Configuration Guide

JBoss Enterprise
Application Platform

4.3
" JB
.. Red Hat

ISBN: N/A
Publication date: Sep, 2007

Configuration Guide

This book is a guide to configuring the JBoss Application Server for JBoss Enterprise
Application Platform.

Configuration Guide: JBoss Enterprise Application Platform
Copyright © 2008 Red Hat, Inc

Copyright © 2008 Red Hat, Inc. This material may only be distributed subject to the terms and conditions set forth in the
Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License (which is presently available at
http://creativecommons.org/licenses/by-nc-sa/3.0/).

Red Hat and the Red Hat "Shadow Man" logo are registered trademarks of Red Hat, Inc. in the United States and other
countries.

All other trademarks referenced herein are the property of their respective owners.
The GPG fingerprint of the security@redhat.com key is:

CA 20 86 86 2B D6 9D FC 65 F6 EC C4 21 91 80 CD DB 42 A6 OE

1801 Varsity Drive

Raleigh, NC 27606-2072

USA

Phone: +1 919 754 3700

Phone: 888 733 4281

Fax: +1 919 754 3701

PO Box 13588

Research Triangle Park, NC 27709
USA

http://creativecommons.org/licenses/by-nc-sa/3.0/

Configuration Guide

WHhat thiS BOOK COVEISuienitiiiiie ettt ettt et et et et e e et e et eeaeaeaeanas xiii

Y o To 10 A 2 1 PP XV
F Y o To 10 A @ o 1= IR Yo 11 o - Xvii
About Professional OPeNn SOUIMCEiiiuuiiiiiiii e e e e ees XiX
L. FEEADACK ...ceeciii e 1
I. Java EE 5 Application Configurationccooiiiiiiiiiii i 3
2. Enterprise Applications with EJB3 SEIVICESooveuiiiiiiiiiiiiiiiieeieeeeieeees 5

1. SESSION BEANS ...vuiiiiiiii et 5

2. Entity Beans (a.k.a. Java Persistence API)ccocovviiiiiiiiie 7

2.1. The persistence.xmlfile ... 10

2.2. Use Alternative Databasescoovviiiiiiiiiiiiiie e 11

2.3. Default Hibernate optionsoooeuiiiiiiiiiiiieec e 12

3. MeSsage DriVEN BEANScciiuiiieiiiii ettt 12

4. Package and Deploy EJB3 SEIVICESccevuieiiiieiiiieiiiiieeie e eee e 13

4.1. Deploy the EIJB3 JARoiiii e 14

4.2. Deploy EAR With EJB3 JAR ..covniii e 15

3. DEPIOYMENT oo 19

1. Deployable Application TYPESuiiiiiiiieiiii et 19

2. Standard Server ConfigurationsScc.oveviiiieiiiieii e 20

2.1. The production Configurationccoeeeuiiiiiiiiii e, 20

2.2. Further Tuning from the production Configurationc........ 21

[1. IBOSS AS INFFASLIUCIUIE .. .iiiitiieeiiii e e et e e et e e e eaa e eeees 23
4. The JB0SS JMX MICIOKEINEIccueiiiii e 25

1. AN INtroduction t0 JIMXiie e e 25

1.1. Instrumentation LeVelo 27

1.2, AQENELEVED oo 27

1.3. Distributed Services Levelcooooeiiiiiiiiiiiiii e 28

1.4. IMX Component OVEIVIEWc..oeeuueiiiieii et 29

2. JBoss JMX Implementation ArchiteCtureccoooiiiiiiiiiiii e, 31

2.1. The JBoss ClassLoader Architecturecccoovveviiiineiiiiinneeciinnn, 32

2.2. Class Loading and TYpes iN JaVac.coeeuuieiiiiieiaaiiiieeieeeeieeeenn 32

2.3.JB0SS XIMBEANS ...ceuiiiieiiieiiee ettt e 53

3. Connecting to the IMX SEIVEIcuiiniiii e 61

3.1. Inspecting the Server - the JMX Console Web Application 61

3.2. Connecting to IMX Using RMIoiiiiiiiiiiici e, 65

3.3. Command Line ACCESS t0 JMXcceuuiiiiiiiiiieiiieeee e 69

3.4. Connecting to IMX Using Any Protocolccooeiviiiiiinieiiinnnnnn. 74

4. Using JIMX as a MICroKernelcooiiiuiiiiiiiiiii i 74

4.1. The Startup ProCESS ...c.uuiiiiiiii e 74

4.2. JBOSS MBEAN SEIVICES ...cvvvniieiiieiiieiiiieee et ee e e e e e e e e enn s 76

4.3. Writing JBOSS MBEaN SEIVICESucvviiiiiieiiieiieeiee e ee e 86

4.4. Deployment Ordering and Dependenciesccccceeeeieiininnn, 101

5. JB0ss Deployer ArChitECIUIeocvuuiiviieii e 112

5.1. Deployers and ClassLoadersocciveeiiiiiiiiiiiiieiieeeeieee 113

6. Remote Access to Services, Detached Invokerscccceevveviiiinieiennnn, 115

6.1. A Detached Invoker Example, the MBeanServer Invoker Adaptor

Configuration Guide

7= A (o PPN 117

6.2. Detached Invoker Referencecooveveeviiiiiiiiniiiiiineceieeeceenn, 123

5. NamMING ON JBOSSuiiiiiiiieei e 131
1. AN OVerview Of INDIouiiii e e 131
L1 NBIMIES oottt et e 131

1.2, CONEXES ettt et e e e e e 132

2. The JBOSSNS ArChiteCtUIevveiiiiie e 134
3. The Naming InitialContext FaCtOriescccoeveivieeiiiieiii e 136
3.1. The standard naming context factoryc.cc.oeeevinieierinnenennnn. 136

3.2. The org.jboss.naming.NamingContextFactorycccceeeuvnnnes 138

3.3. Naming Discovery in Clustered Environmentsccoeeeevnneeee 138

3.4. The HTTP InitialContext Factory Implementation 139

3.5. The Login InitialContext Factory Implementation 140

3.6. The ORBInitialContextFactorycoovveiiiiiiiiiiiieceei 140

A INDI OVEE HT T P e e e e aaeaas 141
4.1, Accessing INDI over HTTP ..o, 141

4.2. Accessing JNDI over HTTPS ..o 145

4.3. Securing Access to JINDI over HTTP ...ooovviviiiiiiee e, 147

4.4. Securing Access to JNDI with a Read-Only Unsecured Context ..149

5. Additional Naming MBEANScoouuiiiiiiiiiieieiii e 151
5.1. INDI Binding Man@agereevuuieiiiiieiiieeeii e e e e e e eaeens 151

5.2. The org.jpboss.naming.NamingAlias MBeanccccoceiieennne 153

5.3. org.jboss.naming.ExternalContext MBeanc.cccoevvvineennnnns 153

5.4. The org.jpboss.naming.JNDIView MBeancccoevviiveiinennnnenns 155

6. J2EE and JNDI - The Application Component Environment 158
6.1. ENC Usage CONVENLIONSocvvueiiiiiiieeeiierieeeeineeeinesaneeaneens 160

6. CONNECIOIS ON JBOSS ...tuitiiiiii ettt ettt e e e e e e eaaees 173
L. JCA OVEIVIEW .eeieeiiiee ettt e e e e e e e et e e e e eaeeeens 173
2. An Overview of the JBoSSCX Architecturecccoeevveviiiinieiiiiinnenennnn, 176
2.1. BaseConnectionManager2 MBeancccocooieeiiiiiiiiieiiineeinees 176

2.2. RARDeployment MBEaNocoeuuiieiiiiiiieiiiiiieecei e 177

2.3. JBossManagedConnectionPool MBeancccocvviveiineninnns 178

2.4. CachedConnectionManager MBeanccccooveviiiiniiiiiiinnenennnn, 179

2.5. A Sample Skeleton JCA Resource Adaptorcccccevvevinennnns 179

3. Configuring JDBC DataSOUICESueeuuniiiiniiiiieeeiieeiia e e eeanes 186
4. Configuring Generic JCA Adaptorsoviiiiiiiiieiiiieece e 198
7. TranSactions 0N JBOSSuuiiiiiiiieiiiiii et e et e e e e e et e e e e e enanns 203
1. TransactioN/ITA OVEIVIEWc..uiiutiiiiiaeei e e e e 203
1.1. Pessimistic and optimistic 0cKiNgcccooviiiiiiiiiiiiiies 204

1.2. The components of a distributed transactionccc.ccoune 204

1.3. The two-phase XA ProtoColcccuviieiiiiiiiiiiiiiieeei e 205

1.4. HeuristiC @XCEPLIONSivveriieiiiiii e e e e e e e e e e 206

1.5. Transaction IDs and branches ..o 206

2. JTS SUPPOI ettt ettt et e e e e e 207
3. Web Services TranSaCtioNScocveeuiiieiiiiiiieiiiiiin e 207
4. Configuring JBOSS TraNSACLIONSoieuuiiiiiiaiiiieeiii et ee e e eea e 208
5. Local versus distributed transactionscccccoeveveiiinieiiiiiniecii e, 208

vi

8. MeSSAGING ON JBOSSceiiiiieiiiii et 209

1. JB0SS MeSSagiNg OVEIVIEWuuiiiiiiii e ieee e e e e e e e e e e e e eeens 209
9. SECUIMLY ON JBOSS ...ttt e ea e eens 211
1. J2EE Declarative Security OVEIVIEWiviiiiiiieeiiiiiieeeiii e 211
1.1. Security REfErENCEScevviviiiiiii e 211

1.2. Security Identitycooeuiiieiiiiee e 213

1.3, SECUILY FOIES ..uuiiiiii e e 215

1.4. EJB method permisSionsccoevviiiiiiiieiiii e e e 216

1.5. Web Content Security CONSraintscooveeeeiiiieeeiiinieeiiiiieeeens 220

1.6. Enabling Declarative Security in JBOSScccovvvevieeiiierineennenns 222

2. AN INtroduction 10 JAAS ...oeiii e 223
2.1 WhHat iS JAAS? it 223

3. The JBoss Security MOloovviiiii e 227
3.1. Enabling Declarative Security in JBoss Revisitedc............ 230

4. The JBoss Security Extension Architecturecccoooeviiniiiiinneeiiinnnnn. 235
4.1. How the JaasSecurityManager Uses JAASccooceiveviineeennennnn, 237

4.2. The JaasSecurityManagerService MBeancccveiveeiinnnnen. 240

4.3. The JaasSecurityDomain MBeancccoceuvvviviveiiieriineneneeenn, 243

5. Defining Security DOMEINSoieuniiiieiiei e 244
5.1. Loading Security DOMAINScccuuuiieiiiiiieiiiinieeeei e 246

5.2. The DynamicLoginConfig SEIVICecccceiviiiiiiiiiiiiiiiiecieeeieees 248

5.3. Using JB0ssS Login ModUIESccuiiiiiiiiiiiiiieieee e 249

5.4. Writing Custom Login Modulesccccoiiiiiiiniiiiiin e, 263

6. The Secure Remote Password (SRP) Protocolccooceiviiiiiiiiinennnnn. 272
6.1. Providing Password Information for SRPccccooiviiiiiinieinnnnn. 276

6.2. Inside of the SRP algorithmccoooiiiiiiii e 278

7. Running JBoss with a Java 2 security managercccoceeveveinneennneennnn. 284
8. USING SSL WIth JBOSS ...cevuiiiiiiiieiiiii ettt 286
8.1. Adding SSLIO EJB3 ..ot 286

8.2. Adding SSL 1O EJB 2.1 CallS ...cceuniiiiiiiiiiii e 289

9. Configuring JBoss for use Behind a Firewallc.ocoiiiiiiiiiiniiiinnnn, 293
10. How to Secure the JBOSS SEIVETcoiieeiiiiiiiiiiiniee e e et e eeeennee 294
10.1. The IMX CONSOIEuniiiiieii e 294

10.2. The WED CONSOIEccovviiiiiii e 294

10.3. The HTTP INVOKEIS ...ccoviiiiiiiiiieeeii et 294
10.4. The IMX INVOKET ...ievniiiiiee e e e e 294

10. WED SEIVICES ..eiiiieiiiieeiiies ettt e e et e e e 295
1. DOCUMENT/LITEIAL ...ceeeeieeee e 295
2. Document/Literal (BAr€)ooieeeuiiiieiiiiinieieiii e 296
3. Document/Literal (Wrapped)cooeiiiiiiiiieiii e 296
A RPCILILEIAL ...ttt e e e s 297
5. RPC/ENCOUEM ..ot 298
6. Web Service ENdPOINtSoeuniiiiiei e 299
7. Plain old Java Object (POJO)ccovuuiieiiiiiieeeeii et 299
8. The endpoint as a web applicationcccoovviiiiiiiiiin e, 299
9. Packaging the endpointoooouiiiiiii e 299
10. Accessing the generated WSDLoviiiiiiiiiiiiiiieecii e 300

Vii

Configuration Guide

11. EJB3 Stateless Session Bean (SLSB)ovvvviiiiiiiiiiiiieeeiiieeceiieeees 300
12. ENAPOINt PrOVIAETieviicii e e e e 301
13. WEDSEIVICECONTEXE ..eviieiiieiie et 302
14. Web Service ClENSoiiuiiiiiieii e 302
I S 1= YT = SRR 302
14.2. DYNAMIC PIOXY .oeuiiiiiiiieee et 304
14.3. WebSEIVICEREToieiiii e 305
14.4,. DISPAICR ..viiiii i 307
14.5. ASynchronous INVOCALIONSccceuuuieiiiiiiiiiiiii e 308
14.6. Oneway INVOCAtIONScovvuiiiiieii e e e e e e 308

15. CommMON AP e 309
15.1. Handler FrameWorko.uiiiieieiiieiie e e e 309
15.2. MeSSage CONEXL ...ivuiieiiii e e e e e e e 310
15.3. Fault Handlingcoouniiiiii e 311

16. DAtaBINGING ..oevvniiiiiiie e e 312
16.1. Using JAXB with non annotated classesccccccoeveviieiinnens 312

17, AHACHMENTS .o e 312
17.2. MTOMIXORP oeiii e e 312
17.2. SWARET ... 314

RS R o o] 316
18.1. Bottom-Up (USING WSProVide)c.vevviieeiiieiiiiieei e eeieeeieens 317
18.2. Top-Down (USING WSCONSUME)cuuniiiiieiiaieieeeieeeiiaaeaiaeeeneas 320
S T O 1 =T o1 S o 322
18.4. Command-line & Ant Task Referenceccccoooevviiiiieviiiinnnnnnns 325
18.5. JAX-WS binding CUuStomMIizationcccoeveieiiiiieiiiiinieeiiiiieeeens 325

19. Web Service EXIENSIONSiiiiiiieiiiiiiieeeei e 326
19.1. WS-AAAIESSING .uniietiiiiiiei ettt et e e e 326
19.2. WS-BPEL ..ooiiiiiiii it 329
19.3. WS-EVENLING ..uiiviieiiiieeee e e e e e s e e e e 329
194, WS-SECUNLY ittt e e e e e e e e 334
19.5. WS-TranSaCiONuvveuneiiiiiiiieeei i eee e e e e e e e e e r e eaneees 339
19.6. XML REQISIIHES ...uuiiiiiiiiii it e e e 339
19.7. WS-POIICY .oiviiiiiiiie et e e e ean 345

20. JBOSSWS EXIENSIONS ..eevviiiiiiiiieeiiiii ettt e 349
20.1. Proprietary ANNOAtIONScouuiiiiniiiieeiii e 349

Yo Fo [o] g Fo LS T= T o = TP 353
1. Memory and Thread MONItOrNGcccvviiiiiiiii e 353
2. ThE LOQA] SEIVICE ...niiiieiii e 353
3. System Properties Managementcooeuoviiiiiinieiiiiineeee e 354
4. Property Editor Managementcooovvuiiiiiiiciiin e e 355
5. Services Binding Managementocoeuuiiiiiiiinieiiii e 355
5.1. AttributeMappingDelegatecoovviiiiiiiiii e 358

5.2. XSLTConfigDelegateooeuniiiiiiiiiiiiii e 358

5.3. XSLTFIleDelegateoiiieiiiiieiiiiiiieieiis e 359

5.4. The Sample Bindings Filecccooviiiiiiiiir e 361

6. RMI Dynamic Class LOAdiNgcc.uiiiiuiiiiiiiiiecei e 362
7. SCheduling TASKS ...cuuuiiiiiii e e 362

viii

7.1. org.jboss.varia.scheduler.Schedulerccccoooeiiiiiiiiiiinieiennnn. 363

8. The TIMEN SEIVICE ...uuuiiiiiiii et 366
9. The BarrierController SErVICecc.uviiiiiiiiiiiiee e 368
10. Exposing MBean Events via SNMPccoooiiiiiiiiiiii e 371
. Clustering Configurationcccuuiiiiiiiei e e e e e e e e eens 375
12. Quick Tutorial to Setup a Clustered Web Applicationcccoooiviiiiiiein. 377
1. Setup the simple Web CIUSTErooiiiiiiii e 377
1.1. Setup the load balancCerccoooviiiiiiii e 378

1.2. Configure JBOSS AS NOUESveiiiiiiieiiiiiiieeeei e 381

1.3. Shared Databaseccoiiiiiiiiiiiiii e 382

2. Optional improvements to the simple clusterccooviiiiiiinennn. 382
2.1, FalOVEr SUPPOIT .oevtieiiiii ettt et 382

2.2. Database CaCheccccuuiiiiiiiiii i 383

3. BaSIC OPLIMIZALIONcceeiiiiiiei e 384
13. JBossCache and JGroUPS SEIVICESiiiiiuiuieiiiii et e et e et e e e eeens 387
1. JGroups ConfigUurationcouieiiiiiiiiie e e aens 387
1.1. TranSPOrt ProtOCOIScc.uuieiiiiiieiiii et 388

1.2. DISCOVErY ProtOCOISc.cuiviiiiiieeiii e ee e e e 391

1.3. Failure Detection ProtoCoISccouviiiiiiiiiiiiiiiice e 394

1.4. Reliable Delivery ProtoCOISccoovuiiiiiiiiiiieiiiii e 396

1.5. Other Configuration OPLioNSccceuuieiiiieiiii e 397

2. JBossCache Configurationocouiiiiiiiiiiiie e 400
O O 111 =T o o o [PPSO 405
I 1 o To (U T o o H PPN 405
1.1. Cluster Definitionc.iiiiiiii e 405

1.2. Service ArchiteCtUIeSuuiiiiiii e 408

1.3. Load-Balancing POlICIEScccuuiiiiiiiiiieec e 410

1.4. Farming DeployMENtiiiiiiiiiiiiii e 411

1.5. Distributed state replication SErViCescooevvivveiiiieiiiieiiineeieeens 413

2. Clustered IJNDI SEIVICESieuniiiiiaii e e 414
A o 1o 1| A Yo 414

2.2. Client configurationccoeeiiiieiiii e e 416

2.3. IB0SS CONFIQUIALION ...cceviieiiiiie e 417

3. Clustered SeSSION EJIBScciciuiiiiiiiiiieiiiii et 419
3.1. Stateless Session Bean in EJB 2.Xcocvviiiiiiiiiiiiiiicceei 420

3.2. Stateful Session Bean in EJB 2.Xcoccviviiiiiiiiiiiiiiieiiieeceeeies 422

3.3. Stateless Session Bean N EJIB 3.0covveviviiiiiiiiiiiieceiineeeeeenn, 424

3.4. Stateful Session Bean in EJB 3.0c.oviiviiiiiiiiiiiiiiiecieeee 425

4. Clustered Entity EJIBSviiiiiiieii e 427
4.1, Entity Bean iN EJIB 2.X ...ccvviiiiiiiiiii e 427

4.2, Entity Bean in EIB 3.0cooiiiiiiiiiiiee e 428
BUHTTP SEIVICES .ottt e 431
5.1. Download the SOftWarecccooiiiiiiiiiiiiiii e 432

5.2. Configure Apache to load Mod_jKcooveviiiiiiiiiiiinieiiiieeeeenn, 432

5.3. Configure worker nodes in mod_jKccooveiiiiiiiiiii 434

5.4, CONfIQUIE JBOSS ...uietiiiit et e 436

5.5. Configure HTTP session state replicationccccevvevevinneeennnn. 436

Configuration Guide

5.6. Enabling session replication in your applicationc.....cc...... 439

5.7. Use FIELD level replicationcoovvviiiiiiiieiii e eeieee 440

5.8. Monitoring session replicationccooceiiviiiiiiiiiniiieeeeie 442

5.9. Using Single Sign ONiiiiiiiiiiiiiieeee e 443

6. CluStered JMS SEIVICESiieeiiiiiiriiiiii et e e 443
V. LEQACY EJB SUPPOIT ...ttt ettt ettt et et et e e e e e e e eans 445
15, EIBS ON JBOSS ..cuiiiiiiiii ittt 447
1. The EJIB Client SIde VIEWccoeciiiiiiiiiiiei et 447
1.1. Specifying the EJB Proxy Configurationccccceiveviiiineeenns 450

2. The EJB Server Side VIEWccooveriiiiiiieieieieee e 456
2.1. Detached Invokers - The Transport Middlemenc....c...... 456

2.2. The HA JRMPInvoker - Clustered RMI/JJRMP Transport 459

2.3. The HA Httpinvoker - Clustered RMI/HTTP Transport 460

3. The EJB CONLAINETceuiiiiiie e 461
3.1. EIBDePIoyer MBEANcccuuuieiiiiiiieiiiii et 461

3.2. Container Plug-in Frameworkccooeiiiiiiiiiin e 476

4. Entity Bean Locking and Deadlock Detectioncccceeveeviiinneeiinnnnnn. 488
4.1. Why JB0ss Needs LOCKINGcocevnviiiiiiiiin e ceen e 488

4.2. Entity Bean LIifeCyCleoooouiiiiiii e, 488

4.3. Default Locking BENAVIONcccuuuiiiiiiiiiiiiiiieec e 489

4.4, Pluggable Interceptors and Locking Policyccooveviiiiinnnnnnn, 489

4.5, DEAAIOCK ...ceeniiii e 490

4.6. Advanced Configurations and Optimizationscccceveevevnnnen. 493

4.7. Running Within @ CIUStErccooeiiiiiiiiiie e, 495

4.8. TroubleShOOtiNGcccevuiiiiiiiei e 495

5. EJB Timer Configurationccuoiiiiiiiiiir e e e e e 496
16. The CMP ENQINE ..ot et e e e 499
1. EXAMPIE COUL ..ovniiiiii e e 499
1.1. Enabling CMP Debug LOGQiNgccuveiiieeiiieiiiiieeieeeineeeeeaieens 500

1.2. Running the eXxamples ... 501

2. The Jbosscmp-jdbe SrUCTUIEooviiiiiiciiii e 503
3. ENLEY BEANS ..o 504
3.1 ENtity MapPINg ..ceeveneieiiieieei e 507

4. CMP FIElUS ... 511
4.1. CMP Field DeClarationcccuorieierinieieiieeceiee e 511

4.2. CMP Field Column Mappingooveieriinieiiiieceiieee e 511

4.3. Read-only Fieldsccoooiiiiiiiii e 514

4.4, Auditing ENtity ACCESS ...uieiiiiiiieei et 515

4.5. Dependent Value Classes (DVCS) ...cocvvvviieiiinieiiiiieeeeiie e 516

5. Container Managed Relationshipsc.cccovviiiiiiiiin e, 521
5.1. CMR-Field ADSIract ACCESSOISccuuvieuniieiniaiiiieeiieeeiiaeeiee e 521

5.2. Relationship Declarationc.ccovviiiiiiiiiieiiii e eeaees 522

5.3. Relationship Mappingooeeeiiiiiiiie e 523

L@ U= T 530
6.1. Finder and select Declarationccccvvvviiiiniiieeeiein e 531

6.2. EJB-QL Declarationcccoveiiiiiiiiiiii e 531

6.3. Overriding the EJB-QL to SQL Mappingccovevevvenieieiiinnenennnn. 532

6.4, IBOSSQL ..eeiiiiiiiiii e 534

6.5. DYNAMICQL ..ovuiiiii e e 535

6.6. DeclaredSQLcoviiii 536

6.7. EJBQL 2.1 and SQL92 QUENIESccvuviiiieeiiieiiieeee e eeeiee e 541

6.8. BMP CuStom FINAEIScccovviiiiiiiiiie e 541

7. 0ptimized LOAdiNgooouuniiiiiii e 542

7.1. Loading SCENANOcvievinieiiiii e 542

A2 W T To I] o 10 o = 544

7.3. Read-aheadoooiiiiiiii 545

ST 0T To [T T [= o Lo = 552

8.1. COMMIt OPLIONS ..neeeiiiiie e e e 552

8.2. Eager-loading PrOCESSccuiiiiiiiiiieiiiii e 553

8.3. Lazy 10ading PrOCESScccuuieiiieiiiiieii e ee e e e e e e e 554

8.4. Lazy loading reSult SEISc..oiiuiiiiiiiiiice e 558

LS TR I - ¢ T= od 1T 1 559

O @] o] 1] T 1=) (o3 o Tod (] o S 561

11. Entity Commands and Primary Key Generationccccceeveeeeninneeenns 566
11.1. Existing Entity COmmandsccuoveiiiiiiiiieiiiiieeieeeinere e 566

12, DEFAUILS ...eneeeiii e 569
12.1. A sample jbosscmp-jdbc.xml defaults declaration 571

13. Datasource CUSOMIZALIONcceurruiiiieeeieieriins e e e e e e e eeeeennes 573
13.1. TYPE MAPPING .eeneiiteeii ettt et et e e 573

13.2. FUNCLION MAPPING etniiiiiieeeii et e e e eees 576

R T R 1Y =T] 1 o [P 577

13.4. User TYPe MapPiNgS ..ccuvueeeerineeiiiiieeeeii e et eeeni e eeeni e eeens 578

A. Book Example INStallationcoouiiiiiiiiici e 581
B. Use Alternative Databases wWith JBOSS ASocoiiiiiiiiiiiie e 583
1. How to Use Alternative DatabaSesovveeiiiiiiiiiiieiiii e e 583
2. INStall IDBC DIIVEIS ..eviiiiiieeeeee ettt e e e e e 583
2.1. Special NOteS 0N SYDASEuiiiiiiii e 584

3. Creating a DataSource for the External Databasec.ccoocoviiiiiiiiinnenennnn. 585
4. Change Database for the JMS SEerIVICESccccciviiiiiiiiiieiii e, 586
5. Support Foreign Keys in CMP SEIVICEScovuiuiiiiiiiiiieiiiiiieeiee e 587
6. Specify Database Dialect for Java Persistence APlccccocovviviiiiiiiiiiineennn, 587
7. Change Other JBoss AS Services to Use the External Database 588
7.1. ThE EASY WAY .eiiiiiiiiii ettt 588

7.2. The More Flexible Wayccccoiiiiiiiiii e 589

8. A Special Note About Oracle DataBasescccoevivieiiiiiiiiiiieeiiee e, 589

Xi

Xii

What this Book Covers

The primary focus of this book is the presentation of the standard JBoss Enterprise Application
Platform 4.3 architecture components from both the perspective of their configuration and
architecture. As a user of a standard JBoss distribution you will be given an understanding of
how to configure the standard components. Note that this book is not an introduction to J2EE or
how to use J2EE in applications. It focuses on the internal details of the JBoss server
architecture and how our implementation of a given J2EE container can be configured and
extended.

As a JBoss developer, you will be given a good understanding of the architecture and
integration of the standard components to enable you to extend or replace the standard
components for your infrastructure needs. We also show you how to obtain the JBoss source
code, along with how to build and debug the JBoss server.

Xiii

Xiv

About JBoss

JBoss, a division of Red Hat, is the global leader in open source middleware software,
combining enterprise-class JEMS open source software with the industry’s leading services and
tools to provide simply a better way to transform your business to Service-Oriented Architecture
(SOA).

JBoss, pioneered the disruptive Professional Open Source model, which combines the best of
the open source and proprietary software worlds to make open source a safe choice for the
enterprise and give ClOs peace of mind. This includes the royalty-free software, transparent
development and active community inherent in open source and the accountability and
professional support services expected of a traditional software vendor. The company finds
innovative open source projects and professionalizes the project from a hobby into a livelihood
by hiring the lead developer(s), often the founders themselves. JBoss provides the resources,
core development and support services to enable popular open source projects to scale into
enterprise-class software.

