URL when they mean URI. We try to use correct usage always so that in future we can
support all forms of URI without confusing existing users. URIs and URLs are defined in
RFC 2396.

H.5 URLs

A URL or ‘Uniform Resource Locator’ are the essence of the World Wide Web. Ap-
proximately, they are addresses through which ‘resources’ can be located. The idea is that
almost anything can be given some kind of address in a form that a machine can work with.
By defining a set of rules, this can then be converted into a URL. A URL has two parts.

46 Using LinkController

The first tells us what rules to use and the second tells us what the address is. URLs and
URIs are defined in RFC 2396. URLs are not the only kind of link, but they are the most
common and currently the only ones LinkController really handles well.

H.6 URIs

A URN or ‘Uniform Resource Name’ is a URI Section H.4 [URIs], page 45 which is not a
URL Section H.5 [URLs], page 45. This means a way of specifying a resource without saying
how to get it. For example, a scheme which has been considered is for ISBN (International
Standardised Book Numbers) numbers. This would allow us to specify a book as a resource
but wouldn’t tell us how to get it.

It’s not totally clear where these will be useful in link checking (they are used internally
in several computer systems), but LinkController intends to support them whenever needed,
wherever possible.
• Knowing what the URL of the target resource of the connection is.
• Knowing whether the connection to the target resource has been working recently.
• Knowing when the connection to the target resource was last checked.

Within the programs, a link is different from a URL in that it is specifically aimed at
checking connections, where a URL just specifies what the connection should be if it is
working.

Program, Variable and File Name Index 47

Program, Variable and File Name Index

This index includes all programs, variables and files.

$

$::link_stat_log, automatic notification using

. 15

$base_dir. 5

$infostrucs . 6

$link_index . 6

$link_stat_log . 6

$links . 6

$page_index . 6

$schedule. 6

$user_address . 5

~

~/.link-control.pl . 5

B

build-schedule, invocation 42

C

check-page, in emacs . 21

check-page, invocation . 41

check-page, usage . 16

configure-link-cgi, using 11

copy-links-from-users, usage 23

D

default-install, usage . 23

default-install, using . 23

E

extract-links . 13

extract-links, importing links 19

extract-links, invocation 39

extract-links, using . 13

F
file_base. 9

fix-link . 16

fix-link, invocation . 40

fix-link, relative link support 31

fix-link, using . 13

fix-link.cgi . 17

I
infostrucs . 6

infostrucs, location . 6

L
link index, creating . 13

link status log, location 6

link-control.pl . 5

link-control.pl, authorisation 10

link-control.pl, credentials 10

link-control.pl, infostructures 9

link-report, exporting results 19

link-report, invocation . 37

link-report, reporting new problems 15

link-report, using . 14

link-report-dired . 21

link-report.cgi . 17

link_exclude_re . 10

link_include_re . 10

link_index, location . 6

links.bdbm, location . 6

location of infostrucs . 6

location of link status log 6

location of link_index . 6

location of links.bdbm . 6

location of page_index . 6

location of schedule.bdbm 6

M
mode . 9

48 Using LinkController

P

page index, creating . 13

page_index, location . 6

prune_re . 10

R

resource_exclude_re . 10

resource_include_re . 9

S
schedule.bdbm, location . 6

suggest . 16

T
test-link, invocation . 38

test-link, link ageing in . 24

test-link, recording new problems 15

test-link, using . 14

Concept Index 49

Concept Index

A
acknowledgements . 35

administration . 23

authentication . 17

authentication, basic . 10

authorisation . 10

automatic notification . 15

automatic testing . 24

B
bandwidth usgae . 27

basic authentication . 10

broken links, automatic reporting 15

broken links, finding . 14

broken links, finding in Emacs 21

bugs, reporting . 33

C
cdb files . 43

CGI interface . 17

CGI, configuration . 11

checking individual pages . 16

command line options . 37

configuration . 5

configuration variables . 5

configuration, infostructure . 6

configuration, installation . 23

configuration, interactive . 5

cron scripts for multi user use. 24

crontab, example . 14

D
dangers . 27

database cleaning, automatic 24

database format, cdb . 43

database, editing . 43

E
editing the links database . 43

Emacs interface . 21

exporting test results to other programs 19

extracting links . 13

F
file, individual, checking . 16

filtering links . 9

H
history MOMspider . 35

I
importing links from other programs 19

infostructure . 45

infostructure, advanced configuration 9

installation . 23

installation, basic multi user 23

interface, CGI . 17

interface, Emacs . 21

Interfaces to other programs 19

invoking build-schedule . 42

invoking check-page . 41

invoking extract-links . 39

invoking fix-link . 40

invoking link-report . 37

invoking test-link . 38

L
link ageing . 24

link, definition . 45

link, uncheckable . 29

links, examining . 14

links, examining, in Emacs 21

links, extracting . 13

links, repairing . 16

M
mailto, can’t be checked . 29

N
news, can’t be checked . 29

P
page, checking . 16

50 Using LinkController

R
regular expression, exclude . 9

regular expression, include . 9

repairing links . 16

reporting bugs . 33

reports . 14

resource . 45

robots . 27

S
security, risks of authentication 10

setting variables . 5

suggestions . 16

U
uncheckable links . 29

URI, definition . 45

URI, relation to URL . 45

URL, definition . 45

URL, relation to URI . 45

URN, definition . 46

URN, relation to URI . 46

URN, relation to URL . 46

usage of programs . 37

V
variables, configuration . 5

variables, setting . 5

variables, setting interactively 5

W
web pages, groups of . 45

WWW . 45

	Introduction
	Getting Started
	Configuration
	Interactive Configuration
	Setting Configuration Variables
	LinkController Configuration Variables
	Configuring Infostructures

	Advanced Configuration
	Advanced Infostructure Configuration
	Authorisation Configuration
	Configuring CGI Programs

	Using LinkController to Check Links
	Extracting Links
	Testing Links
	Reporting Problems
	Email Reporting of Newly Broken Links
	Examining Individual Files
	Repairing Links
	Making Suggestions
	CGI Interface

	Interfacing to other programs
	The Emacs Interface
	Finding Files with Broken Links
	Finding Broken Links in Files Within Emacs

	Administration
	Setting up LinkController
	Default Installation
	User Administration
	Cron Scripts
	Link Database Maintenance
	Link Ageing

	Robots and Sensible Behaviour
	Uncheckable Links
	Absolute and Relative URIs
	Bugs and bug reporting
	History
	Acknowledgements

	Esoterica Internet Portugal
	IPPT PAN Poland
	The Tardis Project
	Other Free Software Authors
	Invoking the LinkController Programs
	Invoking link-report
	Invoking test-link
	Invoking extract-links
	Invoking fix-link
	Invoking check-page
	Invoking build-schedule

	Packages Which Work With LinkController
	The CDB utilities
	The Tie-Transact-Hash Perl Module and Programmes

	Terms
	Infostructure
	Link
	Resource
	URIs
	URLs
	URIs

	Program, Variable and File Name Index
	Concept Index