Coverage: North America and Europe on a direct basis. JBoss provides coverage worldwide via
our extensive authorized partner network.

Mission Statement: JBoss' mission is to revolutionize the way enterprise middleware software is
built, distributed, and supported through the Professional Open Source model. We are
committed to delivering innovative and high quality technology and services that make JBoss
the safe choice for enterprises and software providers.

Customers: Enterprise customers deploying JBoss technologies in mission-critical applications
with professional services support from JBoss include Aviva Canada, Continental Airlines, La
Quinta, NLG, MCI, Nielsen Media Research and Travelocity. For a current list of customer
success stories, please visit the Customers! section of our website.

Partners: JBoss works with software and hardware vendors, systems integrators and OEMs to
deliver implementation services, frontline support, and certification for products embedded with
JBoss technologies. For more information on the JBoss Certified Partner Program, please visit
the Partners? section of our website.

Professional Open Source(tm) from JBoss Inc. offers you:

Standards-based and stable Java Middleware technology

» No cost open source product licenses

Backed by a professional and expert support staff

» Comprehensive services including Professional Supportg, Training4, and Consulting5

1 http://www.jboss.com/customers/index
2 http://www.jboss.com/partners/index

XV

http://www.jboss.com/customers/index
http://www.jboss.com/customers/index
http://www.jboss.com/partners/index
http://www.jboss.com/partners/index
http://www.jboss.com/services/profsupport
http://www.jboss.com/services/certification
http://www.jboss.com/services/consulting

About JBoss

« Avery large and active community of developers

* An extensive worldwide network of authorized and certified partners6
Benefits of Professional Open Source from JBoss Inc.:

» Lowest possible total cost of ownership

Reliable and safe technology

» Support, accountability, and trust from a stable company

Expedited problem resolution compared to commercial software vendors

8 http://www.jboss.com/services/profsupport
4 http://www.jboss.com/services/certification
5 http://www.jboss.com/services/consulting
6 http://www.jboss.com/partners/index

XVi

http://www.jboss.com/services/profsupport
http://www.jboss.com/services/certification
http://www.jboss.com/services/consulting
http://www.jboss.com/partners/index
http://www.jboss.com/partners/index

About Open Source

The basic idea behind open source is very simple: When programmers can read, redistribute,
and modify the source code for a piece of software, the software evolves. People improve it,
people adapt it, people fix bugs. And this can happen at a speed that, if one is used to the slow
pace of conventional software development, seems astonishing. Open Source is an
often-misunderstood term relating to free software. The Open Source Initiative (OSI) web site
provides a number of resources that define the various aspects of Open Source including an
Open Source Definition at: http://www.opensource.org/docs/definition.html. The following quote
from the OSI home page summarizes the key aspects as they relate to JBoss nicely:

We in the open source community have learned that this rapid evolutionary
process produces better software than the traditional closed model, in which
only very few programmers can see the source and everybody else must blindly
use an opaque block of bits.

Open Source Initiative exists to make this case to the commercial world.

Open source software is an idea whose time has finally come. For twenty years
it has been building momentum in the technical cultures that built the Internet
and the World Wide Web. Now it's breaking out into the commercial world, and
that's changing all the rules. Are you ready?

—The Open Source Initiative

XVii

http://www.opensource.org/docs/definition.html

XViii

About Professional Open Source

JBoss is the leader in the second generation of open source, which we have termed
Professional Open Source. The Professional Open Source methodology is based on the
following:

1. We hire and pay experts in the open source community to write exceptional and innovative
software full-time.

2. We only use open source licenses that are friendly to end-user IT shops, independent
software vendors, and the community itself.

3. Directly and through our authorized partners, we deliver the best support services available;
all of which are backed up by the real product experts.

4. Unlike first generation open source providers, we control the direction and source code for
our projects. We can ensure that all bug fixes and patches are rolled into future versions of
our products.

5. By combining enterprise-proven technology, business-friendly open source licenses, and
world-class support services, we have made Professional Open Source the safe choice for
end-user enterprises and independent software vendors alike.

XiX

XX

Chapter 1.

Feedback

If you spot a typo in this guide, or if you have thought of a way to make this manual better, we
would love to hear from you! Submit a report in JIRA? against the Product: JBoss Enterprise
Application Platform, Version: <ver si on>, Component: Doc. If you have a suggestion for
improving the documentation, try to be as specific as possible. If you have found an error,
include the section number and some of the surrounding text so we can find it easily.

1 http://jira.jposs.com/jira/browse/JBPAPP

http://jira.jboss.com/jira/browse/JBPAPP
http://jira.jboss.com/jira/browse/JBPAPP

Part I. Java EE 5 Application
Configuration

Chapter 2.

Enterprise Applications with EJB3
Services

EJB3 (Enterprise JavaBean 3.0) provides the core component model for Java EE 5
applications. An EJB3 bean is a managed component that is automatically wired to take
advantage of all services the J2EE server container provides, such as transaction, security,
persistence, naming, dependency injection, etc. The managed component allows developers to
focus on the business logic, and leave the cross-cutting concerns to the container as
configurations. As an application developer, you need not create or destroy the components
yourself. You only need to ask for an EJB3 bean from the Java EE container by its name, and
then you can call its methods with all configured container services applied. You can get access
to an EJB3 bean from either inside or outside of the J2EE container.

JBoss Enterprise Application Platform 4.3 supports EJB3 out of the box.

The details of the EJB3 component programming model is beyond the scope of this guide. Most
EJB3 interfaces and annotations are part of the Java EE 5 standard and hence they are the
same for all Java EE 5 compliant application servers. Interested readers should refer to the
EJB3 specification or numerous EJB3 books to learn more about EJB3 programming.

In this chapter, we only cover EJB3 configuration issues that are specific to the JBoss AS. For
instance, we discuss the JNDI naming conventions for EJB3 components inside the JBoss AS,
the optional configurations for the Hibernate persistence engine for entity beans, as well as
custom options in the JBoss EJB3 deployer.

1. Session Beans

Session beans are widely used to provide transactional services for local and remote clients. To
write a session bean, you need an interface and an implementation class.

@ocal
public interface M/Beanlnt {
public String doSonething (String paral, int para2);

}

@t at el ess
public class MyBean i npl enents MyBeanl nt {

public String doSonmething (String paral, int para2) {
i mpl enent the logic ...

}

Chapter 2. Enterprise Applications with EJB3 Services

When you invoke a session bean method, the method execution is automatically managed by
the transaction manager and the security manager in the server. You can specify the
transactional or security properties for each method using annotations on the method. A session
bean instance can be reused by many clients. Depending on whether the server maintains the
bean's internal state between two clients, the session bean can be stateless or stateful.
Depending on whether the bean is available to remote clients (i.e., clients outside of the current
JVM for the server), the session bean can be local or remote. All these are configurable via
standard annotations on the beans.

After you define a session bean, how does the client get access to it? As we discussed, the
client does not create or destroy EJB3 components, it merely asks the server for a reference of
an existing instance managed by the server. That is done via JNDI. In JBoss AS, the default
local INDI name for a session bean is dependent on the deployment packaging of the bean
class.

« If the bean is deployed in a standalone JAR file in the j boss- as/ pr oduct i on/ depl oy
directory, the bean is accessible via local INDI name MyBean/ | ocal , where MyBean is the
implementation class name of the bean as we showed earlier. The "local" JNDI in JBoss AS
means that the JNDI name is relative to j ava: conp/ env/ .

« If the JAR file containing the bean is packaged in an EAR file, the local JNDI name for the
bean is nyapp/ MyBean/ | ocal , where nyapp is the root name of the EAR archive file (e.g.,
myapp. ear, see later for the EAR packaging of EJB3 beans).

Of course, you should change | ocal torenot e if the bean interface is annotated with @Renot e
and the bean is accessed from outside of the server it is deployed on. Below is the code snippet
to get a reference of the MyBean bean in a web application (e.g., in a servlet or a JSF backing
bean) packaged in nyapp. ear, and then invoke a managed method.

try {

Initial Context ctx = new Initial Context();

MyBeanl nt bean = (My/Beanlnt) ctx. | ookup("myapp/ M/Bean/| ocal ");
} catch (Exception e) {

e.print StackTrace ();

}

String result = bean.doSonet hi ng("have fun", 1);

What the client gets from the JNDI is essentially a "stub" or "proxy" of the bean instance. When
the client invokes a method, the proxy figures out how to route the request to the server and

Entity Beans (a.k.a. Java Persistence API)

marshal together the response.

If you do not like the default INDI names, you can always specify your own JNDI binding for any
bean via the @.ocal Bi ndi ng annotation on the bean implementation class. The JNDI binding is
always "local" under the j ava: conp/ env/ space. For instance, the following bean class
definition results in the bean instances available under JNDI name

j ava: conp/ env/ MySer vi ce/ MyOnnNane.

@t at el ess
@.ocal Bi ndi ng (j ndi Bi ndi ng="M/Ser vi ce/ MyOmNane")
public class MyBean inpl enents MyBeanl nt {

public String doSonething (String paral, int para2) {
i npl emrent the logic ...

}

Injecting EJB3 Beans into the Web Tier

Java EE 5 allows you to inject EJB3 bean instances directly into the web
application via annotations without explicit JINDI lookup. This behavior is not yet
supported in JBoss AS 4.2. However, JBoss Enterprise Application Platform
provides an integration framework called JBoss Seam. JBoss Seam brings EJB3
/ JSF integration to new heights far beyond what Java EE 5 provides. Please see
more details in the JBoss Seam reference guide bundled with the platform.

2. Entity Beans (a.k.a. Java Persistence API)

EJB3 session beans allow you to implement data accessing business logic in transactional
methods. To actually access the database, you will need EJB3 entity beans and the entity
manager API. They are collectively called the Java Persistence API (JPA).

EJB3 Entity Beans are Plain Old Java Objects (POJOs) that map to relational database tables.
For instance, the following entity bean class maps to a relational table named customer. The
table has three columns: name, age, and signupdate. Each instance of the bean corresponds to
a row of data in the table.

@ntity
public class Custonmer {

Chapter 2. Enterprise Applications with EJB3 Services

String nane;

public String getNane () {
return name;

}

public void setNane (String nane) {
thi s. nane = nane;

}
i nt age;

public int getAge () {
return age;

}

public void setAge (int age) {
thi s. age = age;

}

Dat e si gnupdat e;

public Date getSignupdate () {
return signupdate;

}

public void setSignupdate (Date signupdate) {
thi s. si gnupdat e = si gnupdat e;
}
}

Besides simple data properties, the entity bean can also contain references to other entity
beans with relational mapping annotations such as @OneToOne, @OneToMany,
@ManyToMany etc. The relationships of those entity objects will be automatically set up in the
database as foreign keys. For instance, the following example shows that each record in the
Customer table has one corresponding record in the Account table, multiple corresponding
records in the Order table, and each record in the Employee table has multiple corresponding
records in the Customer table.

@ntity
public class Custoner {

Account account;

@neToOne
publ i ¢ Account getAccount () {
return account;

}

Entity Beans (a.k.a. Java Persistence API)

public void set Account (Accout account) {
t hi s. account = account;

}

Enpl oyee sal esRep;

@manyToOne
publ i ¢ Enpl oyee get Sal esRep () {
return sal esRep;

}

public void set Sal esRep (Enpl oyee sal esRep) {
thi s. sal esRep = sal esRep;

}

Vect or <Order > orders;

@neToMany
public Vector <Order> getOrders () {
return orders;

}

public void setOrders (Vector <Order> orders) {
this.orders = orders;

}

Using the EntityManager API, you can create, update, delete, and query entity objects. The
EntityManager transparently updates the underlying database tables in the process. You can
obtain an EntityManager object in your EJB3 session bean via the @PersistenceContext
annotation.

@er si st enceCont ext
Entit yManager em

Cust oner customer = new Cutoner ();
[/ popul ate data in custoner

/] Save the newly created custonmer object to DB
em persi st (custoner);

/'l Increase age by 1 and auto save to database
cust oner . set Age (custoner.get Age() + 1);

/] delete the custonmer and its rel ated objects fromthe DB
em renove (custoner);

// Get all customer records with age > 30 fromthe DB
Li st <Customer> custoners = em query (

Chapter 2. Enterprise Applications with EJB3 Services

"sel ect ¢ from Custonmer where c.age > 30");

The detailed use of the EntityManager API is beyond the scope of this book. Interested readers
should refer to the JPA documentation or Hibernate EntityManager documentation.

2.1. The persistence.xml file

The EntityManager API is great, but how does the server know which database it is supposed to
save / update / query the entity objects? How do we configure the underlying
object-relational-mapping engine and cache for better performance and trouble shooting? The
persistence.xml file gives you complete flexibility to configure the EntityManager.

The persistence.xml file is a standard configuration file in JPA. It has to be included in the
META-INF directory inside the JAR file that contains the entity beans. The persistence.xml file
must define a persistence-unit with a unique name in the current scoped classloader. The
provider attribute specifies the underlying implementation of the JPA EntityManager. In JBoss
AS, the default and only supported / recommended JPA provider is Hibernate. The
jta-data-source points to the JNDI name of the database this persistence unit maps to. The
java:/DefaultDS here points to the HSQL DB embedded in the JBoss AS. Please refer to
Appendix B, Use Alternative Databases with JBoss AS on how to setup alternative databases
for JBoss AS.

<persi st ence>
<per si st ence-unit nane="nyapp">
<pr ovi der >or g. hi ber nat e. ej b. Hi ber nat ePer si st ence</ pr ovi der >
<j ta- dat a- sour ce>j ava: / Def aul t DS</ j t a- dat a- sour ce>
<properties>
</ properties>
</ per si st ence-uni t >
</ per si st ence>

Inject EntityManager by persistence-unit name

Since you might have multiple instances of persistence-unit defined in the same
application, you typically need to explicitly tell the @PersistenceContext
annotation which unit you want to inject. For instance,
@PersistenceContext(hame="myapp") injects the EntityManager from the
persistence-unit named "myapp".

10

Use Alternative Databases

However, if you deploy your EAR application in its own scoped classloader and
have only one persistence-unit defined in the whole application, you can omit the

"name" on @PersistenceContext. See later in this chapter for EAR packaging
and deployment.

The properties element in the persistence.xml can contain any configuration properties for the
underlying persistence provider. Since JBoss AS uses Hibernate as the EJB3 persistence
provider, you can pass in any Hibernate options here. Please refer to the Hibernate and
Hibernate EntityManager documentation for more details. Here we will just give an example to
set the SQL dialect of the persistence engine to HSQL, and to create tables from the entity
beans when the application starts and drop those tables when the application stops.

<per si st ence>
<per si stence-unit nane="nyapp">
<pr ovi der >or g. hi ber nat e. ej b. Hi ber nat ePer si st ence</ pr ovi der >
<j t a- dat a- sour ce>j ava: / Def aul t DS</ j t a- dat a- sour ce>
<properties>
property nanme="hi bernate. di al ect"
val ue="org. hi bernat e. di al ect. HSQLDi al ect"/ >
<property nane="hi ber nat e. hbn2ddl . aut 0" val ue="creat e- drop"/ >
</ properties>
</ per si st ence-uni t >
</ persi st ence>

2.2. Use Alternative Databases

To use an alternative database other than the built-in HSQL DB to back your entity beans, you
need to first define the data source for the database and register it in the JNDI. This is done via
the *-ds.xml files in the deploy directory. Please see Section 3, “Configuring JDBC
DataSources” for more details. Examples of *-ds.xml files for various databases are available in
jboss-as/docs/examples/jca directory in the server.

Then, in the persistence.xml, you need to change the jta-data-source attribute to point to the
new data source in JNDI (e.g., java:/MysqIDS if you are using the default mysql-ds.xml to setup
a MySQL external database).

In most cases, Hibernate tries to automatically detect the database it connects to and then
automatically selects an appropriate SQL dialect for the database. However, we have found that
this detection does not always work, especially for less used database servers. We recommend
you to set the hibernate.dialect property explicitly in persistence.xml. Here are the Hibernate
dialect for database servers officially supported on the JBoss platform.

11

Chapter 2. Enterprise Applications with EJB3 Services

« Oracle 9i and 10g: org.hibernate.dialect.Oracle9Dialect

» Microsoft SQL Server 2005: org.hibernate.dialect. SQLServerDialect
» PostgresSQL 8.1: org.hibernate.dialect.PostgreSQLDialect

* MySQL 5.0: org.hibernate.dialect. MySQL5Dialect

« DB2 8.0: org.hibernate.dialect.DB2Dialect

» Sybase ASE 12.5: org.hibernate.dialect.SybaseDialect

2.3. Default Hibernate options

Hibernate has many configuration properties. For the properties that you do not specify in the
persistence.xml file, JBoss AS will provide a reasonable set of default values. The default
Hibernate property values are specified in the

j boss-as/ server/ producti on/ depl oy/ ej b3. depl oyer/ META- | NF/ per si st ence. properties
file. Below is the per si st ence. properti es file bundled in JBoss Enterprise Application
Platform. Notice the options that are commented out. They give you an idea of available
properties in your per si st ence. xni file.

hi ber nat e. t ransact i on. manager _| ookup_cl ass=or g. hi ber nat e. t ransacti on. JBossTr ansact i onManager |
#hi ber nat e. connecti on. rel ease_node=aft er st at enent

#hi ber nat e. t ransacti on. f|l ush_bef ore_conpl eti on=f al se

#hi ber nat e. t ransacti on. aut o_cl ose_sessi on=f al se

#hi ber nat e. query. factory_cl ass=or g. hi ber nat e. hgl . ast . ASTQuer yTr ansl| at or Fact ory

#hi ber nat e. hbnRddl| . aut o=cr eat e- dr op

#hi ber nat e. hbnRddl| . aut o=creat e

hi ber nat e. cache. provi der _cl ass=or g. hi ber nat e. cache. Hasht abl eCachePr ovi der

Clustered cache with TreeCache

#hi ber nat e. cache. provi der _cl ass=org. j boss. ej b3. entity. TreeCacheProvi der Hook

#hi ber nat e. t r eecache. nbean. obj ect _nane=j boss. cache: servi ce=EIJB3Ent i t yTr eeCache

#hi ber nat e. di al ect =or g. hi ber nat e. di al ect. HSQLDi al ect

hi bernate. jndi . java. nam ng. factory.initial =org.jnp.interfaces. Nam ngCont ext Fact ory
hi ber nat e. j ndi . j ava. nam ng. factory. url . pkgs=org.j boss. nam ng: org. j np. i nterfaces

hi ber nat e. byt ecode. use_refl ecti on_opti m zer=fal se

1 don't think this is honored, but EJB3Depl oyer uses it

hi ber nat e. byt ecode. provi der =j avassi st

3. Message Driven Beans

Messaging driven beans are specialized EJB3 beans that receive service requests via IMS
messages instead of proxy method calls from the "stub". So, a crucial configuration parameter
for the message driven bean is to specify which IMS message queue its listens to. When there
is an incoming message in the queue, the server invokes the beans's onMessage() method,
and passes in the message itself for processing. The bean class specifies the JMS queue it

12

Package and Deploy EJB3 Services

listens to in the @MessageDriven annotation. The queue is registered under the local JNDI
java:comp/env/ hame space.

@kssageDriven(activationConfig =
{
@\ct i vat i onConfi gProperty(propertyName="desti nati onType",
propertyVal ue="j avax. j ns. Queue"),
@\ct i vati onConfi gProperty(propertyNanme="desti nati on",
pr opert yVal ue="queue/ MyQueue")
})

public class MyJmsBean inpl enents Messageli st ener {

public void onMessage (Message nsg) ({
/1 ... do sonething with the nsg ...

}

/1

When a message driven bean is deployed, its incoming message queue is automatically
created if it does not exist already. To send a message to the bean, you can use the standard
JMS API.

try {
Initial Context ctx = new Initial Context();

gqueue = (Queue) ctx.|ookup("queue/ MyQueue");
QueueConnecti onFactory factory =
(QueueConnecti onFactory) ctx.| ookup("Connecti onFactory");
cnn = factory. creat eQueueConnecti on();
sess = cnn. cr eat eQueueSessi on(f al se,
QueueSessi on. AUTO_ACKNOALEDGE) ;

} catch (Exception e) {

e.print StackTrace ();
}

Text Message nsg = sess. creat eText Message(...);

sender = sess. creat eSender (queue);
sender . send(nsQ) ;

Please refer to the JMS specification or books to learn how to program in the JMS API.

4. Package and Deploy EJB3 Services

13

Chapter 2. Enterprise Applications with EJB3 Services

EJB3 bean classes are packaged in regular JAR files. The standard configuration files, such as
ejb-jar.xml for session beans, and persistence.xml for entity beans, are in the META-INF
directory inside the JAR. You can deploy EJB3 beans as standalone services in JBoss AS or as
part of an enterprise application (i.e., in an EAR archive). In this section, we discuss those two
deployment options.

4.1. Deploy the EJB3 JAR

When you drop JAR files into the j boss- as/ server/ producti on/ depl oy/ directory, it will be
automatically picked up and processed by the server. All the EJB3 beans defined in the JAR file
will then be available to other applications deployed inside or outside of the server via JNDI
names like MyBean/ | ocal , where MyBean is the implementation class name for the session
bean. The deployment is done via the JBoss EJB3 deployer in
jboss-as/server/production/ejb3.deployer/. The META-INF/persistence.properties file we
discussed earlier to configure the default behavior of EJB3 entity manager is located in the
EJB3 deployer.

The EJB3 deployer automatically scans JARs on the classpath to look for EJB3 annotations.
When it finds classes with EJB3 annotations, it would deploy them as EJB3 services. However,
scanning all JARs on the classpath could be very time-consuming if you have large applications
with many JARs deployed. In the
jboss-as/server/production/ejb3.deployer/META-INF/jboss-service.xml file, you can tell the EJB3
deployer to ignore JARs you know do not contain EJB3 beans. The non-EJB3 JAR files shipped
with the JBoss AS are already listed in the jboss.ejb3:service=JarslgnoredForScanning MBean
service:

<mbean code="org. | boss. ej b3. Jar sl gnor edFor Scanni ng"
nane="j boss. ej b3: servi ce=Jar sl gnor edFor Scanni ng" >
<attribute name="I|gnoredJars">
snnp- adaptor. j ar,
ot heri mages. j ar,
applet.jar,
j conmon. j ar,
consol e- ngr - cl asses. j ar,
jfreechart.jar,
j uddi - service.jar,
wsdl 4j . j ar,

servl et s-webdav. j ar
</attribute>
</ nbean>

You can add any non-EJB3 JARs from your application to this list so that the server do not have
to waste time scanning them. This could significantly improve the application startup time in

14

Deploy EAR with EJB3 JAR

some cases.

4.2. Deploy EAR with EJB3 JAR

Most Java EE applications are deployed as EAR archives. An EAR archive is a JAR file that
typically contains a WAR archive for the web pages, servlets, and other web-related
components, one or several EJB3 JARs that provide services (e.g., data access and
transaction) to the WAR components, and some other support library JARs required by the
application. An EAR file also have deployment descriptors such as application.xml and
jboss-app.xml. Below is the basic structure of a typical EAR application.

nyapp. ear
| + META-I NF
| + applications.xm and jboss-app. xni
| + myapp. war
| + web pages and JSP /JSF pages
| + WEB- | NF
| + web. xm , jboss-web.xm , faces-config.xm etc.
|+ lib
|+ tag library JARs
| + cl asses
| + servlets and ot her classes used by web pages
| + myapp.jar
| + EIJB3 bean cl asses
| + META- I NF
| + ejb-jar.xm and persistence. xn
|+ lib

| + Library JARs for the EAR

Notice that in JBoss AS, unlike in many other application servers, you do not need to declare
EJB references in the web.xml file in order for the components in the WAR file to access EJB3
services. You can obtain the references directly via JNDI as we discussed earlier in the chapter.

A typical application.xml file is as follows. It declares the WAR and EJB3 JAR archives in the
EAR, and defines the web content root for the application. Of course, you can have multiple
EJB3 modules in the same EAR application. The application.xml file could also optionally define
a shared classpath for JAR files used in this application. The JAR file location defaults to lib in
JBoss AS -- but it might be different in other application servers.

<appl i cati on>
<di spl ay- nane>My Appl i cati on</di spl ay- nanme>

<nmodul e>
<web>
<web- uri >nyapp. war </ web- uri >

15

Chapter 2. Enterprise Applications with EJB3 Services

<cont ext - r oot >/ myapp</ cont ext - r oot >
</ web>
</ nodul e>

<modul e>
<ej b>nyapp. j ar</ ej b>
</ nodul e>

<library-directory>lib</library-directory>

</ applicati on>

The jboss-app.xml file provides JBoss-specific deployment configuration for the EAR
application. For instance, it can specify the deployment order of modules in the EAR, deploy
JBoss-specific application modules in the EAR, such as SARs (Service ARchive for MBeans)
and HARs (Hibernate ARchive for Hibernate objects), provide security domain and JMX
MBeans that can be used with this application, etc. You can learn more about the possible
attributes in jboss-app.xml in its DTD: http://www.jboss.org/j2ee/dtd/jboss-app_4_2.dtd.

A common use case for jboss-app.xml is to configure whether this EAR file should be deployed
in its own scoped classloader to avoid naming conflicts with other applications. If your EAR
application is deployed in its own scoped classloader and it only has one persistence-unit
defined in its EJB3 JARs, you will be able to use @PersistenceContext EntotyManager em to
inject EntityManager to session beans without worrying about passing the persistence unit
name to the @PersistenceContext annotation. The following jboss-app.xml specifies a scoped
classloader myapp:archive=myapp.ear for the EAR application.

<j boss- app>
<l oader - reposi t ory>
nmyapp: ar chi ve=nyapp. ear
</ | oader -reposi tory>

</ j boss- app>

The EAR deployment is configured by the jboss-as/server/production/deploy/ear-deploy.xml file.
This file contains three attributes as follows.

<server>
<nmbean code="org.j boss. depl oynent . EARDepl oyer"
name="j boss. j 2ee: ser vi ce=EARDepl oyer " >
<l--
A flag indicating if ear deploynments should
have their own scoped cl ass | oader to isolate

16

Deploy EAR with EJB3 JAR

their classes from other depl oynments.
-->
<attribute nane="Isol ated" >f al se</attri bute>

<l--
A flag indicating if the ear conponents shoul d
have in VM call optim zation di sabl ed.

-->

<attribute nanme="Cal | ByVal ue">f al se</attri bute>

<I--
A flag the enabl es the default behavi or of
the ee5 library-directory. If true, the lib
contents of an ear are assuned to be the default
value for library-directory in the absence of
an explicit library-directory. If false, there
must be an explicit library-directory.

—a =

<attribute nane="Enabl el i bDi rect oryByDefaul t">true</attribute>

</ nbean>
</ server >

If you set the Isolated parameter to true, all EAR deployment will have scoped classloaders by
default. There will be no need to define the classloader in jposs-app.xml. The CallByValue
attribute specifies whether we should treat all EJB calls as remote calls. Remote calls have a
large additional performance penalty compared with local call-by-reference calls, because
objects involved in remote calls have to be serialized and de-serialized. For most of our
applications, the WAR and EJB3 JARs are deployed on the same server, hence this value
should be default to false and the server uses local call-by-reference calls to invoke EJB
methods in the same JVM. The EnablelibDirectoryByDefault attribute specifies whether the lib
directory in the EAR archive should be the default location for shared library JARSs.

17

18

Chapter 3.

Deployment

Deploying applications on JBoss AS is very easy. You just need to copy the application into the
jboss-as/server/production/deploy directory. You can replace default with different server
profiles such as all or minimal or production. We will cover those later in this chapter. JBoss AS
constantly scans the deploy directory to pick up new applications or any changes to existing
applications. So, you can "hot deploy" application on the fly while JBoss AS is still running.

1. Deployable Application Types

You can deploy several different types of enterprise applications in JBoss AS:

* The WAR application archive (e.g., myapp.war) packages a Java EE web application in a
JAR file. It contains servlet classes, view pages, libraries, and deployment descriptors such
as web.xml, faces-config.xml, and jboss-web.xml etc..

» The EAR application archive (e.g., myapp.ear) packages a Java EE enterprise application in
a JAR file. It typically contains a WAR file for the web module, JAR files for EJB modules, as
well as deployment descriptors such as application.xml and jboss-app.xml etc..

« The SAR application archive (e.g., myservice.sar) packages a JBoss service in a JAR file. It is
mostly used by JBoss internal services. Please see more in Chapter 4, The JBoss JMX
Microkernel.

* The *-ds.xml file defines connections to external databases. The data source can then be
reused by all applications and services in JBoss AS via the internal JNDI.

* You can deploy XML files with MBean service definitions. If you have the appropriate JAR
files available in the deploy or lib directories, the MBeans specified in the XML files will be
started. This is the way how you start many JBoss AS internal services, such as the JMS
queues.

* You can also deploy JAR files containing EJBs or other service objects directly in JBoss AS.

Exploded Deployment

The WAR, EAR, and SAR deployment packages are really just JAR files with
special XML deployment descriptors in directories like META-INF and WEB-INF.
JBoss AS allows you to deploy those archives as expanded directories instead of
JAR files. That allows you to make changes to web pages etc on the fly without
re-deploying the entire application. If you do need to re-deploy the exploded
directory without re-start the server, you can just "touch" the deployment
descriptors (e.g., the WEB-INF/web.xml in a WAR and the
META-INF/application.xml in an EAR) to update their timestamps.

19

Chapter 3. Deployment

2. Standard Server Configurations

The JBoss Enterprise Platform ships with four server configurations. You can choose which
configuration to start by passing the -c parameter to the server startup script. For instance,
command run.sh -c all would start the server in the all configuration. Each configuration is
contained in a directory named jboss-as/server/[config name]/. You can look into each server
configuration's directory to see the default services, applications, and libraries supported in the
configuration.

« The minimal configuration starts the core server container without any of the enterprise
services. It is a good starting point if you want to build a customized version of JBoss AS that
only contains the servers you need.

» The default configuration is the mostly common used configuration for application developers.
It supports the standard J2EE 1.4 and most of the Java EE 5.0 programming APlIs (e.g., JSF
and EJB3).

» The all configuration is the default configuration with clustering support and other enterprise
extensions.

» The production configuration is based on the all configuration but with key parameters
pre-tuned for production deployment.

The detailed services and APIs supported in each of those configurations will be discussed
throughout this book. In this section, we focus on the optimization we did for the production
configuration.

2.1. The production Configuration

To start the server in the production configuration, you can use the following command under
Linux / Unix:

cd /path/tol/]jboss-as
RUN_CONF=ser ver/ producti on/run. conf bin/run.sh -c production

Or, you can simply copy the jboss-as/server/production/run.conf file to jboss-as/bin directory
and start the server with run.sh -c production command. Below is a list of optimizations we
specifically did for the production configuration:

* In the jboss-as/server/production/run.conf file, we expanded the memory size of the server to
1.7 GB. We added the -server tag to JVM startup command on all platforms except for Darwin
(Mac OS X). If the JVM is BEA jRockit, the -Xgc:gencon parameter is also added.

« We configured the key generation algorithm to use the database to generate HiLo keys in

20

Further Tuning from the production

order to generate the correct keys in a cluster environment (see
deploy/uuid-key-generator.sar/META-INF/jboss-service.xml).

« We removed the test IMS queues from

deploy-hasingleton/jms/jbossmq-destinations-service.xml. Those queues are setup primarily
for ease of application development. Production applications should configure their own JMS

queues.

* We set the ScanPeriod parameter to 60000 in conf/jboss-minimal.xml and

conf/jboss-service.xml, so that JBoss AS does not spend too much time constantly scanning

the deploy directory for new or updated deployments.

* We removed the connection monitoring in deploy/jbossjca-service.xml. The connection

monitoring feature helps catch unclosed connections that would otherwise cause leaks in the

connection pools in development. However, it is a global point of contention that should be

turned off (false) in production.

 Logging is a big contention point in many production applications. In the production

configuration, we removed the console logging and increased the logging level to WARN and

ERROR for most packages. Please see details in conf/jboss-log4j.xml.

2.2. Further Tuning from the production Configuration

In addition to the standard optimization in the production configuration, there are a couple of
simple techniques you can use to improve the performance and stability of your server.

The production configuration increases the JVM heap memory size to 1.7 GB. You should

probably change it to fit your own server. For instance, if have a 64 bit server with several GBs

of RAM, you can probably increase this value as long as you also use a 64 bit JVM. If your
server has less than 2 GB RAM, you should decrease that value accordingly. In the
production/run.conf file, the -Xmx and -Xms parameters specify the maximum and minimum

heap sizes respectively. It is recommended that you set the -Xmx and -Xms to the same value
to avoid dynamic re-sizing of the heap, which is a source of instability in many JVMs. You could

also consider turing on parallel GC options if you are using the Sun JVM on a multi-core
machine. The following is an example setup you might use a reference. Please see the Sun
JVM documentation for more details on this startup parameters.

JAVA OPTS="- Xms1740m - Xmx1740m - XX: Per n5i ze=256m - XX: MaxPer nSi ze=512
- XX: +UseConcMar kSweepGC - XX: +CVBPer menSweepi ngEnabl ed
- XX: +Cvsd assUnl oadi ngEnabl ed"

In the embedded Tomcat module, you can turn off the development mode so that the server
does not constantly monitor the changes in JSP files. To do that, edit the
deploy/jboss-web.deployer/confiweb.xml file and add the development attribute to the
JspServlet.

21

Chapter 3. Deployment

<servl et >
<servl et - name>j sp</ servl et - nanme>
<servl et - cl ass>or g. apache. j asper. servl et. JspServl et </ servl et - cl ass>

<i ni t-paranp
<par am nanme>devel opnent </ par am nane>
<par am val ue>f al se</ par am val ue>
</init-paranr

In Tomcat, you could adjust the size of the thread pool. If you have multi-core CPUs or more
than one CPUs on your server, it might be beneficial to increase the thread pool beyond the
default 250. On the other hand, if you have a slow server, decreasing the thread pool will
decrease the overhead on the server. The thread pool size can be adjusted via the
deploy/jboss-web.deployer/server.xml file.

<Connect or port="8080" address="${j boss. bi nd. addr ess}"
maxThr eads="250" nmaxHtt pHeader Si ze="8192"
enpt ySessi onPat h="true" protocol ="HTTP/ 1. 1"
enabl eLookups="f al se" redirectPort="8443" accept Count ="100"
connecti onTi neout =" 20000" di sabl eUpl oadTi neout ="true" />

In addition, JBoss AS needs to use a relational database to store runtime data. In a production
environment, you should use a production quality database to replace the embedded HSQL
database. Please see Appendix B, Use Alternative Databases with JBoss AS for more
information on how to setup alternative databases for the JBoss AS.

22

Part Il. JBoss AS Infrastructure

Chapter 4.

The JBoss JMX Microkernel

Modularly developed from the ground up, the JBoss server and container are completely
implemented using component-based plug-ins. The modularization effort is supported by the
use of JMX, the Java Management Extension API. Using JMX, industry-standard interfaces help
manage both JBoss/Server components and the applications deployed on it. Ease of use is still
the number one priority, and the JBoss Server architecture sets a new standard for modular,
plug-in design as well as ease of server and application management.

This high degree of modularity benefits the application developer in several ways. The already
tight code can be further trimmed down to support applications that must have a small footprint.
For example, if EJB passivation is unnecessary in your application, simply take the feature out
of the server. If you later decide to deploy the same application under an Application Service
Provider (ASP) model, simply enable the server's passivation feature for that web-based
deployment. Another example is the freedom you have to drop your favorite object to relational
database (O-R) mapping tool, such as TOPLink, directly into the container.

This chapter will introduce you to JMX and its role as the JBoss server component bus. You will
also be introduced to the JBoss MBean service notion that adds life cycle operations to the
basic JIMX management component.

1. An Introduction to JMX

The success of the full Open Source J2EE stack lies with the use of IMX (Java Management
Extension). JMX is the best tool for integration of software. It prov ides a common spine that
allows the user to integrate modules, containers, and plug-ins. Figure 4.1, “The JBoss JMX
integration bus and the standard JBoss components” shows the role of JMX as an integration
spine or bus into which components plug. Components are declared as MBean services that are
then loaded into JBoss. The components may subsequently be administered using JMX.

25

Chapter 4. The JBoss JMX Microkernel

" . oo B %@ MAN AGEMENT
e

EJB CONTAINER

DATABASES

3

3

™,

=

iy
!

"

¥

i
=

Figure 4.1. The JBoss JMX integration bus and the standard JBoss
components

Before looking at how JBoss uses JMX as its component bus, it would help to get a basic
overview what JMX is by touching on some of its key aspects.

JMX components are defined by the Java Management Extensions Instrumentation and Agent
Specification, v1.2, which is available from the JSR003 Web page at
http://jcp.org/en/jsr/detail?id=3. The material in this IMX overview section is derived from the
JMX instrumentation specification, with a focus on the aspects most used by JBoss. A more
comprehensive discussion of JIMX and its application can be found in IMX: Managing J2EE with
Java Management Extensions written by Juha Lindfors (Sams, 2002).

JMX is a standard for managing and monitoring all varieties of software and hardware
components from Java. Further, JIMX aims to provide integration with the large number of
existing management standards. Figure 4.2, “The Relationship between the components of the
JMX architecture” shows examples of components found in a JIMX environment, and illustrates
the relationship between them as well as how they relate to the three levels of the JIMX model.
The three levels are:

 Instrumentation, which are the resources to manage

» Agents, which are the controllers of the instrumentation level objects

» Distributed services, the mechanism by which administration applications interact with
agents and their managed objects

26

http://jcp.org/en/jsr/detail?id=3

Instrumentation Level

ﬂlﬂ(—CmTlpliﬂ:nt ; Web Browser Proprietary Management
Management Application Application
Distributed l s itonne
HManagement
Protocol APIs

Services Level o—,

Connectors and Protocol Adapfors

(MBean)

(MBean) |

D Current JMX Specification
E Future JMX Specification
[[] seperate JsRs

J | SHMP
— | CTM/WBEM
‘ BAgent Seryices I
Instrumentation —y— | |
Level ‘ Resource 1 T ~~ | Resource 2 i

Figure 4.2. The Relationship between the components of the JIMX
architecture

1.1. Instrumentation Level

The instrumentation level defines the requirements for implementing JMX manageable
resources. A JMX manageable resource can be virtually anything, including applications,
service components, devices, and so on. The manageable resource exposes a Java object or
wrapper that describes its manageable features, which makes the resource instrumented so
that it can be managed by JMX-compliant applications.

The user provides the instrumentation of a given resource using one or more managed beans,
or MBeans. There are four varieties of MBean implementations: standard, dynamic, model, and
open. The differences between the various MBean types is discussed in Managed Beans or
MBeans.

The instrumentation level also specifies a notification mechanism. The purpose of the
notification mechanism is to allow MBeans to communicate changes with their environment.
This is similar to the JavaBean property change naotification mechanism, and can be used for
attribute change notifications, state change notifications, and so on.

1.2. Agent Level

27

Chapter 4. The JBoss JMX Microkernel

The agent level defines the requirements for implementing agents. Agents are responsible for
controlling and exposing the managed resources that are registered with the agent. By default,
management agents are located on the same hosts as their resources. This collocation is not a
requirement.

The agent requirements make use of the instrumentation level to define a standard
MBeanServer management agent, supporting services, and a communications connector.
JBoss provides both an html adaptor as well as an RMI adaptor.

The JMX agent can be located in the hardware that hosts the JMX manageable resources when
a Java Virtual Machine (JVM) is available. This is how the JBoss server uses the MBeanServer.
A JMX agent does not need to know which resources it will serve. IMX manageable resources
may use any JMX agent that offers the services it requires.

Managers interact with an agent's MBeans through a protocol adaptor or connector, as
described in the Section 1.3, “Distributed Services Level” in the next section. The agent does
not need to know anything about the connectors or management applications that interact with
the agent and its MBeans.

1.3. Distributed Services Level

The JMX specification notes that a complete definition of the distributed services level is beyond
the scope of the initial version of the JMX specification. This was indicated by the component
boxes with the horizontal lines in Figure 4.2, “The Relationship between the components of the
JMX architecture”. The general purpose of this level is to define the interfaces required for
implementing JIMX management applications or managers. The following points highlight the
intended functionality of the distributed services level as discussed in the current IMX
specification.

« Provide an interface for management applications to interact transparently with an agent and
its JIMX manageable resources through a connector

» Exposes a management view of a JMX agent and its MBeans by mapping their semantic
meaning into the constructs of a data-rich protocol (for example HTML or SNMP)

« Distributes management information from high-level management platforms to numerous JMX
agents

» Consolidates management information coming from numerous JMX agents into logical views
that are relevant to the end user's business operations

» Provides security
It is intended that the distributed services level components will allow for cooperative

management of networks of agents and their resources. These components can be expanded
to provide a complete management application.

28

JMX Component Overview

1.4. JIMX Component Overview

This section offers an overview of the instrumentation and agent level components. The
instrumentation level components include the following:

* MBeans (standard, dynamic, open, and model MBeans)
 Notification model elements
* MBean metadata classes

The agent level components include:

« MBean server
* Agent services

1.4.1. Managed Beans or MBeans

An MBean is a Java object that implements one of the standard MBean interfaces and follows
the associated design patterns. The MBean for a resource exposes all necessary information
and operations that a management application needs to control the resource.

The scope of the management interface of an MBean includes the following:

« Attribute values that may be accessed by name
» Operations or functions that may be invoked
 Notifications or events that may be emitted

» The constructors for the MBean's Java class

JMX defines four types of MBeans to support different instrumentation needs:

» Standard MBeans: These use a simple JavaBean style naming convention and a statically
defined management interface. This is the most common type of MBean used by JBoss.

« Dynamic MBeans: These must implement the j avax. managenent . Dynani cMBean interface,
and they expose their management interface at runtime when the component is instantiated
for the greatest flexibility. JBoss makes use of Dynamic MBeans in circumstances where the
components to be managed are not known until runtime.

« Open MBeans: These are an extension of dynamic MBeans. Open MBeans rely on basic,
self-describing, user-friendly data types for universal manageability.

* Model MBeans: These are also an extension of dynamic MBeans. Model MBeans must
implement the j avax. managenent . nodel nbean. Model MBean interface. Model MBeans
simplify the instrumentation of resources by providing default behavior. JBoss XMBeans are
an implementation of Model MBeans.

We will present an example of a Standard and a Model MBean in the section that discusses
extending JBoss with your own custom services.

29

Chapter 4. The JBoss JMX Microkernel

1.4.2. Notification Model

JMX Notifications are an extension of the Java event model. Both the MBean server and
MBeans can send notifications to provide information. The JMX specification defines the
j avax. managenment package Noti fi cati on event object, Noti fi cati onBroadcast er event
sender, and Not i fi cati onLi st ener event receiver interfaces. The specification also defines
the operations on the MBean server that allow for the registration of notification listeners.

1.4.3. MBean Metadata Classes

There is a collection of metadata classes that describe the management interface of an MBean.
Users can obtain a common metadata view of any of the four MBean types by querying the
MBean server with which the MBeans are registered. The metadata classes cover an MBean's
attributes, operations, notifications, and constructors. For each of these, the metadata includes
a name, a description, and its particular characteristics. For example, one characteristic of an
attribute is whether it is readable, writable, or both. The metadata for an operation contains the
signature of its parameter and return types.

The different types of MBeans extend the metadata classes to be able to provide additional
information as required. This common inheritance makes the standard information available
regardless of the type of MBean. A management application that knows how to access the
extended information of a particular type of MBean is able to do so.

1.4.4. MBean Server

A key component of the agent level is the managed bean server. Its functionality is exposed
through an instance of the j avax. managenent . MBeanSer ver . An MBean server is a registry for
MBeans that makes the MBean management interface available for use by management
applications. The MBean never directly exposes the MBean object itself; rather, its management
interface is exposed through metadata and operations available in the MBean server interface.
This provides a loose coupling between management applications and the MBeans they
manage.

MBeans can be instantiated and registered with the MBeanServer by the following:

* Another MBean
* The agent itself
« A remote management application (through the distributed services)

When you register an MBean, you must assign it a unique object name. The object name then
becomes the unique handle by which management applications identify the object on which to
perform management operations. The operations available on MBeans through the MBean
server include the following:

» Discovering the management interface of MBeans
« Reading and writing attribute values
* Invoking operations defined by MBeans

30

JBoss JMX Implementation Architecture

» Registering for notifications events
« Querying MBeans based on their object name or their attribute values

Protocol adaptors and connectors are required to access the MBeanServer from outside the
agent's JVM. Each adaptor provides a view via its protocol of all MBeans registered in the
MBean server the adaptor connects to. An example adaptor is an HTML adaptor that allows for
the inspection and editing of MBeans using a Web browser. As was indicated in Figure 4.2,
“The Relationship between the components of the JMX architecture”, there are no protocol
adaptors defined by the current JMX specification. Later versions of the specification will
address the need for remote access protocols in standard ways.

A connector is an interface used by management applications to provide a common API for
accessing the MBean server in a manner that is independent of the underlying communication
protocol. Each connector type provides the same remote interface over a different protocol. This
allows a remote management application to connect to an agent transparently through the
network, regardless of the protocol. The specification of the remote management interface will
be addressed in a future version of the JMX specification.

Adaptors and connectors make all MBean server operations available to a remote management
application. For an agent to be manageable from outside of its JVM, it must include at least one
protocol adaptor or connector. JBoss currently includes a custom HTML adaptor implementation
and a custom JBoss RMI adaptor.

1.4.5. Agent Services

The JMX agent services are objects that support standard operations on the MBeans registered
in the MBean server. The inclusion of supporting management services helps you build more
powerful management solutions. Agent services are often themselves MBeans, which allow the
agent and their functionality to be controlled through the MBean server. The JMX specification
defines the following agent services:

e A dynamic class loading MLet (management applet) service: This allows for the retrieval
and instantiation of new classes and native libraries from an arbitrary network location.

* Monitor services: These observe an MBean attribute's numerical or string value, and can
notify other objects of several types of changes in the target.

« Timer services: These provide a scheduling mechanism based on a one-time alarm-clock
notification or on a repeated, periodic notification.

* The relation service: This service defines associations between MBeans and enforces
consistency on the relationships.

Any JMX-compliant implementation will provide all of these agent services. However, JBoss
does not rely on any of these standard agent services.

2. JBoss JMX Implementation Architecture

31

Chapter 4. The JBoss JMX Microkernel

2.1. The JBoss ClassLoader Architecture

JBoss employs a class loading architecture that facilitates sharing of classes across deployment
units and hot deployment of services and applications. Before discussing the JBoss specific
class loading model, we need to understand the nature of Java's type system and how class
loaders fit in.

2.2. Class Loading and Types in Java

Class loading is a fundamental part of all server architectures. Arbitrary services and their
supporting classes must be loaded into the server framework. This can be problematic due to
the strongly typed nature of Java. Most developers know that the type of a class in Java is a
function of the fully qualified name of the class. However the type is also a function of the
java.l ang. d assLoader that is used to define that class. This additional qualification of type is
necessary to ensure that environments in which classes may be loaded from arbitrary locations
would be type-safe.

However, in a dynamic environment like an application server, and especially JBoss with its
support for hot deployment are that class cast exceptions, linkage errors and illegal access
errors can show up in ways not seen in more static class loading contexts. Let's take a look at
the meaning of each of these exceptions and how they can happen.

2.2.1. ClassCastExceptions - I'm Not Your Type

Ajava. | ang. d assCast Except i on results whenever an attempt is made to cast an instance to
an incompatible type. A simple example is trying to obtain a St ri ng from a Li st into which a
URL was placed:

Arraylist array = new ArraylList();
array.add(new URL("file:/tnp"));
String url = (String) array.get(0);

java. | ang. C assCast Excepti on: java. net. URL
at org.jboss. book. j nx. ex0. ExCCEa. mai n(ExX1CCE. j ava: 16)

The d assCast Except i on tells you that the attempt to cast the array element to a St ri ng failed
because the actual type was URL. This trivial case is not what we are interested in however.
Consider the case of a JAR being loaded by different class loaders. Although the classes
loaded through each class loader are identical in terms of the bytecode, they are completely
different types as viewed by the Java type system. An example of this is illustrated by the code
shown in Example 4.1, “The EXCCEc class used to demonstrate ClassCastException due to
duplicate class loaders”.

package org.j boss. book. j nx. ex0;

import java.io.File;
i nport java. net. URL;
i nport java. net.URLC assLoader;

32

Class Loading and Types in Java

i mport java.lang.reflect. Mt hod;
i nport org.apache. | og4j. Logger;

i mport org.jboss.util.ChapterExRepository;
i mport org.jboss.util.Debug;

/**
* An exanpl e of a O assCast Exception that
* results from cl asses | oaded t hrough
* different class |oaders.
* @ut hor Scott. Stark@ boss. org
* @ersion $Revision: 1.1 $
*/
public class ExCCEc
{

public static void main(String[] args) throws Exception

{
Chapt er ExReposi tory.init (ExCCEc. cl ass);

String chapDir = System get Property("j2eechapter.dir");
Logger ucl OLog = Logger. get Logger (" UCLO");
File jarO = new Fil e(chapDir+"/j0.jar");
ucl OLog.info("jar0 path: "+jar0.toString());
URL[] cpO = {jar0.toURL()};
URLC assLoader ucl 0 = new URLCl assLoader (cp0);
Thr ead. current Thread() . set Cont ext Cl assLoader (ucl 0) ;
Cl ass obj d ass = ucl 0.1 oadd ass("org.j boss. book. j nx. ex0. ExCbj ") ;
StringBuf fer buffer = new
StringBuffer("ExCbj Info");
Debug. di spl ayd assl nf o(obj G ass, buffer, false);
ucl OLog. i nfo(buffer.toString());
hj ect val ue = obj C ass. new nst ance();

File jarl = new File(chapDir+"/j0.jar");

Logger ucl 1Log = Logger. get Logger (" UCL1");

ucl 1Log.info("jarl path: "+jarl.toString());

URL[] cpl = {jarl.toURL()};

URLC assLoader ucl1l = new URLC assLoader (cpl);

Thr ead. current Thread() . set Cont ext C assLoader (ucl 1);
Cl ass ctxC ass2 = ucl 1. | oadd ass("org. j boss. book. j mx. ex0. ExCt x") ;
buf fer. setlLengt h(0);

buf f er. append("ExCt x I nfo");

Debug. di spl ayd assl nfo(ct xCl ass2, buffer, false);
ucl 1Log. i nfo(buffer.toString());

hj ect ctx2 = ctxC ass2. new nstance();

try {
Class[] types = {bject.cl ass};
Met hod useVal ue =
ct xCl ass2. get Met hod(" useVal ue", types);
oject[] margs = {val ue};
useVal ue. i nvoke(ctx2, margs);
} catch(Exception e) {
ucl 1Log. error("Fail ed to i nvoke ExCt x. useVal ue", e);
throw e;

33

Chapter 4. The JBoss JMX Microkernel

Example 4.1. The ExCCEc class used to demonstrate ClassCastException
due to duplicate class loaders

package org.j boss. book. j nx. ex0;

i nport java.io.| CExcepti on;
i mport org.apache. | og4j. Logger;
i mport org.jboss.util.Debug;

/**
* A cl asses used to denonstrate various cl ass
* | oadi ng i ssues
* @ut hor Scott.Stark@ boss. org
* @ersion $Revision: 1.1 $
*/
public class ExCtx

{
ExCbj val ue;

public ExCtx()
throws | OException

{
val ue = new Exbj () ;
Logger | og = Logger. get Logger (ExCt x. cl ass);
StringBuffer buffer = new StringBuffer("ctor. ExQoj");
Debug. di spl ayd assl nf o(val ue. get Cl ass(), buffer, false);
| og.info(buffer.toString());
ExCbj 2 obj 2 = val ue.ivar;
buf fer. setLengt h(0);
buf fer = new StringBuffer("ctor.ExCbj.ivar");
Debug. di spl ayd assl nf o(obj 2. get C ass(), buffer, false);
| og.info(buffer.toString());

publ i c Object getVal ue()

return val ue;

public void useVal ue(Obj ect obj)
t hrows Exception

Logger | og = Logger. get Logger (ExCt x. cl ass);
StringBuffer buffer = new

StringBuffer("useVal ue2.arg cl ass");
Debug. di spl ayd assl nfo(obj.getd ass(), buffer, false);
| og. i nfo(buffer.toString());

34

Class Loading and Types in Java

buf f er. set Lengt h(0) ;
buf f er. append(" useVal ue2. ExCbj cl ass");
Debug. di spl ayd assl nf o(ExQbj . cl ass, buffer, false);
| og.i nfo(buffer.toString());
ExCbj ex = (ExObj) obj;
}

voi d pkgUseVal ue(oj ect obj)
t hrows Exception

{
Logger | og = Logger. get Logger (ExCt x. cl ass) ;
| og.info("In pkgUseVal ue");

package org.j boss. book. j nx. ex0;

i nport java.io.Serializable;

/**
* @ut hor Scott. Stark@ boss. org
* @ersion $Revision: 1.1 $
*/
public class Exnj
i mpl ements Serializable

{
public ExCbj2 ivar = new ExCbj 2();

}

package org.j boss. book. j nx. ex0;

i mport java.io.Serializable;

/**

* @ut hor Scott.Stark@ boss. org
* @ersion $Revision: 1.1 $
*/
public class ExQnoj 2
i mpl ements Serializable

{
}

Example 4.2. The ExCtx, ExObj, and ExODbj2 classes used by the examples

The ExCCEc. mai n method uses reflection to isolate the classes that are being loaded by the
class loaders ucl 0 and ucl 1 from the application class loader. Both are setup to load classes
from the out put/j nx/j 0. j ar, the contents of which are:

[exanpl es]$ jar -tf output/jnx/jO.jar

35

Chapter 4. The JBoss JMX Microkernel

or g/ j boss/ book/j mx/ ex0/ EXCt x. cl ass
or g/ j boss/ book/j mx/ ex0/ ExChbj . cl ass
or g/ j boss/ book/j nx/ ex0/ Ex(hj 2. cl ass

We will run an example that demonstrates how a class cast exception can occur and then look
at the specific issue with the example. See Appendix A, Book Example Installation for
instructions on installing the examples accompanying the book, and then run the example from
within the examples directory using the following command:

[exanmpl es] $ ant - Dchap=j mx - Dex=0c run-exanpl e

[java] java.lang.reflect.|nvocationTarget Exception

[java] at sun.refl ect. NativeMet hodAccessor | npl.invokeO(Native
Met hod)
[java] at
sun. refl ect. Nati veMet hodAccessor | npl . i nvoke(Nat i veMet hodAccessor | npl . j ava: 39)
[java] at
sun. refl ect. Del egati ngMet hodAccessor | npl . i nvoke(Del egat i ngMet hodAccessor | npl
. java: 25)
[java] at java.l ang.refl ect. Met hod. i nvoke(Met hod. j ava: 585)
[java] at org.jboss. book. j nx. ex0. ExXCCEc. mai n(ExCCEc. j ava: 58)

[java] Caused by: java.l ang.C assCast Excepti on:
org. j boss. book. j nx. ex0. ExQbj

[java] at org.jboss. book.jm. ex0. EXCt x. useVal ue(EXCt x. j ava: 44)
[javal ... 5 nore

Only the exception is shown here. The full output can be found in the | ogs/j nx- ex0c. | og file.
At line 55 of ExCCEc. j ava we are invoking ExcCCECt x. useVal ue(Obj ect) on the instance
loaded and created in lines 37-48 using ucl 1. The ExChj passed in is the one loaded and
created in lines 25-35 via ucl 0. The exception results when the ExCt x. useVal ue code attempts
to cast the argument passed in to a ExQbj . To understand why this fails consider the debugging
output from the j mx- ex0Oc. | og file shown in Example 4.3, “The jmx-ex0c.log debugging output
for the ExObj classes seen”.

[1 NFO UCLO] ExObj Info
org. j boss. book. j nx. ex0. ExQoj (f 8968f). Cl assLoader =j ava. net . URLCl assLoader @611a7
..java. net. URLC assLoader @611a7
....file:/Users/orb/proj/jboss/jboss-docs/jbossas/j2eel/ exanpl es/ out put/jnx/jO0.jar
++++CodeSour ce:
(file:/Users/orb/proj/jboss/jboss-docs/jbossas/j2ee/ exanpl es/ out put/

jmx/j0.jar <no signer certificates>)
| mpl ement ed | nterfaces:
++i nterface java.io. Serializabl e(41b571)
++++Cl assLoader: nul |
++++Nul | CodeSour ce
[I NFO ExCt x] useVal ue2. ExQoj cl ass
org.j boss. book. j nx. ex0. Ex(Qbj (bc8ele) . d assLoader =j ava. net . URLCl assLoader @bd8ea
..java. net. URLC assLoader @bd8ea
....file:/Users/orb/proj/jboss/jboss-docs/jbossas/j2eel/ exanpl es/ out put/jnx/jO0.jar

36

Class Loading and Types in Java

++++CodeSour ce:

(file:/Users/orb/proj/jboss/jboss-docs/jbossas/j2ee/ exanpl es/ out put/
jmx/j0.jar <no signer certificates>)

| mpl ement ed | nterfaces:

++interface java.io. Serializabl e(41b571)

++++C assLoader: nul |

++++Nul | CodeSour ce

Example 4.3. The jmx-ex0c.log debugging output for the ExObj classes
seen

The first output prefixed with [| NFO, UCLO] shows that the ExQbj class loaded at line

ExCCEc. j ava: 31 has a hash code of f 8968f and an associated URLCl assLoader instance with
a hash code of 2611a7, which corresponds to uclO. This is the class used to create the instance
passed to the ExCt x. useVal ue method. The second output prefixed with [| NFO, ExCt x] shows
that the ExQbj class as seen in the context of the ExCt x. useVval ue method has a hash code of
bc8ele and a URLO assLoader instance with an associated hash code of 6bd8ea, which
corresponds to ucl 1. So even though the Ex(bj classes are the same in terms of actual
bytecode since it comes from the same j 0. j ar, the classes are different as seen by both the
ExObj class hash codes, and the associated URLC assLoader instances. Hence, attempting to
cast an instance of ExObj from one scope to the other results in the d assCast Except i on.

This type of error is common when redeploying an application to which other applications are
holding references to classes from the redeployed application. For example, a standalone WAR
accessing an EJB. If you are redeploying an application, all dependent applications must flush
their class references. Typically this requires that the dependent applications themselves be
redeployed.

An alternate means of allowing independent deployments to interact in the presence of
redeployment would be to isolate the deployments by configuring the EJB layer to use the
standard call-by-value semantics rather than the call-by-reference JBoss will default to for
components collocated in the same VM. An example of how to enable call-by-value semantics
is presented in Chapter 15, EJBs on JBoss

2.2.2. lllegalAccessException - Doing what you should not

Ajava.lang. ||| egal AccessExcepti on is thrown when one attempts to access a method or
member that visibility qualifiers do not allow. Typical examples are attempting to access private
or protected methods or instance variables. Another common example is accessing package
protected methods or members from a class that appears to be in the correct package, but is
really not due to caller and callee classes being loaded by different class loaders. An example
of this is illustrated by the code shown in Example 4.4, “The ExIAEd class used to demonstrate
lllegalAccessException due to duplicate class loaders”.

package org.j boss. book. j nx. ex0;

37

Chapter 4. The JBoss JMX Microkernel

import java.io.File;
i mport java.net. URL;
i nport java. net.URLC assLoader;
i mport java.lang.reflect. Mt hod;
i mport org.apache. | og4j. Logger;
i mport org.jboss.util.Chapter ExRepository;
i mport org.jboss.util.Debug;
/**
* An exanpl e of 111 egal AccessExcepti ons due to

* classes | oaded by two cl ass | oaders.
* @ut hor Scott.Stark@ boss. org
* @ersion $Revision: 1.1 $

*/

public class Exl AEd

{

public static void main(String[] args) throws Exception

{

Chapt er ExReposi tory. i nit (Exl AEd. cl ass);

String chapDir = System get Property("j2eechapter.dir");
Logger ucl OLog = Logger. get Logger (" UCLO");

File jarO = new File(chapDir+"/j0.jar");

ucl OLog.info("jarO path: "+jar0.toString());

URL[] cpO = {jar0.toURL()};

URLC assLoader ucl 0 = new URLC assLoader (cp0);

Thr ead. current Thread() . set Cont ext G assLoader (ucl 0) ;

StringBuffer buffer = new

StringBuffer("Exl AEd | nfo");
Debug. di spl ayd assl nf o(Exl AEd. cl ass, buffer, false);
ucl OLog. i nfo(buffer.toString());

Cl ass ctxd assl = ucl 0.1 oadd ass("org.j boss. book. j mx. ex0. ExCt x") ;
buf f er. set Lengt h(0) ;

buf f er. append("ExCtx Info");

Debug. di spl ayd assl nf o(ct xCl ass1, buffer, false);

ucl OLog. i nfo(buffer.toString());

hj ect ctx0 = ctxCl assl. new nstance();

try {
Cl ass[] types = {bj ect.class};
Met hod useVal ue =
ct xCl assl. get Decl ar edMet hod(" pkgUseVal ue", types);
oject[] margs = {null};
useVal ue. i nvoke(ct x0, nargs);
} catch(Exception e) {
ucl OLog. error("Fail ed to i nvoke ExCtx. pkgUseVal ue", e);

}

38

Class Loading and Types in Java

Example 4.4. The EXIAEd class used to demonstrate
lllegalAccessException due to duplicate class loaders

The ExI AEd. mai n method uses reflection to load the ExCt x class via the ucl 0 class loader
while the ExI EAd class was loaded by the application class loader. We will run this example to
demonstrate how the | | | egal AccessExcepti on can occur and then look at the specific issue
with the example. Run the example using the following command:

[exanpl es]$ ant - Dchap=j mx - Dex=0d run-exanpl e
Bui I dfile: build. xm

[java] java.lang.|l|egal AccessException: C ass org.jboss. book.jm. ex0. Exl AEd
can not access a nmenber of class org.]jboss. book.j mx.ex0. ExCtx with
nodi fiers ""

[java] at sun.reflect. Refl ecti on. ensureMenber Access(Ref | ecti on. java: 65)
[java]l at java.lang.refl ect.Method. i nvoke(Met hod. j ava: 578)
[java]l at org.j boss. book. j nx. ex0. Exl AEd. mai n(Ex| AEd. j ava: 48)

The truncated output shown here illustrates the 1 | | egal AccessExcept i on. The full output can
be found in the | ogs/ j mx- ex0d. | og file. At line 48 of Ex| AEd. j ava the

ExCt x. pkgUseVal ue(Obj ect) method is invoked via reflection. The pkgUseVal ue method has
package protected access and even though both the invoking class ExI AEd and the ExCt x class
whose method is being invoked reside in the or g. j boss. book. j nx. ex0 package, the
invocation is seen to be invalid due to the fact that the two classes are loaded by different class
loaders. This can be seen by looking at the debugging output from the j nx- ex0d. I og file.

[I NFO, UCLO] ExI AEd Info
org. j boss. book. j mx. ex0. ExI AEd(7808b9) . G assLoader =sun. m sc. Launcher $AppCl assLoader @9c85c
..sun. m sc. Launcher $AppC assLoader @9c85c

[NFO, UCLO] ExCtx Info
org. j boss. book. j mx. ex0. ExCt x(64c34e) . Cl assLoader =j ava. net . URLCl assLoader @9c85c
..java. net. URLC assLoader @d88a

The EXIAEd class is seen to have been loaded via the default application class loader instance
sun. m sc. Launcher $Appd assLoader @9c85c, while the ExCt x class was loaded by the

j ava. net . URLO assLoader @9c85c instance. Because the classes are loaded by different
class loaders, access to the package protected method is seen to be a security violation. So,
not only is type a function of both the fully qualified class nhame and class loader, the package
scope is as well.

An example of how this can happen in practice is to include the same classes in two different
SAR deployments. If classes in the deployment have a package protected relationship, users of
the SAR service may end up loading one class from SAR class loading at one point, and then
load another class from the second SAR at a later time. If the two classes in question have a

39

Chapter 4. The JBoss JMX Microkernel

protected access relationship an | | | egal AccessError will result. The solution is to either
include the classes in a separate jar that is referenced by the SARs, or to combine the SARs
into a single deployment. This can either be a single SAR, or an EAR that includes both SARs.

2.2.3. LinkageErrors - Making Sure You Are Who You Say You Are

Loading constraints validate type expectations in the context of class loader scopes to ensure
that a class X is consistently the same class when multiple class loaders are involved. This is
important because Java allows for user defined class loaders. Linkage errors are essentially an
extension of the class cast exception that is enforced by the VM when classes are loaded and
used.

To understand what loading constraints are and how they ensure type-safety we will first
introduce the nomenclature of the Liang and Bracha paper along with an example from this
paper. There are two type of class loaders, initiating and defining. An initiating class loader is
one that a d assLoader . | oadC ass method has been invoked on to initiate the loading of the
named class. A defining class loader is the loader that calls one of the

O assLoader . def i neCl ass methods to convert the class byte code into a O ass instance. The
most complete expression of a class is given by <C, Ld>"", where Cis the fully qualified class
name, Ld is the defining class loader, and Li is the initiating class loader. In a context where the
initiating class loader is not important the type may be represented by <C, Ld>, while when the
defining class loader is not important, the type may be represented by ¢ . In the latter case,
there is still a defining class loader, it's just not important what the identity of the defining class
loader is. Also, a type is completely defined by <C, Ld>. The only time the initiating loader is
relevant is when a loading constraint is being validated. Now consider the classes shown in
Example 4.5, “Classes demonstrating the need for loading constraints”.

class <C, L1> {
void f() {
<Spoof ed, L1>x = <Del egated, L2>-?
x.secret_value = 1; // Should not be all owed

cl ass <Del egat ed, L2> {
static <Spoofed, L2>-% g() {...}
}

cl ass <Spoofed, L1> {
public int secret_val ue;

}

cl ass <Spoof ed, L2> {
private int secret_val ue;

}

40

Class Loading and Types in Java

Example 4.5. Classes demonstrating the need for loading constraints

The class Cis defined by L1 and so L1 is used to initiate loading of the classes Spoof ed and

Del egat ed referenced in the C. f () method. The Spoof ed class is defined by L1, but Del egat ed
is defined by L2 because L1 delegates to L2. Since Del egat ed is defined by L2, L2 will be used
to initiate loading of Spoof ed in the context of the Del egat ed. g() method. In this example both
L1 and L2 define different versions of Spoof ed as indicated by the two versions shown at the
end of Example 4.5, “Classes demonstrating the need for loading constraints”. Since C. f ()
believes x is an instance of <Spoof ed, L1> it is able to access the private field secret _val ue of
<Spoof ed, L2> returned by Del egat ed. g() due to the 1.1 and earlier Java VM's failure to take
into account that a class type is determined by both the fully qualified name of the class and the
defining class loader.

Java addresses this problem by generating loader constraints to validate type consistency when
the types being used are coming from different defining class loaders. For the Example 4.5,
“Classes demonstrating the need for loading constraints” example, the VM generates a
constraint Spoof ed-*=Spoof ed"? when the first line of method C. f () is verified to indicate that
the type Spoof ed must be the same regardless of whether the load of Spoof ed is initiated by L1
or L2. It does not matter if L1 or L2, or even some other class loader defines Spoof ed. All that
matters is that there is only one Spoof ed class defined regardless of whether L1 or L2 was used
to initiate the loading. If L1 or L2 have already defined separate versions of Spoof ed when this
check is made a Li nkageEr r or will be generated immediately. Otherwise, the constraint will be
recorded and when Del egat ed. g() is executed, any attempt to load a duplicate version of
Spoof ed will result in a Li nkageEr r or .

Now let's take a look at how a Li nkageEr r or can occur with a concrete example. Example 4.6,
“A concrete example of a LinkageError” gives the example main class along with the custom
class loader used.

package org.j boss. book. j nx. ex0;
import java.io.File;
i mport java.net.URL

i nport org.apache. | og4j. Logger;
i nport org.jboss.util.Chapter ExRepository;
i mport org.jboss.util.Debug

/**

* An exanpl e of a LinkageError due to classes being defined by nore
* than one class | oader in a non-standard cl ass | oadi ng envi ronmnent.
*
* @ut hor Scott. Stark@ boss. orgn
* @ersion $Revision: 1.1 $
*/

public class ExLE

{

41

Chapter 4. The JBoss JMX Microkernel

public static void main(String[] args)
t hrows Exception

{
Chapt er ExReposi tory.init(EXLE. cl ass);

String chapDir Syst em get Property("j 2eechapter.dir");

Logger ucl OLog = Logger. get Logger (" UCLO");

File jarO = new Fil e(chapDir+"/j0.jar");

ucl OLog.info("jar0 path: "+jar0.toString());

URL[] cpO = {jar0.toURL()};

ExOURLCl assLoader ucl 0 = new ExOURLC assLoader (cpO);

Thr ead. current Thread() . set Cont ext C assLoader (ucl 0) ;

Class ctxd assl = ucl 0.1 oadd ass("org.jboss. book. j mx. ex0. ExCt x") ;
Cl ass obj 2Cl ass1 = ucl 0.1 oadCl ass("org.j boss. book. j mx. ex0. ExChj 2") ;
StringBuffer buffer = new StringBuffer("ExCtx Info");

Debug. di spl ayd assl nfo(ct xCl ass1, buffer, false);

ucl OLog. i nfo(buffer.toString());

buf f er. set Lengt h(0) ;

buf f er. append(" ExQbj 2 | nfo, UCLO");

Debug. di spl ayd assl nf o(obj 2C ass1, buffer, false);

ucl OLog. i nfo(buffer.toString());

File jarl = new File(chapDir+"/j1l.jar");

Logger ucl 1Log = Logger . get Logger (" UCL1");

ucl 1Log. i nfo("jarl path: "+jarl.toString());

URL[] cpl = {jarl.toURL()};

ExOURLCl assLoader ucl1l = new ExOURLC asslLoader (cpl);

Cl ass obj 2Cl ass2 = ucl 1.1 oadC ass("org. j boss. book. j mx. ex0. ExCbj 2") ;
buf f er. set Lengt h(0) ;

buf f er. append("ExQObj 2 | nfo, UCL1");

Debug. di spl ayd assl nf o(obj 2Cl ass2, buffer, false);

ucl 1Log. i nfo(buffer.toString());

ucl 0. set Del egat e(ucl 1) ;

try {

ucl OLog. i nfo("Try ExCt x. new nstance()");

hj ect ctx0 = ctxC assl. new nstance();

ucl OLog. i nfo("ExCt x. ctor succeeded, ctx0: "+ctx0);
} catch(Throwable e) {

ucl OLog. error ("ExCt x.ctor failed", e);

}

package org.j boss. book. j nx. ex0;

i mport java.net.URLC assLoader;
i mport java.net. URL;

i mport org. apache. | og4j . Logger;

/**

* A customcl ass | oader that overrides the standard parent del egation
* model

42

Class Loading and Types in Java

*

* @ut hor Scott.Stark@ boss. org
* @ersion $Revision: 1.1 $

*/
public class ExOURLC assLoader extends URLC assLoader
{
private static Logger |og = Logger. getLogger (ExXOURLCl assLoader. cl ass);
private ExOURLCl assLoader del egate;
publ i c ExOURLC assLoader (URL[] urls)
{
super (url s);
}
voi d set Del egat e(EXOURLCI assLoader del egat e)
{
thi s. del egate = del egat e;
}
prot ected synchroni zed d ass | oadCl ass(String nane, bool ean resol ve)
t hrows Cl assNot FoundExcepti on
{
Class clazz = nul |;
if (delegate !'= null) {
| og. debug(| nt eger .t oHexStri ng(hashCode()) +
"; Asking del egate to | oadd ass: " + nane);
clazz = del egat e. | oadCl ass(nane, resolve);
| og. debug(| nt eger .t oHexStri ng(hashCode()) +
Del egate returned: "+clazz);
} else {
| og. debug(| nt eger .t oHexStri ng(hashCode()) +
"; Asking super to | oadd ass: "+nane);
clazz = super.| oadd ass(nane, resolve);
| og. debug(| nt eger.t oHexSt ri ng(hashCode()) +
"; Super returned: "+clazz);
}
return cl azz;
}
protected d ass findd ass(String nane)
t hrows C assNot FoundExcepti on
{
Class clazz = nul | ;
| og. debug(| nt eger .t oHexStri ng(hashCode()) +
"; Asking super to findd ass: "+nane);
clazz = super.findd ass(nane);
| og. debug(| nt eger .t oHexStri ng(hashCode()) +
"; Super returned: "+clazz);
return clazz;
}
}

Example 4.6. A concrete example of a LinkageError

43

Chapter 4. The JBoss JMX Microkernel

The key component in this example is the URLC assLoader subclass ExXOURLC assLoader . This
class loader implementation overrides the default parent delegation model to allow the ucl 0 and
ucl 1 instances to both load the ExQbj 2 class and then setup a delegation relationship from

ucl 0 to ucl 1. At lines 30 and 31. the ucl OEXOURLC assLoader is used to load the ExCt x and
ExObj 2 classes. At line 45 of EXLE. mai n the ucl 1ExOURLO assLoader is used to load the

ExQbj 2 class again. At this point both the ucl 0 and ucl 1 class loaders have defined the ExCbj 2
class. A delegation relationship from ucl 0 to ucl 1 is then setup at line 51 via the

ucl 0. set Del egat e(ucl 1) method call. Finally, at line 54 of ExLE. mai n an instance of ExCt x is
created using the class loaded via ucl 0. The ExCt x class is the same as presented in

Example 4.4, “The ExIAEd class used to demonstrate lllegalAccessException due to duplicate
class loaders”, and the constructor was:

public ExCtx()
throws | CException

{
val ue = new Exoj ();
Logger | og = Logger. get Logger (ExCt x. cl ass);
StringBuffer buffer = new StringBuffer("ctor.ExCbj");
Debug. di spl ayd assl nf o(val ue. get Cl ass(), buffer, false);
| og.i nfo(buffer.toString());
ExCbj 2 obj 2 = val ue.ivar;
buf f er. set Lengt h(0) ;
buffer = new StringBuffer("ctor.ExCbj.ivar");
Debug. di spl ayd assl nf o(obj 2. get d ass(), buffer, false);
| og. i nfo(buffer.toString());

}

Now, since the ExCt x class was defined by the ucl 0 class loader, and at the time the ExCt x
constructor is executed, ucl 0 delegates to ucl 1, line 24 of the ExCt x constructor involves the
following expression which has been rewritten in terms of the complete type expressions:

<ExODj2,uclo>"°? opj2 = <ExObj,ucl1>"“ value * ivar

This generates a loading constraint of ExQbj 210 = Exapj 2"°' ! since the ExObj 2 type must be
consistent across the ucl 0 and ucl 1 class loader instances. Because we have loaded ExChj 2
using both ucl 0 and ucl 1 prior to setting up the delegation relationship, the constraint will be
violated and should generate a Li nkageEr r or when run. Run the example using the following
command:

[exanpl es] $ ant -Dchap=j nx - Dex=0e run-exanpl e
Bui I dfile: build.xm

[java] java.lang.LinkageError: |oader constraints violated when |inking
or g/ j boss/ book/j nx/ ex0/ ExCbj 2 cl ass

[java] at org.jboss. book. j nx. ex0. ExCt x. <i ni t >(EXCt x. j ava: 24)

[java]l at sun.reflect. NativeConstructorAccessor | npl.new nstanceO(Nati ve

Met hod)

[java]l at

sun. refl ect. Nati veConstruct or Accessor | npl . newl nst ance(Nat i veConst r uct or Accessor
I mpl . j ava: 39)

[java]l at

44

Class Loading and Types in Java

sun. ref |l ect. Del egati ngConst ruct or Accessor | npl . newl nst ance(Del egat i ngConst r uct or
Accessor | npl . j ava: 27)

[java] at

java.l ang. refl ect. Constructor. new nst ance(Const ructor.java: 494)
[java] at java.l ang. Cl ass. new nst ance0(d ass. j ava: 350)
[java] at java.l ang. Cl ass. new nst ance(d ass. j ava: 303)
[java] at org.jboss. book. j nx. ex0. EXLE. mai n(EXLE. j ava: 53)

As expected, a LinkageError is thrown while validating the loader constraints required by line 24
of the ExCt x constructor.

2.2.3.1. Debugging Class Loading Issues

Debugging class loading issues comes down to finding out where a class was loaded from. A
useful tool for this is the code snippet shown in Example 4.7, “Obtaining debugging information
for a Class” taken from the org.jboss.util.Debug class of the book examples.

Class clazz =...;
StringBuffer results = new StringBuffer();

Cl assLoader cl = clazz. getd assLoader ();
resul ts. append("\n" + clazz.getNanme() + "(" +
I nteger.toHexString(clazz. hashCode()) + ").d assLoader=" +
cl);
Cl assLoader parent = cl;

while (parent !'= null) {
resul ts. append("\n.."+parent);
URL[] urls = getC assLoader URLs(parent);

int length = urls !'= null ? urls.length : O;
for(int u=0; u<Ilength; u ++) {
resul ts. append("\n...."+urls[u]);
}
i f (showParent d assLoaders == fal se) {
br eak;
}
if (parent !'= null) {
parent = parent.getParent();
}

}

CodeSour ce cl azzCS = cl azz. get Prot ecti onDonai n() . get CodeSour ce() ;
if (clazzCs = null) {

resul ts. append("\ n++++CodeSour ce: "+cl azzCS);
} else {

resul ts. append("\ n++++Nul | CodeSource");

}

Example 4.7. Obtaining debugging information for a Class

45

Chapter 4. The JBoss JMX Microkernel

Firstly, every Class object knows its defining C assLoader and this is available via the

get C assLoader () method. This defines the scope in which the d ass type is known as we
have just seen in the previous sections on class cast exceptions, illegal access exceptions and
linkage errors. From the O assLoader you can view the hierarchy of class loaders that make up
the parent delegation chain. If the class loader is a URLO assLoader you can also see the URLs
used for class and resource loading.

The defining d assLoader of a d ass cannot tell you from what location that C ass was loaded.
To determine this you must obtain the j ava. security. Prot ecti onDomai n and then the

java. security. CodeSour ce. Itis the CodeSour ce that has the URL p location from which the
class originated. Note that not every d ass has a CoPdeSour ce. If a class is loaded by the
bootstrap class loader then its CodeSour ce will be null. This will be the case for all classes in the
java.* andj avax. * packages, for example.

Beyond that it may be useful to view the details of classes being loaded into the JBoss server.
You can enable verbose logging of the JBoss class loading layer using a Log4j configuration
fragment like that shown in Example 4.8, “An example log4j.xml configuration fragment for
enabling verbose class loading logging”.

<appender nane="UCL" cl ass="org. apache. | og4j . Fi | eAppender" >
<param nanme="Fi | e" val ue="${j boss. server. hone.dir}/log/ucl.log"/>
<par am nanme="Append" val ue="fal se"/>
<l ayout cl ass="org. apache. | og4j . PatternLayout">
<par am nane="Conver si onPattern" value="[%,6 %{1},%] %dm"/>
</l ayout >
</ appender >

<cat egory nane="org.j boss. nx. | oadi ng" additivity="fal se">
<priority val ue="TRACE" cl ass="org.j boss. | oggi ng. XLevel "/ >
<appender -ref ref="UCL"/>

</ cat egory>

Example 4.8. An example log4j.xml configuration fragment for enabling
verbose class loading logging

This places the output from the classes in the or g. j boss. nx. | oadi ng package into the

ucl . I og file of the server configurations log directory. Although it may not be meaningful if you
have not looked at the class loading code, it is vital information needed for submitting bug
reports or questions regarding class loading problems.

2.2.4. Inside the JBoss Class Loading Architecture

Now that we have the role of class loaders in the Java type system defined, let's take a look at
the JBoss class loading architecture. Figure 4.3, “The core JBoss class loading components”.

46

Class Loading and Types in Java

URLClassl oade UnifiedLoaderRepository3

UnifiedClassLoade

HeirarchicalLoaderRepos

Figure 4.3. The core JBoss class loading components

The central component is the or g. j boss. nx. | oadi ng. Uni fi edC assLoader 3 (UCL) class
loader. This is an extension of the standard j ava. net . URLO assLoader that overrides the
standard parent delegation model to use a shared repository of classes and resources. This
shared repository is the or g. j boss. nx. | oadi ng. Uni fi edLoader Reposi t ory3. Every UCL is
associated with a single Uni fi edLoader Reposi t ory3, and a Uni fi edLoader Reposi tory3
typically has many UCLs. A UCL may have multiple URLs associated with it for class and
resource loading. Deployers use the top-level deployment's UCL as a shared class loader and
all deployment archives are assigned to this class loader. We will talk about the JBoss
deployers and their interaction with the class loading system in more detail later in Section 4.2,
“JBoss MBean Services”.

When a UCL is asked to load a class, it first looks to the repository cache it is associated with to
see if the class has already been loaded. Only if the class does not exist in the repository will it
be loaded into the repository by the UCL. By default, there is a single

Uni fi edLoader Reposi t or y3 shared across all UCL instances. This means the UCLs form a
single flat class loader namespace. The complete sequence of steps that occur when a

Unfi edd assLoader 3.1 oadCl ass(String, bool ean) method is called is:

1. Check the Uni f i edLoader Reposi t or y3 classes cache associated with the
Uni fi edd assLoader 3. If the class is found in the cache it is returned.

2. Else, ask the Unfi edC assLoader 3 if it can load the class. This is essentially a call to the
superclass URLC assLoader. | oadd ass(String, bool ean) method to see if the class is
among the URLs associated with the class loader, or visible to the parent class loader. If the
class is found it is placed into the repository classes cache and returned.

3. Else, the repository is queried for all UCLs that are capable of providing the class based on
the repository package name to UCL map. When a UCL is added to a repository an

47

Chapter 4. The JBoss JMX Microkernel

association between the package names available in the URLs associated with the UCL is
made, and a mapping from package names to the UCLs with classes in the package is
updated. This allows for a quick determination of which UCLs are capable of loading the
class. The UCLs are then queried for the requested class in the order in which the UCLs
were added to the repository. If a UCL is found that can load the class it is returned, else a
j ava. | ang. C assNot FoundExcept i on is thrown.

2.2.4.1. Viewing Classes in the Loader Repository

Another useful source of information on classes is the UnifiedLoaderRepository itself. This is an
MBean that contains operations to display class and package information. The default
repository is located under a standard JMX name of

JM npl enent at i on: nanme=Def aul t, ser vi ce=Loader Reposi t ory, and its MBean can be
accessed via the JMX console by following its link from the front page. The JMX console view of
this MBean is shown in Figure 4.4, “The default class LoaderRepository MBean view in the JMX
console”.

o k.
JB0OSsS IMX MBean View
°0
MBean Name: Domain Name: IMImplementation
service: LoaderRepository
name: Default

MBean Java Class: org.jboss.mx.loading.Unified LoaderRepository3

Back to Agent View Refresh MBean View

MBean description:

Management Bean.

List of MBean attributes:

CacheSize int R 5806

file:/home/vrenish/jboss-eap-
file:/fhome/vrenish/jboss-eap-
ﬂiE.',-’homefwenishfjbos&eap]

Figure 4.4. The default class LoaderRepository MBean view in the JMX
console

Two useful operations you will find here are get PackageC assLoaders(String) and
di spl ayC assl nf o(String). The get Packaged assLoader s operation returns a set of class

48

Class Loading and Types in Java

loaders that have been indexed to contain classes or resources for the given package name.
The package name must have a trailing period. If you type in the package name
org. j boss. ej b. , the following information is displayed:

[org.jboss. nk. | oadi ng. Uni fi edCl assLoader 3@ 950198{
url =nul | , addedOrder =2},
org.j boss. nx. | oadi ng. Uni fi edCl assLoader 3@9e2f 1{
url =fil e:/hone/vreni sh/jboss-eap-4.3/jboss-as/server/production/depl oy/ ej b3. depl oyer/
, addedOr der =3},
org. j boss. nx. | oadi ng. Uni fi edCl assLoader 3@ 555185{

url =fil e:/home/vreni sh/jboss-eap-4.3/jboss-as/server/production/depl oy/jboss-messagi ng. sar/
, addedOr der =12}]

This is the string representation of the set. It shows three Uni fi edd assLoader 3 instances. The
primary url is indicated by the value shown in ur | . The order in which the class loader is added
to the repository is indicated by the value shown in addedOr der . It is the class loader that owns
all of the JARs in the | i b directory of the server configuration (e.g., server/ producti on/lib).

The view the information for a given class, use the di spl ayd assl nf o operation, passing in the
fully qualified name of the class to view. For example, if we use

org.j boss.jnx.adaptor. htnl . H m Adapt or Ser vl et which is from the package we just
looked at, the following description is displayed:

org.j boss.jnx. adaptor. htm . Ht m Adapt or Servl et | nformation
Not | oaded in repository cache

| nstanceO via UCL: WebappC assLoader
del egate: fal se
repositories:
/ VEB- | NF/ cl asses/
---------- > Parent C assl oader:
j ava. net . Fact or yURLCl assLoader @f 5dda

The information is a dump of the information for the Class instance in the loader repository if
one has been loaded, followed by the class loaders that are seen to have the class file
available. If a class is seen to have more than one class loader associated with it, then there is
the potential for class loading related errors.

2.2.4.2. Scoping Classes

If you need to deploy multiple versions of an application you need to use deployment based
scoping. With deployment based scoping, each deployment creates its own class loader
repository in the form of a Hei r ar chi cal Loader Reposi t or y3 that looks first to the

Uni fi edd assLoader 3 instances of the deployment units included in the EAR before delegating
to the default Uni fi edLoader Reposi t or y3. To enable an EAR specific loader repository, you
need to create a META- | NF/ j boss- app. xm descriptor as shown in Example 4.9, “An example

49

Chapter 4. The JBoss JMX Microkernel

jboss-app.xml descriptor for enabled scoped class loading at the EAR level.”.

<j boss- app>
<| oader - r eposi t or y>sone. dot . com | oader =webt est . ear </ | oader -r eposi t ory>
</ j boss- app>

Example 4.9. An example jboss-app.xml descriptor for enabled scoped
class loading at the EAR level.

The value of the | oader - r eposi t ory element is the JMX object name to assign to the
repository created for the EAR. This must be unique and valid JMX ObjectName, but the actual
name is not important.

Note

JDK provided classes cannot be scoped. Meaning that a deployment cannot
contain any JDK classes or (when using a war deployment) they must be
excluded via the FilteredPackages atribute within the j boss- servi ce. xni file.

2.2.4.3. The Complete Class Loading Model

The previous discussion of the core class loading components introduced the custom

Uni fi edd assLoader 3 and Uni fi edLoader Reposi t or y3 classes that form a shared class
loading space. The complete class loading picture must also include the parent class loader
used by Uni fi edd assLoader 3s as well as class loaders introduced for scoping and other
specialty class loading purposes. Figure 4.5, “A complete class loader view” shows an outline of
the class hierarchy that would exist for an EAR deployment containing EJBs and WARs.

50

Class Loading and Types in Java

assLoader{(bootpath, systemCL)

pdClassleadenlecallRL}

& URLGlassLoadari{}, TCL}

SandetContainer Loader{anc)

Figure 4.5. A complete class loader view

The following points apply to this figure:

« System ClassLoaders: The System ClassLoaders node refers to either the thread context
class loader (TCL) of the VM main thread or of the thread of the application that is loading the
JBoss server if it is embedded.

» ServerLoader: The ServerLoader node refers to the a URLCl assLoader that delegates to the
System ClassLoaders and contains the following boot URLSs:

» All URLs referenced via the j boss. boot . | i brary. | i st system property. These are path
specifications relative to the | i br ar yURL defined by the j boss. |i b. url property. If there is
no j boss. l'i b. url property specified, it defaults to j boss. home. url + /1ib/. If thereis
no j boss. boot . I i brary property specified, it defaults to j axp. j ar, | og4j - boot . j ar,

j boss-comon. jar, and j boss-systemj ar.

51

Chapter 4. The JBoss JMX Microkernel

» The JAXP JAR which is either cri nson. j ar or xerces. j ar depending on the -j option to
the Mai n entry point. The default is cri mson. j ar.

* The JBoss JMX jar and GNU regex jar, j boss-j mx. j ar and gnu-r egexp. j ar.
» Oswego concurrency classes JAR, concurrent. jar

* Any JARs specified as libraries via - L command line options

» Any other JARs or directories specified via - Ccommand line options

» Server: The Server node represent a collection of UCLs created by the
org.j boss. system server. Server interface implementation. The default implementation
creates UCLs for the pat chDi r entries as well as the server conf directory. The last UCL
created is set as the JBoss main thread context class loader. This will be combined into a
single UCL now that multiple URLs per UCL are supported.

« All UnifiedClassLoader3s: The All UnifiedClassLoader3 node represents the UCLs created
by deployers. This covers EARs, jars, WARs, SARs and directories seen by the deployment
scanner as well as JARs referenced by their manifests and any nested deployment units they
may contain. This is a flat namespace and there should not be multiple instances of a class in
different deployment JARSs. If there are, only the first loaded will be used and the results may
not be as expected. There is a mechanism for scoping visibility based on EAR deployment
units that we discussed in Section 2.2.4.2, “Scoping Classes”. Use this mechanism if you
need to deploy multiple versions of a class in a given JBoss server.

EJB DynClassLoader: The EJB DynCl assLoader node is a subclass of URLCI assLoader
that is used to provide RMI dynamic class loading via the simple HTTP WebService. It
specifies an empty URL[] and delegates to the TCL as its parent class loader. If the
WebService is configured to allow system level classes to be loaded, all classes in the
Uni fi edLoader Reposi t or y3 as well as the system classpath are available via HTTP.

EJB ENCLoader: The EJB ENCLoader node is a URLCl assLoader that exists only to provide
a unigue context for an EJB deployment's j ava: conp JNDI context. It specifies an empty
URL[] and delegates to the EJB DynCl assLoader as its parent class loader.

Web ENCLoader: The Web ENCLoader node is a URLClassLoader that exists only to provide
a unique context for a web deployment's j ava: conp JNDI context. It specifies an empty
URL[] and delegates to the TCL as its parent class loader.

WAR Loader: The WAR Loader is a servlet container specific classloader that delegates to
the Web ENCLoader as its parent class loader. The default behavior is to load from its parent
class loader and then the WAR WEB- | NFcl asses and | i b directories. If the servlet 2.3 class
loading model is enabled it will first load from the its WVEB- | NF directories and then the parent
class loader.

In its current form there are some advantages and disadvantages to the JBoss class loading
architecture. Advantages include:

52

JBoss XMBeans

« Classes do not need to be replicated across deployment units in order to have access to
them.

» Many future possibilities including novel partitioning of the repositories into domains,
dependency and conflict detection, etc.

Disadvantages include:

» Existing deployments may need to be repackaged to avoid duplicate classes. Duplication of
classes in a loader repository can lead to class cast exceptions and linkage errors depending
on how the classes are loaded.

« Deployments that depend on different versions of a given class need to be isolated in
separate EARs and a unique Hei r ar chi cal Loader Reposi t or y3 defined using a
j boss-app. xnl descriptor.

2.3. JBoss XMBeans

XMBeans are the JBoss JMX implementation version of the JMX model MBean. XMBeans have
the richness of the dynamic MBean metadata without the tedious programming required by a
direct implementation of the Dynani cMBean interface. The JBoss model MBean implementation
allows one to specify the management interface of a component through a XML descriptor,
hence the X in XMBean. In addition to providing a simple mechanism for describing the
metadata required for a dynamic MBean, XMBeans also allow for the specification of attribute
persistence, caching behavior, and even advanced customizations like the MBean
implementation interceptors. The high level elements of the j boss_xnbean_1_2. dt d for the
XMBean descriptor is given in Figure 4.6, “The JBoss 1.0 XMBean DTD Overview
(jboss_xmbean_1_2.dtd)".

53

Chapter 4. The JBoss JMX Microkernel

i * desmpﬂun%

€ + descriptors

+ dass%

4+ constru Clor

+* mheanE

)

®

) + atl:rihuteE

+| * operationz

ey " nnliﬁl:atinnE

Figure 4.6. The JBoss 1.0 XMBean DTD Overview (jboss_xmbean_1 2.dtd)

The mbean element is the root element of the document containing the required elements for
describing the management interface of one MBean (constructors, attributes, operations and
notifications). It also includes an optional description element, which can be used to describe
the purpose of the MBean, as well as an optional descriptors element which allows for
persistence policy specification, attribute caching, etc.

2.3.1. Descriptors

The descriptors element contains all the descriptors for a containing element, as subelements.
The descriptors suggested in the JMX specification as well as those used by JBoss have
predefined elements and attributes, whereas custom descriptors have a generic descriptor
element with name and value attributes as show in Figure 4.7, “ The descriptors element
content model”.

54

JBoss XMBeans

7y * interceptors

(7| * persistence

@ + currencyTimeLimit

@ + display-name

* descriptorsz | (7 ¢ defaulty

7 * valueE

(7) * persistence-manager

(=) * descriptor

C + injection g

Figure 4.7. The descriptors element content model

The key descriptors child elements include:

 interceptors: The i nt er cept or s element specifies a customized stack of interceptors that
will be used in place of the default stack. Currently this is only used when specified at the
MBean level, but it could define a custom attribute or operation level interceptor stack in the
future. The content of the interceptors element specifies a custom interceptor stack. If no
interceptors element is specified the standard Mbdel MBean interceptors will be used. The
standard interceptors are:
 org.jboss.mx.interceptor.Persistencelnterceptor
* org.jpboss.mx.interceptor.MBeanAttributeInterceptor
 org.jboss.mx.interceptor.ObjectReferencelnterceptor

When specifying a custom interceptor stack you would typically include the standard
interceptors along with your own unless you are replacing the corresponding standard
interceptor.

Each interceptor element content value specifies the fully qualified class name of the
interceptor implementation. The class must implement the

55

Chapter 4. The JBoss JMX Microkernel

org.jboss.nx.interceptor.|nterceptor interface. The interceptor class must also have
either a no-arg constructor, or a constructor that accepts a j avax. managenent . MBeanl nf o.

The interceptor elements may have any number of attributes that correspond to JavaBean
style properties on the interceptor class implementation. For each i nt er cept or element
attribute specified, the interceptor class is queried for a matching setter method. The attribute
value is converted to the true type of the interceptor class property using the

j ava. beans. Propert yEdi t or associated with the type. It is an error to specify an attribute
for which there is no setter or Propert yEdi t or .

» persistence: The per si st ence element allows the specification of the per si st Pol i cy,
per si st Peri od, persi st Locati on, and per si st Nane persistence attributes suggested by
the JMX specification. The persistence element attributes are:

» persistPolicy: The per si st Pol i cy attribute defines when attributes should be persisted
and its value must be one of

< Never: attribute values are transient values that are never persisted
« OnUpdate: attribute values are persisted whenever they are updated
e OnTimer: attribute values are persisted based on the time given by the per si st Peri od.

« NoMoreOftenThan: attribute values are persisted when updated but no more often than
the persi st Peri od.

» persistPeriod: The per si st Peri od attribute gives the update frequency in milliseconds if
the peri si t Pol i cy attribute is NoMbr eCf t enThan or OnTi ner .

» persistLocation: The per si st Locat i on attribute specifies the location of the persistence
store. Its form depends on the JMX persistence implementation. Currently this should refer
to a directory into which the attributes will be serialized if using the default JBoss
persistence manager.

» persistName: The per si st Nane attribute can be used in conjunction with the
per si st Locat i on attribute to further qualify the persistent store location. For a directory
per si st Locat i on the per si st Name specifies the file to which the attributes are stored
within the directory.

e currencyTimeLimit: The currencyTi meLi ni t element specifies the time in seconds that a
cached value of an attribute remains valid. Its value attribute gives the time in seconds. A
value of 0 indicates that an attribute value should always be retrieved from the MBean and
never cached. A value of -1 indicates that a cache value is always valid.

« display-name: The di spl ay- nane element specifies the human friendly name of an item.

« default: The def aul t element specifies a default value to use when a field has not been set.
Note that this value is not written to the MBean on startup as is the case with the
j boss-service. xnl attribute element content value. Rather, the default value is used only if
there is no attribute accessor defined, and there is no value element defined.

56

JBoss XMBeans

« value: The val ue element specifies a management attribute's current value. Unlike the
def aul t element, the val ue element is written through to the MBean on startup provided
there is a setter method available.

e persistence-manager: The per si st ence- manager element gives the name of a class to use
as the persistence manager. The val ue attribute specifies the class name that supplies the
org. j boss. nx. persi st ence. Per si st enceManager interface implementation. The only
implementation currently supplied by JBoss is the
org. j boss. nx. persi st ence. Obj ect St r eanPer si st enceManager which serializes the
Model MBeanl nf o content to a file using Java serialization.

« descriptor: The descri pt or element specifies an arbitrary descriptor not known to JBoss. Its
nane attribute specifies the type of the descriptor and its val ue attribute specifies the
descriptor value. The descri pt or element allows for the attachment of arbitrary management
metadata.

injection: The i nj ect i on element describes an injection point for receiving information from
the microkernel. Each injection point specifies the type and the set method to use to inject the
information into the resource. The i nj ect i on element supports type attributes:

 id: The i d attribute specifies the injection point type. The current injection point types are:

« MBeanServerType: An MBeanServerType injection point receives a reference to the
MBeanServer that the XMBean is registered with.

* MBeanInfoType: An MBeanInfoType injection point receives a reference to the XMBean
ModelMBeanInfo metadata.

¢ ObjectNameType: The ObjectName injection point receives the ObjectName that the
XMBean is registered under.

» setMethod: The setMethod attribute gives the name of the method used to set the injection
value on the resource. The set method should accept values of the type corresponding to the
injection point type.

Note that any of the constructor, attribute, operation or notification elements may have a
descri pt ors element to specify the specification defined descriptors as well as arbitrary
extension descriptor settings.

2.3.2. The Management Class

The cl ass element specifies the fully qualified name of the managed object whose
management interface is described by the XMBean descriptor.

2.3.3. The Constructors

The const ruct or element(s) specifies the constructors available for creating an instance of the
managed object. The constructor element and its content model are shown in Figure 4.8, “The

57

Chapter 4. The JBoss JMX Microkernel

XMBean constructor element and its content model”.

—.2

+ name%
+ CONSIUCIon |

(=) * parameter

= * des:riptinn%

L @) * descriptors

Figure 4.8. The XMBean constructor element and its content model

The key child elements are:

» description: A description of the constructor.
* name: The name of the constructor, which must be the same as the implementation class.

e parameter: The parameter element describes a constructor parameter. The parameter
element has the following attributes:

» description: An optional description of the parameter.
e name: The required variable name of the parameter.
 type: The required fully qualified class name of the parameter type.

» descriptors: Any descriptors to associate with the constructor metadata.

2.3.4. The Attributes

The at tri but e element(s) specifies the management attributes exposed by the MBean. The
attribute element and its content model are shown in Figure 4.9, “The XMBean attribute element
and its content model”.

58

JBoss XMBeans

m * access (7) ® getMethodg (5 # setMethodg

A
L*fenumeration ~string ~\string]

k, -

i

* name%
+* al]]'ihuteE

ft“:“!

5 * degmpﬁnn%

L 3) * descriptorsz

Figure 4.9. The XMBean attribute element and its content model

The at tri but e element supported attributes include:
» access: The optional access attribute defines the read/write access modes of an attribute. It
must be one of:
» read-only: The attribute may only be read.
» write-only: The attribute may only be written.
» read-write: The attribute is both readable and writable. This is the implied default.

« getMethod: The get Met hod attribute defines the name of the method which reads the named
attribute. This must be specified if the managed attribute should be obtained from the MBean
instance.

+ setMethod: The set Met hod attribute defines the name of the method which writes the named
attribute. This must be specified if the managed attribute should be obtained from the MBean
instance.

The key child elements of the attribute element include:

« description: A description of the attribute.

* name: The name of the attribute as would be used in the MBeanSer ver. get Attri but e()
operation.

 type: The fully qualified class name of the attribute type.

« descriptors: Any additional descriptors that affect the attribute persistence, caching, default
value, etc.

59

Chapter 4. The JBoss JMX Microkernel

2.3.5. The Operations

The management operations exposed by the XMBean are specified via one or more operation
elements. The operation element and its content model are shown in Figure 4.10, “The XMBean
operation element and its content model”.

@ # impact =|
L lenumeration

5, -

3 * desmpﬁnn%

+ operation_ @ + parameter g

@) * remm-type%

|_(7)|* descriptors

Figure 4.10. The XMBean operation element and its content model

The impact attribute defines the impact of executing the operation and must be one of:

« ACTION: The operation changes the state of the MBean component (write operation)
« INFO: The operation should not alter the state of the MBean component (read operation).

« ACTION_INFO: The operation behaves like a read/write operation.
The child elements are:

» description: This element specifies a human readable description of the operation.
* name: This element contains the operation's name
« parameter: This element describes the operation's signature.

* return-type: This element contains a fully qualified class name of the return type from this
operation. If not specified, it defaults to void.

» descriptors: Any descriptors to associate with the operation metadata.

60

Connecting to the JMX Server

2.3.6. Notifications

The noti fi cati on element(s) describes the management notifications that may be emitted by
the XMBean. The notification element and its content model is shown in Figure 4.11, “The
XMBean notification element and content model”.

e descripﬁnn%

b name%
+ notification g

| e nnﬁﬁtaﬁnn-type%

7y * descriptors

Figure 4.11. The XMBean notification element and content model

The child elements are:

« description: This element gives a human readable description of the natification.
* name: This element contains the fully qualified name of the notification class.
 notification-type: This element contains the dot-separated notification type string.

» descriptors: Any descriptors to associate with the notification metadata.

3. Connecting to the JMX Server

JBoss includes adaptors that allow access to the JIMX MBeanServer from outside of the JBoss
server VM. The current adaptors include HTML, an RMI interface, and an EJB.

3.1. Inspecting the Server - the JIMX Console Web Application

JBoss comes with its own implementation of a IMX HTML adaptor that allows one to view the
server's MBeans using a standard web browser. The default URL for the console web
application is http://localhost:8080/jmx-console/. If you browse this location you will see
something similar to that presented in Figure 4.12, “The JBoss JMX console web application
agent view”.

61

http://localhost:8080/jmx-console/

Chapter 4. The JBoss JMX Microkernel

JBoss JMX Managemem Console

ObjectName Filter (e.g. "jboss:*", "*:service=invoker,*") :
prva‘FHter‘_fl

Catalina
s types=Server
JMImplementation

s name=Default.service=sLoaderRepository
s type=MEeanReqgistry
+ type=MBeanServerDelegate

jboss

database=localDB.service=Hypersonic

name=PropertyEditorManager.type=Service
name=SystemProperties.type=sService

readonly=true.service=invoker.target=Naming.type=http
servicesAttributePersistenceService
service=ClientUserTransaction

service=JNDIView
service=sKeyGeneratorFactory . type=HiLo
service=KeyGeneratorFactory type=UUID

service=Mail v

LN N B I B N BB

m
e

Figure 4.12. The JBoss JMX console web application agent view

The top view is called the agent view and it provides a listing of all MBeans registered with the
MBeanSer ver sorted by the domain portion of the MBean's Obj ect Narre. Under each domain are
the MBeans under that domain. When you select one of the MBeans you will be taken to the
MBean view. This allows one to view and edit an MBean's attributes as well as invoke
operations. As an example, Figure 4.13, “The MBean view for the "jboss.system:type=Server"
MBean” shows the MBean view for the j boss. syst em t ype=Ser ver MBean.

62

Inspecting the Server - the JMX Console

JBoss JMX Managemem Console

ObjectName Filter (e.g. "jboss:*", "*:service=invoker,*") :
I’ApvaFHter‘_fl

Catalina
s types=Server
JMImplementation

s name=Default.service=sLoaderRepository
s type=MEeanReqgistry
+ type=MBeanServerDelegate

jboss

database=localDB.service=Hypersonic

name=PropertyEditorManager.type=Service
name=SystemProperties.type=sService

-

-

L]

« readonly=true.service=invokertarget=Naming.type=http
= servicesAttributePersistenceService
-

-

L]

-

-

service=ClientUserTransaction
service=JNDIView
servicesKeyGeneratorFactory type=HiLo
service=KeyGeneratorFactory type=UUID
service=Mail v
IE RN

——

o
'Y

Figure 4.13. The MBean view for the "jboss.system:type=Server" MBean

The source code for the JIMX console web application is located in the var i a module under the
src/ mai n/ or g/ j boss/ j mx directory. Its web pages are located under

vari a/ src/ resour ces/j nx. The application is a simple MVC servlet with JSP views that utilize
the MBeanServer.

3.1.1. Securing the JMX Console

Since the JMX console web application is just a standard servlet, it may be secured using
standard J2EE role based security. The j nx- consol e. war that is deployed as an unpacked
WAR that includes template settings for quickly enabling simple username and password based

63

Chapter 4. The JBoss JMX Microkernel

access restrictions. If you look at the j nx- consol e. war in the server/ producti on/ depl oy
directory you will find the web. xm and j boss-web. xm descriptors in the VEB- | NF directory.
The j nx- consol e-rol es. properties andj nx- consol e- users. properti es files are located
in the server/ producti on/ conf/ pr ops directory.

By uncommenting the security sections of the web. xnl and j boss-web. xm descriptors as
shown in Example 4.10, “The jmx-console.war web.xml descriptors with the security elements
uncommented.”, you enable HTTP basic authentication that restricts access to the JMX Console
application to the user adni n with password adni n. The username and password are
determined by the adni n=adni n line in the j nx- consol e-users. properti es file.

<?xm version="1.0"?>

<! DOCTYPE web- app PUBLI C
"-//Sun M crosystens, Inc.//DTD Wb Application 2.3//EN
"http://java. sun. com dt d/ web-app_2_ 3. dtd">

<web- app>
<l-- ... -->
<I-- A security constraint that restricts access to the HTM. JMX consol e
to users with the role JBossAdm n. Edit the roles to what you want
and
unconmment the WEB-1NF/jboss-web. xm /security-domain el emrent to
enabl e
secured access to the HTML JMX consol e.
-->
<security-constraint>
<web-r esour ce-col | ecti on>
<web- r esour ce- nane>Ht m Adapt or </ web- r esour ce- nane>
<descri ption> An exanpl e security config that only all ows users
with

the role JBossAdnin to access the HTML JMX consol e web
appl i cation </description>
<url-pattern>/*</url-pattern>
<ht t p- met hod>GET</ ht t p- met hod>
<ht t p- met hod>POST</ ht t p- met hod>
</ web-resour ce-col | ecti on>
<aut h-constrai nt >
<rol e- nane>JBossAdm n</r ol e- name>
</ aut h- constrai nt >
</ security-constraint>
<l ogi n-confi g>
<aut h- net hod>BASI C</ aut h- net hod>
<r eal m nane>JBoss JMX Consol e</real m nane>
</l ogi n- confi g>
<security-rol e>
<r ol e- nanme>JBossAdni n</r ol e- nane>
</security-rol e>
</ web- app>

Example 4.10. The jmx-console.war web.xml descriptors with the security
elements uncommented.

64

Web Application

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE j boss- web
PUBLI C "-//JBoss// DTD Wb Application 2.3//EN'
"http://ww. jboss.org/j2ee/dtd/jboss-web_3_0.dtd">
<j boss- web>
<l--
Uncomrent the security-domain to enable security. You will
need to edit the htm adaptor login configuration to setup the
| ogi n nodul es used to authentication users.
—e =
<security-donai n>j ava: /j aas/j nx- consol e</ security-donai n>
</ j boss- web>

Example 4.11. The jmx-console.war jboss-web.xml descriptors with the

security elements uncommented.

Make these changes and then when you try to access the JMX Console URL, you will see a
dialog similar to that shown in Figure 4.14, “The JMX Console basic HTTP login dialog.”.

Figure 4.14. The JMX Console basic HTTP login dialog.

You probably to use the properties files for securing access to the JMX console application. To
see how to properly configure the security settings of web applications see Chapter 9, Security
on JBoss.

3.2. Connecting to JMX Using RMI

65

Chapter 4. The JBoss JMX Microkernel

JBoss supplies an RMI interface for connecting to the JMX MBeanServer. This interface is
org.j boss.jnx.adaptor.rm .RM Adapt or. The RM Adapt or interface is bound into JNDI in
the default location of j mx/ i nvoker/ RM Adapt or as well as j nx/ r mi / RM Adapt or for
backwards compatibility with older clients.

Example 4.12, “ A JMX client that uses the RMIAdaptor” shows a client that makes use of the
RM Adapt or interface to query the MBeanl nf o for the JNDI Vi ew MBean. It also invokes the
MBean's | i st (bool ean) method and displays the result.

public class JMXBrowser
{
/**
* @©@aram args the command |ine argunents
*/
public static void main(String[] args) throws Exception
{
Initial Context ic = new Initial Context();
RM Adapt or server = (RM Adaptor)
i c.lookup("jm/invoker/RM Adaptor");

/1 Get the MBeanlnfo for the JNDI Vi ew MBean

bj ect Name nane = new bj ect Nane("j boss: servi ce=JNDI Vi ew') ;
MBeanl nfo info = server.get MBeanl nf o(nane) ;

Systemout. println("JNDI View C ass: " + info.getd assNane());

MBeanQper ati onl nfo[] oplnfo = info.getOperations();

System out. println("JNDI Vi ew Operations: ");

for(int o = 0; o < oplnfo.length; o ++) {
MBeanQper ati onlnfo op = oplnfo[o];

String returnType = op. get ReturnType();
String opName = op. get Name() ;
Systemout.print(" + " + returnType + " " + opNane + "(");

MBeanPar anet er I nfo[] parans = op. get Si gnature();
for(int p =0; p < parans.|length; p++) {
MBeanPar anet er | nf o param nfo = parans[p];

String pname = param nf 0. get Nane() ;
String type = param nfo.getType();

i f (pnane.equal s(type)) {
System out . print(type);
} else {
Systemout.print(type + " " + nane);

}

if (p < parans.|length-1) {
Systemout.print(',");
}

}
System out. println(")");

66

Connecting to JMX Using RMI

/1 Invoke the |ist(bool ean) op

String[] sig = {"bool ean"};

oj ect[] opArgs {Bool ean. TRUE} ;

hj ect result = server.invoke(name, "list", opArgs, sig);

Systemout. println("JNDIView |list(true) output:\n"+result);

Example 4.12. A JMX client that uses the RMIAdaptor

To test the client access using the RM Adapt or, run the following:

[exanpl es] $ ant - Dchap=j nx - Dex=4 run-exanpl e

run-

exanpl e4:
[java] JNDI View O ass: org.j boss. nx. nodel nbean. XMBean
[java] JNDI Vi ew Operati ons:
[java]l] + java.lang.String |ist(boolean jboss:service=JNDl Vi ew)

[java] + java.lang.String |istXM()
[java] + void create()

[java] + void start()

[java] + void stop()

[java] + void destroy()

[java] + void jbosslnternal Lifecycle(java.lang. String

j boss: servi ce=JNDI Vi ew)

org.

or g.

org.

or g.

org.

or g.

org.

or g.

[java] + java.lang. String get Name()
[javal] + int getState()
[java] + java.lang.String getStateString()
[java] JNDI View. |ist(true) output:
[java] <hl>java: Nanespace</hl>
[java] <pre>
[java] +- XAConnecti onFactory (class:

j boss. ng. SpyXAConnect i onFact ory)
[java] +- Defaul t DS (cl ass: javax.sql.DataSource)
[java] +- SecurityProxyFactory (class:

j boss. security. Subj ect SecurityProxyFact ory)
[java] +- Def aul t JIMSProvi der (cl ass:

j boss. jms. jndi.JNDI Provi der Adapt er)
[java] +- conp (class: javax.nam ng. Cont ext)
[java] +- JnmsXA (cl ass:

j boss. resour ce. adapt er. j ns. JnsConnect i onFact oryl npl)
[java] +- Connecti onFactory (cl ass:

j boss. ng. SpyConnect i onFact ory)
[java] +- jaas (class: javax.nam ng. Context)
[java] | +- JnmsXAReal m (cl ass:

j boss. security. pl ugi ns. Securi t yDomai nCont ext)
[java] [+- jbossng (cl ass:

j boss. security. plugi ns. SecurityDormai nCont ext)
[javal | +- Hsqgl DbReal m (cl ass:

j boss. security. plugi ns. Securit yDomai nCont ext)

67

Chapter 4. The JBoss JMX Microkernel

[java] +- tinedCacheFactory (class: javax.nam ng. Context)
[java] Failed to | ookup: tinedCacheFactory, errnsg=nul
[javal +- Transacti onPropagati onCont ext Exporter (cl ass:
org.j boss.tm Transacti onPropag
ati onCont ext Fact ory)
[java] +- St dJMSPool (cl ass
org.j boss.jns. asf. St dSer ver Sessi onPool Fact ory)
[java] +- Ml (class: javax. mail.Session)
[java] +- Transacti onPropagati onCont ext | nporter (class:
org. j boss.tm Transacti onPropag
ati onCont ext | nporter)
[javal +- Transacti onManager (class: org.jboss.tm TxManager)
[java] </pre>
[java] <hl1>G obal JNDI Nanmespace</ hl>
[java] <pre>
[java] +- XAConnecti onFactory (class:
org. j boss. ng. SpyXAConnect i onFact or y)
[java] +- Ul L2Connecti onFactory[link -> ConnectionFactory] (class
j avax. nam ng. Li n
kRef)
[java] +- User Transacti onSessi onFactory (proxy: $Proxyll inplenents
i nterface org.jbos
s.tmusertx.interfaces. User Transact i onSessi onFact ory)
[java] +- HTTPConnecti onFactory (cl ass
org. j boss. ng. SpyConnecti onFact ory)
[java] +- console (class: org.jnp.interfaces. Nam ngCont ext)
[javal | +- Pl ugi nManager (proxy: $Proxy36 inplenents interface
org. j boss. consol e. ma
nager . Pl ugi nManager MBean)
[java] +- U L2XAConnecti onFactory[link -> XAConnecti onFact ory]
(class: javax.nanm ng
. Li nkRef)
[java] +- UUI DKeyGener at or Factory (cl ass
org. j boss. ej b. pl ugi ns. keygener at or. uui d. UUI D
KeyGener at or Fact ory)
[java] +- HTTPXAConnecti onFactory (cl ass:
org. j boss. ng. SpyXAConnect i onFact ory)
[java] +- topic (class: org.jnp.interfaces. Nam ngCont ext)

[java] | +- testDurabl eTopi c (class: org.jboss. ng. SpyTopi c)
[java] | +- testTopic (class: org.jboss.ng. SpyTopi c)
[java] +- securedTopic (class: org.jboss. ng. SpyTopi c)

I
[java] +- queue (class: org.jnp.interfaces. Nanm ngCont ext)

[javal +- A (class: org.jboss. ng. SpyQueue)
[java] +- test Queue (class: org.jboss. ng. SpyQueue)
[java] +- ex (class: org.jboss. ng. SpyQueue)

I
I
I
[java] | +- DLQ (class: org.jboss. ng. SpyQueue)
|
I
I

[java] +- D (class: org.jboss. ng. SpyQueue)
[java] +- C (class: org.jboss. ng. SpyQueue)
[java] +- B (class: org.jboss. ng. SpyQueue)

[java] +- Connecti onFactory (cl ass
org.j boss. ng. SpyConnecti onFact ory)

[javal +- User Transaction (cl ass:
org.jboss.tmusertx.client.dientUserTransaction)

[java] + jmx (class: org.jnp.interfaces. Nan ngCont ext)

[java] | +- invoker (class: org.jnp.interfaces. Nanm ngCont ext)

[java] | | +- RM Adaptor (proxy: $Proxy35 inplenments interface
org. j boss. j nx. adapt

Command Line Access to JMX

or.rm .RM Adaptor,interface org.jboss.jnx.adaptor.rm .RM Adapt or Ext)
[java] | + rm (class: org.jnp.interfaces. Nani ngCont ext)

[javal | | +- RM Adaptor[link -> jnmx/invoker/RM Adaptor] (cl ass:

j avax. nam ng. L
i nkRef)

[java] +- Hi LoKeyGener at or Factory (cl ass:
org. j boss. ej b. pl ugi ns. keygenerator. hil o. H Lo
KeyGener at or Fact ory)

[java] +- Ul LXAConnecti onFactory[link -> XAConnecti onFactory] (class:

j avax. nami ng.
Li nkRef)
[javal +- Ul LConnectionFactory[link -> Connecti onFactory] (class:
j avax. nam ng. Li nk
Ref)
[java] </pre>

3.3. Command Line Access to JMX

JBoss provides a simple command line tool that allows for interaction with a remote JMX server
instance. This tool is called twiddle (for twiddling bits via JMX) and is located in the bi n directory
of the distribution. Twiddle is a command execution tool, not a general command shell. It is run

using either the t wi ddl e. sh or t wi ddl e. bat scripts, and passing in a - h(- - hel p) argument

provides the basic syntax, and - - hel p- cormands shows what you can do with the tool:

[bin]$./twi ddle.sh -h
AJMX client to "twiddle' with a renote JBoss server.

usage: twi ddl e.sh [options] <command> [command_ar gunent s]

opti ons:
-h, --help Show t hi s hel p nessage
- - hel p- conmands Show a |ist of commands
- H=<conmand> Show command specific hel p
- c=command. properties Speci fy the command. properties file to use
- D<nane>[=<val ue>] Set a system property
== St op processing options
-s, --server=<url > The JNDI URL of the renote server
-a, --adapter=<nanme> The JNDI nane of the RM adapter to use
-q, --qQuiet Be somewhat nore quiet

3.3.1. Connecting twiddle to a Remote Server

By default the twiddle command will connect to the localhost at port 1099 to lookup the default

j mx/ rmi/RM Adapt or binding of the RM Adapt or service as the connector for communicating

with the JMX server. To connect to a different server/port combination you can use the - s
(- - server) option:

[bin]$./twiddle.sh -s toki serverinfo -d jboss
[bin]$./twi ddle.sh -s toki:1099 serverinfo -d jboss

69

Chapter 4. The JBoss JMX Microkernel

To connect using a different RMIAdaptor binding use the - a (--adapt er) option:

[bin]$./twiddle.sh -s toki -a jnx/rm /RM Adaptor serverinfo -d jboss

3.3.2. Sample twiddle Command Usage

To access basic information about a server, use the ser veri nf o command. This currently
supports:

[bin]$./twiddle.sh -H serverinfo
Cet informati on about the MBean server

usage: serverinfo [options]

opti ons:
-d, --domain Cet the default domain
-c, --count Cet the MBean count

-1, --list Li st the MBeans

-- St op processing options
[bin]$./twiddle.sh --server=toki serverinfo --count
460
[bin]$./tw ddl e.sh --server=toki serverinfo --donain
j boss

To query the server for the name of MBeans matching a pattern, use the query command. This
currently supports:

[bin]$./twiddle.sh -H query
Query the server for a list of matchi ng MBeans

usage: query [options] <query>
opti ons:
-c, --count Di spl ay the matchi ng MBean count
-- St op processing options
Exanpl es:
query all nbeans: query '*:*'
query all nbeans in the jboss.j2ee domain: query 'jboss.|2ee:*'
[bin]$./twi ddle.sh -s toki query 'jboss: service=i nvoker, *'
j boss: readonl y=t rue, servi ce=i nvoker, t ar get =Nam ng, t ype=http
j boss: servi ce=i nvoker, type=j rnp
j boss: servi ce=i nvoker, t ype=l oca
j boss: servi ce=i nvoker, t ype=pool ed
j boss: servi ce=i nvoker, type=http
j boss: servi ce=i nvoker, t ar get =Nam ng, t ype=htt p

To get the attributes of an MBean, use the get command:

[bin]$./twi ddl e.sh -H get
Cet the values of one or nbre MBean attri butes

usage: get [options] <nane> [<attr>+]

70

Command Line Access to JMX

If no attribute nanes are given all readable attributes are retrieved

opti ons:

--noprefix Do not display attribute nane prefixes

-- St op processing options
[bin]$./twiddle.sh get jboss:service=invoker,type=jrnp RM Obj ect Port
StateString
RM Obj ect Port =4444
StateString=Started
[bin]$./twiddle.sh get jboss:service=invoker,type=jrnp
Ser ver Addr ess=0.0. 0.0
RM Cl i ent Socket Fact or yBean=nul |
StateString=Started
St at e=3
RM Ser ver Socket Fact or yBean=or g. j boss. net . socket s. Def aul t Socket Fact or y@d093076
Enabl e assCachi ng=f al se
Securi t yDomai n=nul |
RM Ser ver Socket Fact or y=nul |
Backl 0g=200
RM Obj ect Port =4444
Name=JRWPI nvoker
RM Cl i ent Socket Fact or y=nul |

To query the MBeanlInfo for an MBean, use the info command:

[bin]$./twiddle.sh -H info
Cet the netadata for an MBean

usage: info <nmbean- nane>
Use '*' to query for all attributes

[bin]$ Description: Managenent Bean.
+++ Attributes:

Name: Server Address

Type: java.lang. String

Access: rw

Name: RM Cl i ent Socket Fact or yBean

Type: java.rm.server.RM d i ent Socket Fact ory

Access: rw

Name: StateString

Type: java.lang. String

Access: r-

Nanme: State

Type: int

Access: r-

Name: RM Server Socket Fact or yBean

Type: java.rm .server.RM Server Socket Fact ory
Access: rw

Name: Enabl eCl assCachi ng

Type: bool ean

Access: rw

Narme: SecurityDomai n

Type: java.lang. String

Access: rw

Narme: RM Server Socket Fact ory

Type: java.lang. String

Access: rw

71

Ch

apter 4. The JBoss JMX Microkernel

To

Name: Backl og

Type: int

Access: rw

Name: RM Obj ect Port

Type: int

Access: rw

Nanme: Name

Type: java.lang. String
Access: r-

Narme: RM d i ent Socket Fact ory
Type: java.lang. String
Access: rw
+++ COperati ons

void start()

voi d jbosslnternal Li fecycl e(java.lang. String java.lang. String)
voi d create()

voi d stop()

voi d destroy()

invoke an operation on an MBean, use the invoker command:

[bin]$./tw ddle.sh -H invoke
I nvoke an operati on on an MBean

usage: invoke [options] <query> <operation> (<arg>)*

opti ons:
-g, --query-type[=<type>] Treat object nanme as a query
-- St op processi ng options

query type:
flirst] Only invoke on the first matching nane [defaul t]
afll] I nvoke on all matchi ng nanes

[bin]$./twiddle.sh invoke jboss:service=JNDI View |list true

<hl>j ava: Nanespace</hl>

<pre>
+- XAConnectionFactory (class: org.jboss. ng. SpyXAConnecti onFact ory)
+- Defaul t DS (cl ass: javax.sqgl.DataSource)
+- SecurityProxyFactory (class:

org. j boss. security. Subj ect Securit yProxyFact ory)
+- Defaul t IMSProvi der (class: org.jboss.jns.jndi.JND Provi der Adapt er)
+- conp (class: javax.nam ng. Cont ext)
+- JmsXA (class: org.jboss.resource. adapter.jns. JnmsConnecti onFact oryl npl)
+- ConnectionFactory (class: org.jboss. ng. SpyConnect i onFact ory)
+- jaas (class: javax.nam ng. Context)
| +- JnmsXAReal m (cl ass:

org.j boss. security. plugi ns. Securit yDomai nCont ext)
[+- jbossmg (class: org.jboss.security. plugins. SecurityDomai nCont ext)
| +- Hsql DbReal m (cl ass:

org.j boss. security. plugins. SecurityDomai nCont ext)
+- tinedCacheFactory (class: javax.nam ng. Context)

Fail ed to | ookup: tinedCacheFactory, errmsg=null
+- Transacti onPropagati onCont ext Exporter (class:

org.j boss.tm Transacti onPr opagat i onCont ext

Fact ory)

72

Command Line Access to JMX

+- StdJMSPool (class: org.jboss.jnms. asf. StdServer Sessi onPool Fact ory)
+- Ml (class: javax.mail.Session)
+- Transacti onPropagati onCont ext | nporter (class:

org.j boss.tm Transacti onPr opagat i onCont ext

| nporter)
+- Transacti onManager (class: org.jboss.tm TxManager)
</ pr e>
<h1>d obal JNDI Nanespace</hl>
<pr e>

+- XAConnecti onFactory (class: org.jboss. ng. SpyXAConnect i onFact ory)
+- Ul L2Connecti onFactory[link -> Connecti onFactory] (class:
j avax. nam ng. Li nkRef)
+- User Transacti onSessi onFactory (proxy: $Proxyll inplenents interface
org.j boss.tm usertx.
i nterfaces. User Transact i onSessi onFact ory)
+- HTTPConnecti onFactory (class: org.jboss. ng. SpyConnecti onFact ory)
+- console (class: org.jnp.interfaces. Nam ngCont ext)
| +- Pl ugi nManager (proxy: $Proxy36 inplenents interface
org. j boss. consol e. nanager . Pl ugi n
Manager MBean)
+- Ul L2XAConnecti onFactory[link -> XAConnecti onFactory] (class:
j avax. nam ng. Li nkRef)
+- UUI DKeyGener at or Factory (cl ass:
org. j boss. ej b. pl ugi ns. keygener at or . uui d. UUl DKeyGener at or
Fact ory)
+- HTTPXAConnecti onFactory (class: org.jboss. ng. SpyXAConnect i onFact ory)
+- topic (class: org.jnp.interfaces. Nam ngCont ext)
[+- testDurabl eTopic (class: org.]jboss. ng. SpyTopi c)
[+- testTopic (class: org.jboss. ng. SpyTopi c)
| +- securedTopic (class: org.jboss. ng. SpyTopi c)
+- queue (class: org.jnp.interfaces. Nanm ngCont ext)
[+- A (class: org.jboss. ng. SpyQueue)
| +- test Queue (class: org.jboss. ng. SpyQueue)
| +- ex (class: org.jboss. ng. SpyQueue)
| +- DLQ (class: org.jboss. ng. SpyQueue)
[+- D (class: org.jboss. ng. SpyQueue)
| +- C (class: org.jboss. ng. SpyQueue)
[+- B (class: org.jboss. ng. SpyQueue)
Connect i onFactory (class: org.jboss. ng. SpyConnect i onFact ory)
+- User Transaction (cl ass:
org.jboss.tmusertx.client.dientUserTransaction)
+- jmx (class: org.jnp.interfaces. Nani ngCont ext)
| +- invoker (class: org.jnp.interfaces. Nam ngCont ext)
| | +- RM Adaptor (proxy: $Proxy35 inplenents interface
org.j boss.jnx.adaptor.rm .RM Ad
aptor,interface org.jboss.jnx.adaptor.rmn .RM Adapt or Ext)
[+ rm (class: org.jnp.interfaces. Nan ngCont ext)
| | +- RM Adaptor[link -> jnx/invoker/RM Adaptor] (class:
j avax. nam ng. Li nkRef)
+- Hi LoKeyGener at or Factory (cl ass:
org. j boss. ej b. pl ugi ns. keygener at or. hi | o. H LoKeyGener at or
Fact ory)
+- Ul LXAConnecti onFactory[link -> XAConnecti onFactory] (class:
j avax. namni ng. Li nkRef)
+- Ul LConnecti onFactory[link -> Connecti onFactory] (class:
j avax. nam ng. Li nkRef)
</ pr e>

4L
i

73

Chapter 4. The JBoss JMX Microkernel

3.4. Connecting to JMX Using Any Protocol

With the detached invokers and a somewhat generalized proxy factory capability, you can really
talk to the JMX server using the | nvoker Adapt or Ser vi ce and a proxy factory service to expose
an RM Adapt or or similar interface over your protocol of choice. We will introduce the detached
invoker notion along with proxy factories in Section 6, “Remote Access to Services, Detached
Invokers”. See Section 6.1, “A Detached Invoker Example, the MBeanServer Invoker Adaptor
Service” for an example of an invoker service that allows one to access the MBean server using
to the RM Adapt or interface over any protocol for which a proxy factory service exists.

4. Using JMX as a Microkernel

When JBoss starts up, one of the first steps performed is to create an MBean server instance

(i avax. managenent . MBeanSer ver). The JMX MBean server in the JBoss architecture plays the
role of a microkernel. All other manageable MBean components are plugged into JBoss by
registering with the MBean server. The kernel in that sense is only an framework, and not a
source of actual functionality. The functionality is provided by MBeans, and in fact all major
JBoss components are manageable MBeans interconnected through the MBean server.

4.1. The Startup Process

In this section we will describe the JBoss server startup process. A summary of the steps that
occur during the JBoss server startup sequence is:

1. The run start script initiates the boot sequence using the or g. j boss. Mai n. mai n(String[])
method entry point.

2. The Mai n. mai n method creates a thread group named j boss and then starts a thread
belonging to this thread group. This thread invokes the Main.boot method.

3. The Mai n. boot method processes the Mai n. mai n arguments and then creates an
org.j boss. system server. Server Loader using the system properties along with any
additional properties specified as arguments.

4. The XML parser libraries, j boss-j nx. j ar, concurrent.jar and extra libraries and
classpaths given as arguments are registered with the Ser ver Loader .

5. The JBoss server instance is created using the Ser ver Loader . | oad(d assLoader) method
with the current thread context class loader passed in as the d assLoader argument. The
returned server instance is an implementation of the or g. j boss. syst em server. Ser ver
interface. The creation of the server instance entails:

e Creating a j ava. net . URLO assLoader with the URLs of the jars and directories registered
with the Ser ver Loader . This URLC assLoader uses the C assLoader passed in as its
parent and it is pushed as the thread context class loader.

74

The Startup Process

» The class name of the implementation of the Ser ver interface to use is determined by the
j boss. server. t ype property. This defaults to or g. j boss. syst em server. Server | npl .

» The Server implementation class is loaded using the URLC assLoader created in step 6
and instantiated using its no-arg constructor. The thread context class loader present on
entry into the Ser ver Loader . | oad method is restored and the server instance is returned.

6. The server instance is initialized with the properties passed to the Ser ver Loader constructor
using the Server.init (Properties) method.

7. The server instance is then started using the Server. start () method. The default
implementation performs the following steps:

» Set the thread context class loader to the class loader used to load the Server | npl class.

« Create an MBeanSer ver under the j boss domain using the
MBeanSer ver Fact ory. cr eat eMBeanSer ver (St ri ng) method.

* Register the Server | npl and Server Confi gl npl MBeans with the MBean server.

« Initialize the unified class loader repository to contain all JARs in the optional patch
directory as well as the server configuration file conf directory, for example,
server/ producti on/ conf. For each JAR and directory an
org. j boss. nx. | oadi ng. Uni fi edd assLoader is created and registered with the unified
repository. One of these Uni fi edC assLoader is then set as the thread context class
loader. This effectively makes all Uni fi edd assLoader s available through the thread
context class loader.

e Theorg. jboss. system Servi ceControl | er MBean is created. The Servi ceControl | er
manages the JBoss MBean services life cycle. We will discuss the JBoss MBean services
notion in detail in Section 4.2, “JBoss MBean Services”.

e Theorg. j boss. depl oynent . Mai nDepl oyer is created and started. The Mai nDepl oyer
manages deployment dependencies and directing deployments to the correct deployer.

* The org. j boss. depl oyment . JARDepl oyer is created and started. The JARDepl oyer
handles the deployment of JARs that are simple library JARSs.

e Theorg. j boss. depl oynent . SARDepl oyer is created and started. The SARDeployer
handles the deployment of JBoss MBean services.

« The Mai nDepl oyer is invoked to deploy the services defined in the
conf/j boss-servi ce. xnl of the current server file set.

» Restore the thread context class loader.
The JBoss server starts out as nothing more than a container for the JMX MBean server, and

then loads its personality based on the services defined in the j boss- servi ce. xnl MBean
configuration file from the named configuration set passed to the server on the command line.

75

Chapter 4. The JBoss JMX Microkernel

Because MBeans define the functionality of a JBoss server instance, it is important to
understand how the core JBoss MBeans are written, and how you should integrate your existing
services into JBoss using MBeans. This is the topic of the next section.

4.2. JBoss MBean Services

As we have seen, JBoss relies on JMX to load in the MBean services that make up a given
server instance's personality. All of the bundled functionality provided with the standard JBoss
distribution is based on MBeans. The best way to add services to the JBoss server is to write
your own JMX MBeans.

There are two classes of MBeans: those that are independent of JBoss services, and those that
are dependent on JBoss services. MBeans that are independent of JBoss services are the
trivial case. They can be written per the JMX specification and added to a JBoss server by
adding an mbean tag to the depl oy/ user - servi ce. xnl file. Writing an MBean that relies on a
JBoss service such as haming requires you to follow the JBoss service pattern. The JBoss
MBean service pattern consists of a set of life cycle operations that provide state change
notifications. The notifications inform an MBean service when it can create, start, stop, and
destroy itself. The management of the MBean service life cycle is the responsibility of three
JBoss MBeans: SARDepl oyer, Servi ceConfi gurat or and Servi ceControl | er.

4.2.1. The SARDeployer MBean

JBoss manages the deployment of its MBean services via a custom MBean that loads an XML
variation of the standard JMX MLet configuration file. This custom MBean is implemented in the
org. j boss. depl oynent . SARDepl oyer class. The SARDepl oyer MBean is loaded when JBoss
starts up as part of the bootstrap process. The SAR acronym stands for service archive.

The SARDepl oyer handles services archives. A service archive can be either a jar that ends
with a . sar suffix and contains a META- | NF/ j boss- ser vi ce. xnl descriptor, or a standalone
XML descriptor with a naming pattern that matches *- ser vi ce. xm . The DTD for the service
descriptor is j boss- servi ce_4. 2. dt d and is shown in Figure 4.15, “The DTD for the MBean
service descriptor parsed by the SARDeployer”.

76

JBoss MBean Services

' C\ (o Inademenonmrytlassg
\string

_@{ + loader-repository, + Ioader—repnsmw—cnnﬁg%) » mnﬁgParserCIassE

strlng
(=| * local-directory ?\ L palhg
it \string._
r -2 - a
(%) * dasspath (o tndehaseg @ b archwesg
= Lstring) Lstring
" 2 §

(@ mdeg (o nameg f-,\ L mterfaceg f-,\ i xmhean-ddg

string J string J string string

r—;\ » xmhean-mdeg
+* Server g “istring

_(J{O constructor* ,{0 argEi r—,\ * typeg (o valueé
L Lstring Lstring J |
(o nameé @ # replace E {*ro rim E f-,\J, » atmhuteClassE

@ &+ attribul:e Lstring 1 *fenumeration Dk*fenumeratinn 1 Lstring
~r senalDataTypeE

D
fenumeration

(o optlonal-aunhute-nameg r@ * prnxy-typeg
Lstring Lstring

e g

C?\,: npuonal-am'ihute-nameé
string

L &) + depends-listz @ + depends-llst-elementE‘

Figure 4.15. The DTD for the MBean service descriptor parsed by the
SARDeployer

,...-"

The elements of the DTD are:

» loader-repository: This element specifies the name of the Uni f i edLoader Reposi tory
MBean to use for the SAR to provide SAR level scoping of classes deployed in the sar. Itis a
unigue JMX bj ect Name string. It may also specify an arbitrary configuration by including a
| oader - r eposi t ory- conf i g element. The optional | oader Reposi t or yd ass attribute
specifies the fully qualified name of the loader repository implementation class. It defaults to
org.j boss. nx. | oadi ng. Hei r achi cal Loader Reposi t ory3.

» loader-repository-config: This optional element specifies an arbitrary configuration that
may be used to configure the | oadReposi t or yd ass. The optional confi gPar ser d ass
attribute gives the fully qualified name of the
org.j boss. nx. | oadi ng. Loader Reposi t or yFact ory. Loader Reposi t or yConfi gPar ser
implementation to use to parse the | oader - r eposi t ory- conf i g content.

 local-directory: This element specifies a path within the deployment archive that should be
copied to the server/ <confi g>/ db directory for use by the MBean. The path attribute is the
name of an entry within the deployment archive.

» classpath: This element specifies one or more external JARs that should be deployed with

77

Chapter 4. The JBoss JMX Microkernel

the MBean(s). The optional archives attribute specifies a comma separated list of the JAR
names to load, or the * wild card to signify that all jars should be loaded. The wild card only
works with file URLSs, and http URLSs if the web server supports the WEBDAYV protocol. The
codebase attribute specifies the URL from which the JARs specified in the archive attribute
should be loaded. If the codebase is a path rather than a URL string, the full URL is built by
treating the codebase value as a path relative to the JBoss distribution ser ver/ <confi g>
directory. The order of JARs specified in the archives as well as the ordering across multiple
classpath element is used as the classpath ordering of the JARs. Therefore, if you have
patches or inconsistent versions of classes that require a certain ordering, use this feature to
ensure the correct ordering.

* mbean: This element specifies an MBean service. The required code attribute gives the fully
qualified name of the MBean implementation class. The required name attribute gives the
JMX Obj ect Nane of the MBean. The optional xnbean- dd attribute specifies the path to the
XMBean resource if this MBean service uses the JBoss XMBean descriptor to define a Model
MBean management interface.

e constructor: The const ruct or element defines a non-default constructor to use when
instantiating the MBean The ar g element specify the constructor arguments in the order of
the constructor signature. Each ar g has at ype and val ue attribute.

« attribute: Each attribute element specifies a name/value pair of the attribute of the MBean.
The name of the attribute is given by the name attribute, and the attribute element body
gives the value. The body may be a text representation of the value, or an arbitrary element
and child elements if the type of the MBean attribute is or g. wdc. dom El enent . For text
values, the text is converted to the attribute type using the JavaBean
j ava. beans. Propert yEdi t or mechanism.

» server/mbean/depends and server/mbean/depends-list: these elements specify a
dependency from the MBean using the element to the MBean(s) named by the depends or
depends- | i st elements. Section 4.2.4, “Specifying Service Dependencies”. Note that the
dependency value can be another mbean element which defines a nested mbean.

MBean attribute values don't need to be hardcoded literal strings. Service files may contain
references to system properties using the ${ nane} notation, where nane is the name of a Java
system property. The value of this system property, as would be returned from the call

Syst em get Property("name") . Multiple properties can be specified separated by commas like
${ nanel, nane2, naned}. If there is no system property named nanel, nane2 will be tried and
then name3. This allows multiple levels of substitution to be used. Finally, a default value can be
added using a colon separator. The substitution ${ nane: def aul t val ue} would substitute the
the text "def aul t val ue" if the system property nane didn't exist. If none of the listed properties
exist and no default value is given, no substitution will occur.

When the SARDepl oyer is asked to deploy a service performs several steps. Figure 4.16, “A
sequence diagram highlighting the main activities performed by the SARDeployer to start a
JBoss MBean service” is a sequence diagram that shows the init through start phases of a
service.

78

JBoss MBean Services

catch{Exception &)

3.2.1: stopiadi):wvoid

3.2.2: destroy(sdi]:woid

SIRDeployer sdi MBeanServer ServiceController
SARDeployer DeploymentInfo MBeanierver ServiceController

MainDeployer :MainDeployer T T T T
1: init(DeplomantEfm:void | | |
o | | |

| | |

1.1: parseDocument(sdi):void | | |

1.1.1; Jet sdi.dosument to F-gervice.xml doc | | |

o | |

| |

| | |

| | |

1.2: parseXMLClasspath(sdij:void | | |

_ . . | | |

forii = sdi.doc.classpath; i.hasNexti);) |) sai | |

1.2.1.1: <constructors((URL)i.nexti), null, sarver) p=-|DeploynentInto } }

| | |

L.z, l.2: deploy(cp sdi):vodld } Q } }
| | | |

| | | |

for(i = sdi.doc.local-directory: i.hasHexti);) | | | |

| | | |

1.3.1: inflatedar(sdi.localUrl, dataDir, (Sttlng)}l.next()]:vnld } } }

| | | |

1.4: processNestedDeployments(sdi) :woid | | | |

| | | |

| | | | |

2: create (DeploymentThfo):void | | | |
=201 loader:-registerMBean(di.ucl, di.ucl.getObjectMaue(}):0bjectInstance | | |

1 f - I

2.2: descriptorMbeans:=install{sdi.doc, sdi.ucl.getObjectlane()):List | L_|]
2.3: sdi.wbeans = descriprorMbeans . 1 } } u

| for(i = descriptorMbeans.iterator(); i.hasNext();) i } } }
2.4.1: create(i0bjectName)i.next()):void | | . |

T T bl
| | u

| | |

| | | |

3: start{DeploymentInfo):void | | |
= eyl | | |
forii = sdi.mbeans.iterator(): i.hasMNexti):) | | |

3.1.1.1: starti(ObjectMame) i.next{))ivoid | | |

T T b

| |

| | |

| | |

| | |

| | |

| | |

| | |

| | |

| | |

| | |

| | |

| | |

| | |

| | |

Figure 4.16. A sequence diagram highlighting the main activities

performed by the SARDeployer to start a JBoss MBean service

In Figure 4.16, “A sequence diagram highlighting the main activities performed by the

SARDeployer to start a JBoss MBean service” the following is illustrated:

« Methods prefixed with 1.1 correspond to the load and parse of the XML service descriptor.

« Methods prefixed with 1.2 correspond to processing each classpath element in the service
descriptor to create an independent deployment that makes the jar or directory available
through a Uni fi edCl assLoader registered with the unified loader repository.

» Methods prefixed with 1.3 correspond to processing each | ocal - di r ect ory element in the
service descriptor. This does a copy of the SAR elements specified in the path attribute to the

server

/ <confi g>/ db directory.

* Method 1.4. Process each deployable unit nested in the service a child deployment is created

and added to the service deployment info subdeployment list.

79

Chapter 4. The JBoss JMX Microkernel

* Method 2.1. The Uni fi edd assLoader of the SAR deployment unit is registered with the
MBean Server so that is can be used for loading of the SAR MBeans.

* Method 2.2. For each MBean element in the descriptor, create an instance and initialize its
attributes with the values given in the service descriptor. This is done by calling the
Servi ceControl l er.install method.

* Method 2.4.1. For each MBean instance created, obtain its JMX Qbj ect Nane and ask the
ServiceController to handle the create step of the service life cycle. The Servi ceControl | er
handles the dependencies of the MBean service. Only if the service's dependencies are
satisfied is the service create method invoked.

» Methods prefixed with 3.1 correspond to the start of each MBean service defined in the
service descriptor. For each MBean instance created, obtain its JIMX ObjectName and ask the
Servi ceControl | er to handle the start step of the service life cycle. The
Servi ceControl | er handles the dependencies of the MBean service. Only if the service's
dependencies are satisfied is the service start method invoked.

4.2.2. The Service Life Cycle Interface

The JMX specification does not define any type of life cycle or dependency management for
MBeans. The JBoss ServiceController MBean introduces this notion. A JBoss MBean is an
extension of the JMX MBean in that an MBean is expected to decouple creation from the life
cycle of its service duties. This is necessary to implement any type of dependency
management. For example, if you are writing an MBean that needs a JNDI naming service to be
able to function, your MBean needs to be told when its dependencies are satisfied. This ranges
from difficult to impossible to do if the only life cycle event is the MBean constructor. Therefore,
JBoss introduces a service life cycle interface that describes the events a service can use to
manage its behavior. The following listing shows the or g. j boss. syst em Ser vi ce interface:

package org.j boss. system
public interface Service

{
public void create() throws Exception;
public void start() throws Exception;
public void stop();
public void destroy();

}

The Servi ceControl | er MBean invokes the methods of the Ser vi ce interface at the
appropriate times of the service life cycle. We'll discuss the methods in more detail in the
Servi ceControl | er section.

4.2.3. The ServiceController MBean

JBoss manages dependencies between MBeans via the
org. j boss. system Servi ceControl | er custom MBean. The SARDeployer delegates to the

80

JBoss MBean Services

ServiceController when initializing, creating, starting, stopping and destroying MBean services.
Figure 4.17, “The interaction between the SARDeployer and ServiceController to start a service”
shows a sequence diagram that highlights interaction between the SARDepl oyer and
ServiceControl |l er.

1 ler configurator 1 server ctx.proxy
ServiceController ServiceConfigurator ServiceCreator MBeanServer Jervice

[|1 install(Element,Objectliane):list |]

|
1.1: install(Element,Objectlape):List

] I]

| | |

| | |

| | |
1.1.1: 1n:ernallnskall(m}:aanElemen:,I uheans, serviceName):0biectlame }

L

h

1.1.1.1: instance: mscalltsexvueuilme, lozdezlane, mbeanmement):ubje‘éclnscame

| |
\71.1.1.1.1: createMBean (servicelNane, loaderName, ctdr.args, ctor.signature):ObjectInstance
|

1.1.1.2: registeriBeanClassHane (instance) :void)

ctx

|

| |

1.1J1J3: ctx:=gerserviceContext (instance. pef0bjectlaue ()) : ServiceConcext| | 1
1.1.1.3.1: ctor ! !

p=-|Serviceontext

|

|

|

|

|

|

|
Populates service mbean attributesl™, |
y L \
- |
| | ! I

1.1.1.4: Ennfn;uqe (mbeanName, 1ndetl\Iame, m}:aanElemJn:, ubeans) rwoid |

| 1

\
[\
\ \

2.1: ctx: :getﬁexvlcECuntext(%EKVIEENENEJ H SEIVIEECFDEEXE
\ \
\
\
\

2: create(DbjectName serviceName,Colllection depends):void

ifidepends != null)
depends. iteracor ()| i.haslext() 1)

Forii =

|

2.2.1.1t registerDependendy|serviceNane, i.next()]:void

| |

| |

2.3: ctx.proxy:=getServicePrioxy(ctx.objectNaue, nhll):Service

1f(dependencxest:eated(cm.1#ependun) == true) ‘
2.4.1: create():void |

t t
for{i = otx.dependsOnMe.itebator (}; i.hasNexc():)
| |

| |

2.4.2.1: create{(Objectiape) i.nexti]):veid |
| |

| |

| | |
|

3: start(Objectlane):void | |

o] I I
RN t:':x:=gEESEIv1CECunEExL(EE[vicENamEJ:SEIVlcEC‘EnLExL
1f(aepenaenciess“:ced(ccx.1$epenaun) == tzuel
3.2.1: start()ivoid ! !

t t

Forii = ctx.dependsOnMe.itebator(]: i.hastext():}
| |
|

3.2.2.1: start((Objectlamd) i.nexe()]:void
|

|
|
|
|
|
|
|
|
|
|
|
|
|
1
H
1
|
|
|
|
|
|
|
.
L
i
|
|
|
|
|
|
|

Figure 4.17. The interaction between the SARDeployer and
ServiceController to start a service

The Servi ceControl | er MBean has four key methods for the management of the service life
cycle: create, start, st op and destr oy.

4.2.3.1. The create(ObjectName) method

The cr eat e(Obj ect Nane) method is called whenever an event occurs that affects the named
services state. This could be triggered by an explicit invocation by the SARDepl oyer , a
notification of a new class, or another service reaching its created state.

When a service's cr eat e method is called, all services on which the service depends have also
had their create method invoked. This gives an MBean an opportunity to check that required
MBeans or resources exist. A service cannot utilize other MBean services at this point, as most
JBoss MBean services do not become fully functional until they have been started via their

st art method. Because of this, service implementations often do not implement cr eat e in favor

81

Chapter 4. The JBoss JMX Microkernel

of just the st art method because that is the first point at which the service can be fully
functional.

4.2.3.2. The start(ObjectName) method

The st art (Obj ect Nanme) method is called whenever an event occurs that affects the named
services state. This could be triggered by an explicit invocation by the SARDepl oyer , a
notification of a new class, or another service reaching its started state.

When a service's st art method is called, all services on which the service depends have also
had their st art method invoked. Receipt of a st art method invocation signals a service to
become fully operational since all services upon which the service depends have been created
and started.

4.2.3.3. The stop(ObjectName) method

The st op(Obj ect Name) method is called whenever an event occurs that affects the named
services state. This could be triggered by an explicit invocation by the SARDepl oyer , naotification
of a class removal, or a service on which other services depend reaching its stopped state.

4.2.3.4. The destroy(ObjectName) method

The dest r oy(Obj ect Nane) method is called whenever an event occurs that affects the named
services state. This could be triggered by an explicit invocation by the SARDepl oyer , naotification
of a class removal, or a service on which other services depend reaching its destroyed state.

Service implementations often do not implement dest r oy in favor of simply implementing the
st op method, or neither st op nor dest r oy if the service has no state or resources that need
cleanup.

4.2.4. Specifying Service Dependencies

To specify that an MBean service depends on other MBean services you need to declare the
dependencies in the mbean element of the service descriptor. This is done using the depends
and depends- | i st elements. One difference between the two elements relates to the

optional -attribute-name attribute usage. If you track the Obj ect Nanes of dependencies
using single valued attributes you should use the depends element. If you track the

bj ect Nanes of dependencies using j ava. uti | . Li st compatible attributes you would use the
depends- | i st element. If you only want to specify a dependency and don't care to have the
associated service Obj ect Narre bound to an attribute of your MBean then use whatever element
is easiest. The following listing shows example service descriptor fragments that illustrate the
usage of the dependency related elements.

<nmbean code="org. | boss. ng. server.jnx. Topi c"
nanme="j ns. t opi c: servi ce=Topi ¢, name=t est Topi c" >
<I-- Declare a dependency on the "jboss. nqg: servi ce=Desti nati onManager "
and
bind this name to the Destinati onManager attribute -->
<depends optional -attri bute-nane="Desti nati onManager" >
j boss. ng: servi ce=Dest i nat i onManager

82

JBoss MBean Services

</ depends>

<!-- Declare a dependency on the "jboss. nqg: servi ce=SecurityManager" and
bind this name to the SecurityManager attribute -->
<depends optional -attribute-nanme="SecurityManager">
j boss. ny: servi ce=Securi t yManager
</ depends>

<l-- ... -->

<I-- Declare a dependency on the
"j boss. ng: servi ce=CacheManager" wi t hout
any binding of the name to an attribute-->
<depends>j boss. ng: servi ce=CacheManager </ depends>
</ mbean>

<mbean code="or(g.j boss. ng. server.jnx. Topi cMyr"
nane="j boss. ng. desti nati on: servi ce=Topi cMyr " >
<I-- Declare a dependency on the given topic destination nbeans and
bi nd these nanes to the Topics attribute -->
<depends-|i st optional -attribute-nanme="Topics">
<depends- | i st-el ement >j ns. t opi c: servi ce=Topi ¢, nane=A</ depends- | i st - el enent >
<depends- | i st -el ement >j ns. t opi c: servi ce=Topi ¢, nane=B</ depends- | i st - el enent >
<depends- | i st-el ement >j ns. t opi c: servi ce=Topi ¢, nane=C</ depends- | i st - el enent >
</ depends-1|i st>
</ nbean>

Another difference between the depends and depends- | i st elements is that the value of the
depends element may be a complete MBean service configuration rather than just the

bj ect Nane of the service. Example 4.13, “An example of using the depends element to specify
the complete configuration of a depended on service.” shows an example from the

hsql db- servi ce. xml descriptor. In this listing the

org. j boss. resource. connect i onmanager . RARDepl oynent service configuration is defined
using a nested nbean element as the depends element value. This indicates that the

org. j boss. resource. connecti onmanager . Local TxConnect i onManager MBean depends on
this service. The j boss. j ca: servi ce=Local TxDS, name=hsql dbDSCObj ect Nane will be bound to
the ManagedConnect i onFact or yNane attribute of the Local TxConnect i onManager class.

<nmbean code="org.]j boss. resource. connecti onmanager . Local TxConnect i onManager "
nane="j boss. j ca: servi ce=Local TxCM nane=hsql dbDS" >
<depends optional -attri but e- nane=" ManagedConnect i onFact or yNane" >
<! --enbedded nbean-->
<nmbean code="org.]j boss. resource. connecti onmanager . RARDepl oynent "
nane="j boss. j ca: servi ce=Local TxDS, nane=hsql dbDS" >
<attri bute nane="Jndi Nane" >Def aul t DS</ attri but e>
<attribute nane="ManagedConnecti onFact oryProperties">
<properties>
<confi g- property nane="Connecti onURL"
type="java.l ang. Stri ng">
jdbc: hsql db: hsql : / /| ocal host : 1476
</ confi g- property>
<confi g- property nane="DriverCl ass"

83

Chapter 4. The JBoss JMX Microkernel

type="java.l ang. Stri ng">
org. hsql db. j dbcDri ver
</ confi g- property>
<confi g-property nanme="User Nane"
type="java.l ang. Stri ng">
sa
</ confi g- property>
<confi g-property nanme="Password"
type="j ava.l ang. Stri ng"/>
</ properties>
</attribute>

<l-- ... -->
</ mbean>
</ depends>
<l-- ... -->

</ nbean>

Example 4.13. An example of using the depends element to specify the
complete configuration of a depended on service.

4.2.5. ldentifying Unsatisfied Dependencies

The Ser vi ceControl | er MBean supports two operations that can help determine which
MBeans are not running due to unsatisfied dependencies. The first operation is

l'i stlnconpl etel yDepl oyed. Thisreturns aj ava. util . List of

org.j boss. syst em Servi ceCont ext objects for the MBean services that are not in the
RUNNI NG state.

The second operation is | i st Wai t i ngMBeans. This operation returns a j ava. uti |l . Li st of the
JMX oj ect Names of MBean services that cannot be deployed because the class specified by
the code attribute is not available.

4.2.6. Hot Deployment of Components, the URLDeploymentScanner

The URLDepl oynent Scanner MBean service provides the JBoss hot deployment capability. This
service watches one or more URLSs for deployable archives and deploys the archives as they
appear or change. It also undeploys previously deployed applications if the archive from which
the application was deployed is removed. The configurable attributes include:

« URLs: A comma separated list of URL strings for the locations that should be watched for
changes. Strings that do not correspond to valid URLs are treated as file paths. Relative file
paths are resolved against the server home URL, for example,

JBOSS_DI ST/ ser ver/ product i on for the production config file set. If a URL represents a file
then the file is deployed and watched for subsequent updates or removal. If a URL ends in /
to represent a directory, then the contents of the directory are treated as a collection of
deployables and scanned for content that are to be watched for updates or removal. The

84

JBoss MBean Services

requirement that a URL end in a/ to identify a directory follows the RFC2518 convention and
allows discrimination between collections and directories that are simply unpacked archives.

The default value for the URLSs attribute is depl oy/ which means that any SARs, EARSs,
JARs, WARs, RARs, etc. dropped into the ser ver/ <nane>/ depl oy directory will be
automatically deployed and watched for updates.

Example URLs include:

» deploy/ scans ${j boss. server. url}/depl oy/, which is local or remote depending on the
URL used to boot the server

» ${jboss.server.home.dir}/deploy/ scans ${jboss.server.nome.dir)/deploy, which is always
local

« file:/var/opt/myapp.ear deploys nyapp. ear from a local location
« file:/var/opt/apps/ scans the specified directory
» http://www.test.com/netboot/myapp.ear deploys nyapp. ear from a remote location

» http://www.test.com/netboot/apps/ scans the specified remote location using WebDAV.
This will only work if the remote http server supports the WebDAV PROPFIND command.

ScanPeriod: The time in milliseconds between runs of the scanner thread. The default is
5000 (5 seconds).

URLComparator: The class name of aj ava. uti | . Conpar at or implementation used to
specify a deployment ordering for deployments found in a scanned directory. The
implementation must be able to compare two j ava. net . URL objects passed to its compare
method. The default setting is the or g. j boss. depl oynment . Depl oynent Sor t er class which
orders based on the deployment URL suffix. The ordering of suffixes is: depl oyer,

depl oyer. xm , sar,rar, ds. xm , servi ce. xnl , har, jar, war, wsr, ear, zi p, bsh, | ast.

An alternate implementation is the

org. j boss. depl oynent . scanner. Pref i xDepl oyment Sort er class. This orders the URLs
based on numeric prefixes. The prefix digits are converted to an int (ignoring leading zeroes),
smaller prefixes are ordered ahead of larger numbers. Deployments that do not start with any
digits will be deployed after all numbered deployments. Deployments with the same prefix
value are further sorted by the Depl oynent Sort er logic.

Filter: The class name of aj ava. i o. Fi | eFi | t er implementation that is used to filter the
contents of scanned directories. Any file not accepted by this filter will not be deployed. The
default is or g. j boss. depl oyment . scanner . Depl oyment Fi | t er which is an implementation
that rejects the following patterns:

Mg MO Mk n kg g megn meof e BAKT U o] 4" " orig" ™. rej ", " bak",
" osh", "™, v", " ~" " make. state", ". nse_depi nf 0", "CVS", "CVS. adni n", "RCS", "RCSLOG',
"SCCS”, "TAGS", "cor e”, "t ags”

85

Chapter 4. The JBoss JMX Microkernel

« RecursiveSearch: This property indicates whether or not deploy subdirectories are seen to
be holding deployable content. If this is false, deploy subdirectories that do not contain a dot
(.) in their name are seen to be unpackaged JARs with nested subdeployments. If true, then
deploy subdirectories are just groupings of deployable content. The difference between the
two views shows is related to the depth first deployment model JBoss supports. The false
setting which treats directories as unpackaged JARs with nested content triggers the
deployment of the nested content as soon as the JAR directory is deployed. The true setting
simply ignores the directory and adds its content to the list of deployable packages and
calculates the order based on the previous filter logic. The default is true.

» Deployer: The JMX oj ect Narre string of the MBean that implements the
org. j boss. depl oyment . Depl oyer interface operations. The default setting is to use the
Mai nDepl oyer created by the bootstrap startup process.

4.3. Writing JBoss MBean Services

Writing a custom MBean service that integrates into the JBoss server requires the use of the
org. j boss. syst em Servi ce interface pattern if the custom service is dependent on other
services. When a custom MBean depends on other MBean services you cannot perform any
service dependent initialization in any of the j avax. nanagenent . MBeanRegi st r ati on interface
methods since JMX has no dependency notion. Instead, you must manage dependency state
using the Ser vi ce interface cr eat e and/or st art methods. You can do this using any one of
the following approaches:

» Add any of the Ser vi ce methods that you want called on your MBean to your MBean
interface. This allows your MBean implementation to avoid dependencies on JBoss specific
interfaces.

* Have your MBean interface extend the or g. j boss. syst em Ser vi ce interface.

* Have your MBean interface extend the or g. j boss. syst em Ser vi ceMBean interface. This is a
subinterface of or g. j boss. syst em Ser vi ce that adds get Nane(), get State(),
get St at eStri ng() methods.

Which approach you choose depends on whether or not you want your code to be coupled to
JBoss specific code. If you don't, then you would use the first approach. If you don't care about
dependencies on JBoss classes, the simplest approach is to have your MBean interface extend
from or g. j boss. syst em Servi ceMBean and your MBean implementation class extend from the
abstract or g. j boss. syst em Ser vi ceMBeanSupport class. This class implements the

org. j boss. syst em Servi ceMBean interface. Ser vi ceMBeanSupport provides implementations
of the creat e, start, st op, and dest r oy methods that integrate logging and JBoss service
state management tracking. Each method delegates any subclass specific work to

creat eServi ce, start Servi ce, stopSer vi ce, and dest r oySer vi ce methods respectively.
When subclassing Ser vi ceMBeanSupport , you would override one or more of the

creat eServi ce, start Servi ce, st opSer vi ce, and dest r oySer vi ce methods as required

86

Writing JBoss MBean Services

4.3.1. A Standard MBean Example

This section develops a simple MBean that binds a HashMap into the JBoss JNDI namespace at
a location determined by its Jndi Nane attribute to demonstrate what is required to create a
custom MBean. Because the MBean uses JNDI, it depends on the JBoss naming service
MBean and must use the JBoss MBean service pattern to be notified when the naming service
is available.

Version one of the classes, shown in Example 4.14, “JNDIMapMBean interface and
implementation based on the service interface method pattern”, is based on the service
interface method pattern. This version of the interface declares the st art and st op methods
needed to start up correctly without using any JBoss-specific classes.

package org.j boss. book. j nx. ex1;

// The JNDI Map MBean interface
i mport javax. nami ng. Nanmi ngExcepti on;

public interface JNDI MapMBean

{

public String getJndi Name();

public void setJndi Nane(String jndi Nane) throws Nam ngExcepti on;
public void start() throws Exception;

public void stop() throws Exception;

package org.j boss. book. j nx. ex1;

/1 The JNDI Map MBean i npl enent ati on

i mport java.util.HashMap;

i mport javax. nam ng. | nitial Context;

i mport javax. nami ng. Nane;

i mport javax. nam ng. Nanm ngExcepti on;

i mport org.jboss. nam ng. NonSeri al i zabl eFact ory;

public class JNDI Map i npl emrents JNDI MapMBean

{

private String jndi Nane;
private HashMap cont ext Map = new HashMap();
private bool ean started;

public String getJndi Nanme()
{

}
public void setJndi Nane(String jndi Nane) throws Nani ngException

{

return jndi Nane;

String ol dNane = this.jndi Name;
this.jndi Nane = j ndi Nane;
if (started) {

unbi nd(ol dNane) ;

try {

87

Chapter 4. The JBoss JMX Microkernel

r ebi nd() ;
} catch(Exception e) {
Nam ngExcepti on ne = new Nam ngException("Fail edt o update

j ndi Nane");
ne. set Root Cause(e) ;
t hr ow ne;
}
}
}
public void start() throws Exception
{
started = true;
r ebi nd() ;
}
public void stop()
{
started = fal se;
unbi nd(j ndi Nare) ;
}
private void rebind() throws Nam ngException
{
Initial Context rootCtx = new Initial Context();
Nanme ful | Name = root C x. get NamePar ser ("") . par se(j ndi Nane) ;
System out. println("full Nane="+f ul | Nane) ;
NonSeri al i zabl eFact ory. rebi nd(ful | Name, context Map, true);
}
private void unbi nd(String jndi Nane)
{
try {
Initial Context rootCtx = new Initial Context();
r oot Ct x. unbi nd(j ndi Nan®e) ;
NonSeri al i zabl eFact ory. unbi nd(j ndi Nane) ;
} catch(Nam ngException e) {
e.printStackTrace();
}
}

Example 4.14. JNDIMapMBean interface and implementation based on the
service interface method pattern

Version two of the classes, shown in Example 4.14, “JNDIMapMBean interface and
implementation based on the service interface method pattern”, use the JBoss Ser vi ceMBean
interface and Ser vi ceMBeanSupport class. In this version, the implementation class extends
the Ser vi ceMBeanSupport class and overrides the st art Ser vi ce and st opSer vi ce methods.
JNDI MapMBean also implements the abstract get Nanme method to return a descriptive hame for
the MBean. The JNDI MapMBean interface extends the or g. j boss. syst em Ser vi ceMBean

88

Writing JBoss MBean Services

interface and only declares the setter and getter methods for the Jndi Nane attribute because it
inherits the service life cycle methods from Ser vi ceMBean. This is the third approach mentioned
at the start of the Section 4.2, “JBoss MBean Services”.

package org.j boss. book. j nx. ex2;

/1 The JNDI Map MBean interface
i mport j avax. nam ng. Nami ngExcepti on;

public interface JNDI MapMBean extends org.j boss. system Servi ceMBean
{

public String getJndi Nanme();

public void setJndi Nane(String jndi Name) throws Nam ngExcepti on;

package org.j boss. book. j nx. ex2;

/1 The JNDI Map MBean i npl enent ati on

i mport java.util.HashMap;

i mport javax. nam ng. | nitial Context;

i mport j avax. nami ng. Nane;

i mport javax. nam ng. Nanm ngExcepti on;

i nport org.jboss. nam ng. NonSeri al i zabl eFact ory;

public class JNDI Map extends org.jboss. system Servi ceMBeanSuppor t
i mpl enents JNDI MapMBean

{
private String jndi Nane;
private HashMap cont ext Map = new HashMap();
public String getJndi Name()
{
return jndi Nane;
}
public void setJndi Nane(String jndi Nane)
t hrows Nam ngExcepti on
{
String ol dNane = this.jndi Name;
thi s.jndi Nane = j ndi Nan®;
if (super.getState() == STARTED) {
unbi nd(ol dNane) ;
try {
r ebi nd() ;
} catch(Exception e) {
Nam ngExcepti on ne = new Nam ngException("Failed to update
j ndi Nane") ;
ne. set Root Cause(e) ;
t hr ow ne;
}
}
}

public void startService() throws Exception

{

89

Chapter 4. The JBoss JMX Microkernel

r ebi nd() ;
}
public void stopService()
{
unbi nd(j ndi Nare) ;
}
private void rebind() throws Nam ngException
{
Initial Context rootCtx = new Initial Context();
Name ful |l Name = root C x. get NanePar ser ("") . par se(j ndi Nane) ;
| og. i nfo("full Name="+f ul | Nare) ;
NonSeri al i zabl eFact ory. rebi nd(ful | Name, context Map, true);
}
private void unbind(String jndi Nane)
{
try {
Initial Context rootCtx = new Initial Context();
r oot Ct x. unbi nd(j ndi Nan®e) ;
NonSeri al i zabl eFact ory. unbi nd(j ndi Nane) ;
} catch(Nanmi ngException e) {
log.error("Failed to unbind map", e);
}
}

Example 4.15. INDIMap MBean interface and implementation based on the
ServiceMBean interface and ServiceMBeanSupport class

The source code for these MBeans along with the service descriptors is located in the
exanpl es/ src/ mai n/ or g/ j boss/ book/ j mx/ { ex1, ex2} directories.

The jboss-service.xml descriptor for the first version is shown below.

<l-- The SAR META-I| NF/j boss-service.xm descriptor -->
<server>
<mbean code="org. | boss. book. j mx. ex1. JNDI Map"
name="j 2eechap2. ex1: servi ce=JNDI Map" >
<attribute nane="Jndi Nane" >i nmenor y/ maps/ MapTest </ attri but e>
<depends>j boss: ser vi ce=Nani ng</ depends>
</ nbean>
</ server>

The JNDIMap MBean binds a HashMap object under the i nmenor y/ maps/ MapTest JNDI hame
and the client code fragment demonstrates retrieving the HashMap object from the
i nmenor y/ maps/ MapTest location. The corresponding client code is shown below.

/1 Sanpl e | ookup code

90

Writing JBoss MBean Services

Initial Context ctx = new Initial Context();
HashMap map = (HashMap) ctx. | ookup("i nnenory/ maps/ MapTest");

4.3.2. XMBean Examples

In this section we will develop a variation of the JNDI Map MBean introduced in the preceding

section that exposes its management metadata using the JBoss XMBean framework. Our core
managed component will be exactly the same core code from the JNDI Map class, but it will not
implement any specific management related interface. We will illustrate the following capabilities

not possible with a standard MBean:

» The ability to add rich descriptions to attribute and operations
» The ability to expose notification information
* The ability to add persistence of attributes

» The ability to add custom interceptors for security and remote access through a typed
interface

4.3.2.1. Version 1, The Annotated JNDIMap XMBean

Let's start with a simple XMBean variation of the standard MBean version of the JNDIMap that

adds the descriptive information about the attributes and operations and their arguments. The

following listing shows the j boss- servi ce. xml descriptor and the j ndi map- xnbeanl. xni

XMBean descriptor. The source can be found in the src/ mai n/ or g/ j boss/ book/ j mx/ xmbean

directory of the book examples.

<?xm version='"1.0" encodi ng=' UTF-8" 2>
<! DOCTYPE server PUBLIC
"-//JBoss// DTD MBean Service 3.2//EN'

"http://ww. j boss. org/j 2ee/dtd/jboss-service_3 2.dtd">

<server>
<mbean code="org. | boss. book. j mx. xmbean. JNDI Map"
nane="j 2eechap2. xnbean: ser vi ce=JNDI Map"
xnbean- dd=" META- | NF/ j ndi map- xnbean. xm " >
<attribute nanme="Jndi Nane" >i nmenory/ maps/ MapTest </ attri but e>
<depends>j boss: servi ce=Nam ng</ depends>
</ mbean>
</ server>

<?xm version="1.0" encodi ng="UTF- 8" ?>
<! DOCTYPE nmbean PUBLIC
"-//JBoss// DTD JBOSS XMBEAN 1. 0//EN'
"http://ww.jboss.org/j2ee/dtd/jboss_xnbean_1_0.dtd">
<nmbean>
<descri pti on>The JNDI Map XMBean Exanpl e Version 1</description>
<descri pt or s>

91

Chapter 4. The JBoss JMX Microkernel

<per si st ence persi stPolicy="Never" persistPeriod="10"
persi st Locati on="dat a/ JNDI Map. dat a" per si st Name="JNDI Map"/ >
<currencyTi neLi mt val ue="10"/>
<st at e- acti on- on-updat e val ue="keep-runni ng"/>
</ descri pt or s>
<cl ass>org. j boss. test.jnx. xnbean. JNDI Map</ cl ass>
<construct or >
<descri pti on>The default constructor</description>
<name>JNDI Map</ nanme>
</ construct or >
<l-- Attributes -->
<attribute access="read-wite" getMethod="getJndi Nane"
set Met hod="set Jndi Nane" >
<descri pti on>
The | ocation in JNDI where the Map we nmanage wi |l be bound
</ descri pti on>
<name>Jndi Nane</ name>
<type>j ava.l ang. Stri ng</type>
<descri pt or s>
<default val ue="i nnenory/ maps/ MapTest"/ >
</ descri pt or s>
</attribute>
<attribute access="read-wite" getMethod="getlnitial Val ues"
set Met hod="set | ni ti al Val ues" >
<descri ption>The array of initial values that will be placed into

t he
map associated with the service. The array is a collection of
key,value pairs with elements[0, 2,4,...2n] being the keys and
elements [1,3,5,...,2n+1] the associ ated val ues. The
"[Ljava.lang. String;" type signature is the VMrepresentation of
t he

java.lang. String[] type. </description>
<name>| ni ti al Val ues</ nanme>
<type>[Ljava.lang. String; </type>
<descri pt or s>
<default val ue="keyO, val ue0"/ >
</ descri pt or s>
</attribute>
<l-- Qperations -->
<oper ati on>
<descri pti on>The start |ifecycle operation</description>
<name>st ar t </ nane>
</ oper ati on>
<oper ati on>
<descri pti on>The stop |ifecycle operation</description>
<nane>st op</ nanme>
</ oper ati on>
<operation i npact="ACTI ON'>
<descri pti on>Put a val ue into the map</description>
<name>put </ nanme>
<par anet er >
<descri pti on>The key the value will be store under</description>
<nanme>key</ nanme>
<t ype>j ava. | ang. Obj ect </t ype>
</ par anet er >
<par anet er >
<descri pti on>The val ue to place into the map</description>

92

Writing JBoss MBean Services

<nane>val ue</ nane>
<t ype>j ava. | ang. Obj ect </t ype>
</ par anet er >
</ oper ati on>
<operation inpact="1NFO'>
<descri pti on>Get a val ue fromthe map</description>
<nane>get </ nane>
<par anet er >
<descri pti on>The key to | ookup in the map</description>
<name>get </ nanme>
<t ype>j ava. | ang. Obj ect </t ype>
</ par anet er >
<return-type>java. | ang. Qoj ect </ return-type>
</ oper ati on>
<!-- Notifications -->
<notification>
<descri pti on>The notification sent whenever a value is get into the
map
managed by the service</description>
<nanme>j avax. managenent . Noti fi cati on</ nane>
<noti fication-type>org.jboss. book.jnx. xmbean. JNDI Map. get </ noti fi cati on-type>
</notification>
<noti fication>
<descri pti on>The notification sent whenever a value is put into the
map
managed by the service</description>
<name>j avax. managenent . Noti f i cati on</ name>
<noti fication-type>org.jboss. book. j nx. xmbean. JNDI Map. put </ noti fi cati on-type>
</notification>
</ nbean>

You can build, deploy and test the XMBean as follows:

[exanpl es] $ ant -Dchap=j nx - Dex=xnbeanl run-exanpl e

r un- exanpl exnbeanl
[javal] JNDI Map Cl ass: org.]j boss. nx. nodel mbean. XMBean
[java] JNDI Map Operati ons
[java] + void start()
[java] + void stop()
[java] + void put(java.lang. Ooj ect
chap2. xmbean: servi ce=JNDI Map, j ava. | ang. Qbj ect
chap2. xmbean: ser vi ce=JNDI Map)
[java] + java.lang. Object get(java.l ang. Object
chap2. xnbean: ser vi ce=JNDI Map)
[java] nane=chap2. xnbean: servi ce=JNDI Map
[java] |istener=org.]jboss. book.jnmk.xnbean. Test XMBeanl1$Li st ener @ 38cf 0
[java] key=keyO, val ue=val ue0
[java] handl eNoti fication, event:
j avax. managenent . Not i fi cati on[sour ce=chap2. xnbean:
servi ce=JNDI Map] [t ype=or g. j boss. book. j mx. xmbean. JNDI Map. put] [nessage=]
[java] JNDI Map. put (keyl, val uel) successful
[java] handl eNoti fication, event:
j avax. managenent . Not i fi cati on[sour ce=chap2. xnbean:
servi ce=JNDI Map] [t ype=or g. j boss. book. j mx. xnmbean. JNDI Map. get] [nessage=]

93

Chapter 4. The JBoss JMX Microkernel

[java] JNDI Map. get (key0O): null
[java] handl eNoti fication, event:
j avax. managenent . Noti fi cati on[sour ce=chap2. xnbean:
servi ce=JNDI Map] [t ype=or g. j boss. book. j mx. xmbean. JNDI Map. get] [nessage=]
[java]l JNDI Map. get (keyl): val uel
[java] handl eNoti fication, event:
j avax. managenent . Noti fi cati on[sour ce=chap2. xnbean:
servi ce=JNDI Map] [t ype=or g. j boss. book. j mx. xmbean. JNDI Map. put] [nessage=]
[java] handl eNoti fication, event:
j avax. managemnent . Attri but eChangeNoti fi cati on[source
=chap2. xnmbean: servi ce=JNDI Map] [t ype=j nx. attri but e. change] [mressage=I ni ti al Val ues
changed from javax. managenent. Attri but e@2a72a to
j avax. management . Attri but e@cdb96]

The functionality is largely the same as the Standard MBean with the notable exception of the
JMX notifications. A Standard MBean has no way of declaring that it will emit notifications. An
XMBean may declare the natifications it emits using notification elements as is shown in the
version 1 descriptor. We see the notifications from the get and put operations on the test client
console output. Note that there is also an j nx. attri but e. change noti fi cati on emitted when
the I ni ti al Val ues attribute was changed. This is because the Model MBean interface extends
the Mbdel MBeanNot i fi cati onBr oadcast er which supports

AttributeChangeNoti ficationLi steners.

The other major difference between the Standard and XMBean versions of INDIMap is the
descriptive metadata. Look at the chap2. xnbean: ser vi ce=JNDI Map in the JMX Console, and
you will see the attributes section as shown in Figure 4.18, “The Version 1 INDIMapXMBean
jmx-console view”.

94

Writing JBoss MBean Services

n File Edit Wiew Go Bockmarks Tools Window Help

») S http: //localhost: 8080/ jmx-console/HtmlAdaptor ?action=ingpectvB:®)
o s @

" @Home @Bookmaks

@ | @ MBean Inspector | ®
MBean View =
MBean Name: Domain Name: chap2.xmbean
service: INDIMap

MBean Java Class: org jboss. mx. modelmbean. XMBean

Back to Agent Yiew Refresh MBean Yiew

MBean description:

The INDIMap XMBean Example Yersion 1

List of MBean attributes:

Name Type Access Value Description

. . . e o7 | The location in JNDI where the Map we
IndiName java.lang.String |RW inmemorny/maps/iapT) manage will be bound

The array of initial values that will be
placed into the map associated with the
" . A LoAnoor o]|service. The array is a collection of
Iriitial¥alues) [Liava.lang. SEina RW U L key,value pairs with elements[0,2,4,...2n]
being the keys and elements
[1,3,5,...,2n+1] the associated values

Apply Changes

ﬁ@ @@‘ 2 Done-- T e

Figure 4.18. The Version 1 JNDIMapXMBean jmx-console view

Notice that the IMX Console now displays the full attribute description as specified in the
XMBean descriptor rather than MBean Attri but e text seen in standard MBean

implementations. Scroll down to the operations and you will also see that these now also have
nice descriptions of their function and parameters.

4.3.2.2. Version 2, Adding Persistence to the JNDIMap XMBean

In version 2 of the XMBean we add support for persistence of the XMBean attributes. The
updated XMBean deployment descriptor is given below.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<! DOCTYPE nmbean PUBLIC
"-//JBoss// DTD JBOSS XMBEAN 1. 0//EN"
"http://ww.jboss.org/j2ee/dtd/jboss_xnbean_1 0.dtd">
<nmbean>
<descri pti on>The JNDI Map XMBean Exanpl e Version 2</description>
<descri pt or s>
<per si st ence persi st Pol i cy="OnUpdat e" persi st Peri od="10"
per si st Locat i on="${| boss. server.data.dir}"

95

Chapter 4. The JBoss JMX Microkernel

per si st Name="JNDI Map. ser"/ >
<currencyTi neLi mt val ue="10"/>
<st at e- acti on- on- updat e val ue="keep-runni ng"/ >
<per si st ence- manager
val ue="org. j boss. nx. persi st ence. Obj ect St r eanPer si st enceManager"/ >
</ descriptors> <class>org.jboss.test.jnm.xnbean. JNDI Map</cl ass>
<construct or >
<descri pti on>The default constructor</description>
<name>JNDI Map</ nanme>
</ construct or >
<l-- Attributes -->
<attribute access="read-wite" getMethod="getJndi Nane"
set Met hod="set Jndi Nane" >
<descri pti on>
The | ocation in JNDI where the Map we nmanage wi |l be bound
</ descri pti on>
<name>Jndi Nane</ name>
<type>j ava.l ang. Stri ng</type>
<descri pt or s>
<default val ue="i nnenory/ maps/ MapTest"/ >
</ descri pt or s>
</attribute>
<attribute access="read-wite" getMethod="getlnitial Val ues"
set Met hod="set | ni ti al Val ues" >
<descri ption>The array of initial values that will be placed into

t he
map associated with the service. The array is a collection of
key,value pairs with elements[0, 2,4,...2n] being the keys and
elements [1,3,5,...,2n+1] the associ ated val ues</descri pti on>

<name>l ni ti al Val ues</ nane>
<type>[Lj ava.l ang. Stri ng; </t ype>
<descri pt or s>
<default val ue="keyO, val ue0"/ >
</ descri pt or s>
</attribute>
<l-- Operations -->
<oper ati on>
<descri ption>The start |ifecycle operation</description>
<name>st art </ name>
</ oper ati on>
<oper ati on>
<descri pti on>The stop |ifecycle operation</description>
<name>st op</ nanme>
</ oper ati on>
<operation i npact ="ACTI ON'>
<descri pti on>Put a val ue into the nap</description>
<nanme>put </ nanme>
<par anet er >
<descri pti on>The key the value will be store under</description>
<nane>key</ nanme>
<t ype>j ava. | ang. Obj ect </t ype>
</ par anet er >
<par anet er >
<descri pti on>The value to place into the map</description>
<nane>val ue</ nane>
<type>j ava. | ang. bj ect </ t ype>
</ par anet er >

96

Writing JBoss MBean Services

</ oper ati on>
<operation inpact="INFO'>
<descri ption>Get a value fromthe map</description>
<nane>get </ name>
<par anet er >
<descri pti on>The key to | ookup in the map</description>
<nane>get </ nane>
<t ype>j ava. | ang. Obj ect </t ype>
</ par anet er >
<return-type>java.l ang. Obj ect</return-type>
</ oper ati on>
<l-- Notifications -->
<notification>
<descri pti on>The notification sent whenever a value is get into the
map
managed by the service</description>
<name>j avax. managenent . Noti fi cat i on</ name>
<noti fication-type>org.jboss. book. j nx. xmbean. JNDI Map. get </ noti fi cati on-type>
</notification>
<notification>
<descri pti on>The notification sent whenever a value is put into the
map
managed by the service</description>
<nanme>j avax. managenent . Noti fi cati on</ nane>
<noti fication-type>org.jboss. book. j nx. xmbean. JNDI Map. put </ noti fi cati on-type>
</notification>
</ mbean>

Build, deploy and test the version 2 XMBean as follows:

[exanpl es] $ ant - Dchap=j nx - Dex=xnbean2 - Dj boss. depl oy. conf =rm - adapt or
run- exanpl e

r un- exanpl exmbean2
[java] JNDI Map C ass: org.j boss. mx. nodel nbean. XMBean
[java] JNDI Map QOper ati ons
[javal] + void start()
[java] + void stop()
[java] + void put(java.lang. Ooj ect
chap2. xnbean: servi ce=JNDI Map, j ava. | ang. bj ect cha
p2. xnbean: ser vi ce=JNDI Map)
[java] + java.lang. Object get(java.lang. Object
chap2. xmbean: ser vi ce=JNDI Map)
[java] + java.lang. String getJndi Name()
[java] + void setJndi Nane(j ava.l ang. String
chap2. xnmbean: ser vi ce=JNDI Map)
[java] + [Ljava.lang.String; getlnitial Val ues()
[java]l] + void setlnitialValues([Ljava.lang.String;
chap2. xnbean: ser vi ce=JNDI Map)
[java] handl eNoti fication, event: nul
[java] key=key10, val ue=val uel0
[java] handl eNoti fication, event:
j avax. managenent . Noti fi cati on[sour ce=chap2. xnbean: s
ervi ce=JNDI Map, t ype=or g. j boss. chap2. xnbean. JNDI Map. put , sequenceNunber =7, t i neSt anp=10986326
93716, nessage=nul | , user Dat a=nul |]

97

Chapter 4. The JBoss JMX Microkernel

[java] JNDI Map. put (keyl, val uel) successfu

[java] handl eNoti fication, event:
j avax. managenent . Noti fi cati on[sour ce=chap2. xnbean: s
ervi ce=JNDI Map, t ype=or g. j boss. chap2. xnbean. JNDI Map. get , sequenceNunber =8, t i neSt anp=10986326
93857, message=nul | , user Dat a=nul |]

[java] JNDI Map. get (keyO): nul

[java] handl eNoti fication, event:
j avax. managenent . Noti fi cati on[sour ce=chap2. xnbean: s
ervi ce=JNDI Map, t ype=or g. j boss. chap2. xnbean. JNDI Map. get , sequenceNunber =9, ti neSt anp=10986326
93896, message=nul | , user Dat a=nul |]

[java] JNDI Map. get (keyl): val uel

[java]l handl eNotification, event:
j avax. managemnent . Noti fi cati on[sour ce=chap2. xnbean: s
ervi ce=JNDI Map, t ype=or g. j boss. chap2. xnmbean. JNDI Map. put , sequenceNunber =10, ti meSt anp=1098632
693925, message=nul | , user Dat a=nul |]

There is nothing manifestly different about this version of the XMBean at this point because we
have done nothing to test that changes to attribute value are actually persisted. Perform this test
by running example xmbean2a several times:

[exanpl es] ant -Dchap=j mx - Dex=xmbean2a run-exanpl e

[java] Initial Val ues. | ength=2
[java] key=key10, val ue=val uel0

[exanmpl es] ant - Dchap=j mx - Dex=xnmbean2a run-exanpl e

[java] Initial Val ues. | ength=4
[java] key=keyl10, val ue=val uelO
[java] key=key2, val ue=val ue2

[exanmpl es] ant -Dchap=j mx - Dex=xnmbean2a run-exanpl e

[java] Initial Val ues. | ength=6
[java] key=key10, val ue=val uel0
[java] key=key2, val ue=val ue2
[java] key=key3, val ue=val ue3

The or g. j boss. book. j nx. xnmbean. Test XMBeanRest art used in this example obtains the
current | ni ti al Val ues attribute setting, and then adds another key/value pair to it. The client
code is shown below.

package org.j boss. book. j nx. xnbean;

i mport javax.nanagenent. Attri bute;
i nport javax. managenent. Cbj ect Nane;
i mport javax.nam ng. | nitial Context;

98

Writing JBoss MBean Services

i mport org.jboss.jnx.adaptor.rnm .RM Adapt or;

/**

* Aclient that denpnstrates the persistence of the xmbean

* attributes. Every tine it run it |looks up the Initial Val ues

* attribute, prints it out and then adds a new key/val ue to the
* |ist.

* @uthor Scott.Stark@ boss. org
* @ersion $Revision: 1.1 $
*/
public class Test XMBeanRest art
{
/**
* @©@aram args the command |ine argunents
*/
public static void main(String[] args) throws Exception

{

Initial Context ic
RM Adapt or server

new | nitial Context();
(RM Adaptor) ic.|ookup("jnm/rm/RM Adaptor");

/] Get the InitialValues attribute
Obj ect Name nane = new

hj ect Nane("j 2eechap2. xnbean: servi ce=JNDI Map") ;
String[] initial Values = (String[])

server.getAttri bute(nanme, "Initial Val ues");
Systemout.println("InitialVal ues.|ength="+initial Val ues. | ength);
int length = initialValues.|ength;

for (int n =0; n<length; n +=2) {
String key = initial Val ues[n];
String value = initial Val ues[n+1];

System out. printl n("key="+key+", val ue="+val ue);
}
// Add a new key/val ue pair
String[] newinitial Val ues = new String[l engt h+2];
System arraycopy(initial Val ues, 0, newl niti al Val ues,

0, length);
newl ni ti al Val ues[| ength] = "key"+(l ength/2+1);
new ni ti al Val ues[| engt h+1] = "val ue" +(| engt h/ 2+1) ;

Attribute ivalues = new
Attribute("InitialValues", new nitial Val ues);
server.set Attri but e(name, ival ues);

At this point you may even shutdown the JBoss server, restart it and then rerun the initial
example to see if the changes are persisted across server restarts:

[exanpl es] $ ant -Dchap=j nx - Dex=xmbean2 run-exanpl e

r un- exanpl exmbean2:

99

Chapter 4. The JBoss JMX Microkernel

[java] JNDI Map C ass: org.j boss. nx. nndel mbean. XMBean
[java] JNDI Map QOper ati ons:
[java]l] + void start()
[java] + void stop()
[java] + void put(java.lang. Ooj ect
chap2. xnbean: servi ce=JNDI Map, j ava. | ang. bj ect cha
p2. xnbean: ser vi ce=JNDI Map)
[java] + java.lang. Object get(java.lang. Object
chap2. xmbean: ser vi ce=JNDI Map)
[java] + java.lang. String getJndi Name()
[java] + void setJndi Nane(j ava.lang. String
chap2. xmbean: ser vi ce=JNDI Map)
[java] + [Ljava.lang.String; getlnitial Val ues()
[java]l] + void setlnitialValues([Ljava.lang.String;
chap2. xnbean: ser vi ce=JNDI Map)
[java] handl eNotification, event: null
[java] key=key10, val ue=val uel0
[java] key=key2, val ue=val ue2
[java] key=key3, val ue=val ue3
[java] key=key4, val ue=val ue4
[java] handl eNoti fication, event:
j avax. managemnent . Noti fi cati on[sour ce=chap2. xnbean: s
ervi ce=JNDI Map, t ype=or g. j boss. book. j mx. xnmbean. JNDI Map. put , sequenceNunber =3, ti meSt anp=10986
33664712, message=nul | , user Dat a=nul |]
[java] JNDI Map. put (keyl, val uel) successful
[java] handl eNoti fication, event:
j avax. managenent . Noti fi cati on[sour ce=chap2. xnbean: s
ervi ce=JNDI Map, t ype=or g. j boss. book. j mx. xnbean. JNDI Map. get , sequenceNunber =4, ti neSt anp=10986
33664821, nessage=nul | , user Dat a=nul |]
[java] JNDI Map. get (key0O): null
[java] handl eNoti fication, event:
j avax. managerent . Noti fi cati on[sour ce=chap2. xnbean: s
ervi ce=JNDI Map, t ype=or g. j boss. book. j mx. xmbean. JNDI Map. get , sequenceNunber =5, t i neSt anp=10986
33664860, message=nul | , user Dat a=nul |]
[java] JNDI Map. get (keyl): val uel
[java] handl eNoti fication, event:
j avax. managenent . Noti fi cati on[sour ce=chap2. xnbean: s
ervi ce=JNDI Map, t ype=or g. j boss. book. j mx. xnmbean. JNDI Map. put , sequenceNunber =6, t i neSt anp=10986
33664877, nessage=nul | , user Dat a=nul |]
[java] handl eNoti fication, event:
j avax. managerent . Noti fi cati on[sour ce=chap2. xnbean: s
ervi ce=JNDI Map, t ype=or g. j boss. book. j mx. xmbean. JNDI Map. put , sequenceNunber =7, t i neSt anp=10986
33664895, nessage=nul | , user Dat a=nul |]
[java] handl eNoti fication, event:
j avax. managenent . Noti fi cati on[sour ce=chap2. xnbean: s
ervi ce=JNDI Map, t ype=or g. j boss. book. j mx. xmbean. JNDI Map. put , sequenceNurber =8, ti neSt anp=10986
33664899, nessage=nul | , user Dat a=nul |]
[java] handl eNotification, event:
j avax. managemrent . Noti fi cati on[sour ce=chap2. xnbean: s
ervi ce=JNDI Map, t ype=or g. j boss. book. j mx. xmbean. JNDI Map. put , sequenceNunber =9, ti meSt anp=10986
33665614, nessage=nul | , user Dat a=nul |]

You see that the last I ni ti al Val ues attribute setting is in fact visible.

100

Deployment Ordering and Dependencies

4.4. Deployment Ordering and Dependencies

We have seen how to manage dependencies using the service descriptor depends and
depends- | i st tags. The deployment ordering supported by the deployment scanners provides
a coarse-grained dependency management in that there is an order to deployments. If
dependencies are consistent with the deployment packages then this is a simpler mechanism
than having to enumerate the explicit MBean-MBean dependencies. By writing your own filters
you can change the coarse grained ordering performed by the deployment scanner.

When a component archive is deployed, its nested deployment units are processed in a depth
first ordering. Structuring of components into an archive hierarchy is yet another way to manage
deployment ordering.You will need to explicitly state your MBean dependencies if your
packaging structure does not happen to resolve the dependencies. Let's consider an example
component deployment that consists of an MBean that uses an EJB. Here is the structure of the
example EAR.

out put/j nx/j nx- ex3. ear

+- META- | NF/ MANI FEST. M-

META- | NF/ j boss- app. xm

+- jnmx-ex3.jar (archive) [EIB jar]

e

+- META- | NF/ MANI FEST. MF

+- META-| NF/ ej b-jar. xm

+- org/jboss/ book/jm/ ex3/ EchoBean. cl ass

+- org/jboss/ book/jnx/ex3/ EchoLocal . cl ass

+- org/jboss/ book/jnmx/ ex3/ EchoLocal Hone. cl ass

j mx- ex3.sar (archive) [MBean sar]

- META- | NF/ MANI FEST. MF

+- META-| NF/ j boss- servi ce. xm

+- org/jboss/ book/jnx/ ex3/ Ej bMBeanAdapt or . cl ass
META- | NF/ appl i cati on. xm

4L

I
I
I
I
I
+-
I
I
I
+-

The EAR contains a j nx- ex3. j ar and j nx- ex3. sar. The j nx- ex3. j ar is the EJB archive and
the j nx- ex3. sar is the MBean service archive. We have implemented the service as a
Dynamic MBean to provide an illustration of their use.

package org.j boss. book. j nx. ex3;

i nport java.lang.refl ect. Met hod;

i mport javax.ejb. Creat eExcepti on;

i mport javax.managenent. Attri bute;

i mport javax. nanagement . Attri buteli st;

i nport javax. managenent. Attri but eNot FoundExcepti on;
i mport j avax. managenent . Dynam cMBean;

i mport javax. managemnent. | nvali dAttri buteVal ueExcepti on;
i mport javax. managenent. JVRunti neExcepti on;

i mport j avax. nanagenent . MBeanAttri but el nf o;

i nport javax. managenent . MBeanConst r uct or | nf o;

i mport j avax. managemnent. MBeanl nf o;

i mport javax. managenent. MBeanNoti fi cati onl nf o;

i mport j avax. nanagement . MBeanOper at i onl nf o;

i mport javax. managenent. MBeanExcepti on;

i mport javax.managenent. MBeanSer ver ;

101

Chapter 4. The JBoss JMX Microkernel

i mport j avax. nanagenent . Qbj ect Nane;

i nport javax. managenent. Refl ecti onExcepti on;
i mport javax. nam ng. | nitial Context;

i mport javax. nam ng. Nam ngExcepti on;

i mport org.jboss. system Servi ceMBeanSupport ;

/**

* An exanpl e of a Dynam cMBean that exposes sel ect attributes

* operations of an EJB as an MBean.
* @uthor Scott.Stark@ boss. org

* @ersion $Revision: 1.1 $

*/

publi c cl ass Ej bMBeanAdapt or extends Servi ceMBeanSupport

i mpl enents Dynani cMBean

{
private String hell oPrefix;
private String ej bdndi Nane;
private EcholLocal Home hone;

/** These are the nbean attributes we expose
*/
private MBeanAttributelnfo[] attributes = {

new MBeanAttri butel nfo("Hell oPrefix", "java.lang.String",
"The prefix nessage to append to the session

echo reply",
true, // isReadable
true, // isWitable
false), // isls

new MBeanAttri butel nfo("E bJndi Name", "java.lang. String",
"The JNDI nane of the session bean | ocal

hone",
true, // isReadable
true, // isWitable
false) // isls
}s
/**

* These are the mbean operations we expose
*/
private MBeanQOperationl nfo[] operations;

/**

* W& override this nethod to setup our echo operation info.

* could al so be done in a ctor.
*/
publ i ¢ Obj ect Nane preRegi st er (MBeanServer server,
Chj ect Name nane)
t hrows Exception

| og.i nfo("preRegi ster notification seen");
oper ati ons = new MBeanQper at i onl nf o[5] ;
Class thisCl ass = getC ass();

Cl ass[] paraneterTypes = {String. cl ass};
Met hod echoMet hod =

and

102

Deployment Ordering and Dependencies

t hi sd ass.
String desc =
+ " return
val ue";
oper ati ons[0]

// Add the Ser

get Met hod("echo", paraneterTypes);

"The echo op invokes the session bean echo net hod and"
s its value prefixed with the helloPrefix attribute

= new MBeanQper at i onl nf o(desc, echoMet hod);

vice interface operations fromour super class

par amet er Types = new Cl ass[0] ;
Met hod creat eMet hod =
t hi sC ass. get Met hod("create", paraneterTypes);
operations[1] = new MBeanQper ati onl nf o(" The
JBoss Service.create", createMethod);
Met hod start Met hod =
t hi s ass. get Met hod("start", paraneterTypes);
oper ations[2] = new MBeanQper ati onl nf o(" The
JBoss Service.start", startMethod);
Met hod st opMet hod =
t hi s ass. get Met hod(" st op", paraneterTypes);
oper ations[3] = new MBeanQper ati onl nf o(" The
JBoss Service. stop", startMethod);
Met hod destroyMet hod =
t hi sC ass. get Met hod(" destroy", paraneterTypes);
oper ations[4] = new MBeanQper ati onl nf o(" The
JBoss Service. destroy", startMethod);
return nane;

/Il --- Begin ServiceMBeanSupport overides
protected void createService() throws Exception

{
}

log.info("Notified of create state");

protected void startService() throws Exception
{
log.info("Notified of start state");
Initial Context ctx = new Initial Context();
home = (EchoLocal Honme) ctx. | ookup(ej bJndi Nane) ;

}

protected void stopService()

{ |l og.info("Notified of stop state");
}

/Il --- End ServiceMBeanSupport overides

public String getHelloPrefix()
{

}
public void setHelloPrefix(String hell oPrefix)
{

}

return hell oPrefix;

this. helloPrefix = helloPrefi x;

103

Chapter 4. The JBoss JMX Microkernel

public String getEj bJndi Nanme()

{
return ej bdndi Nane;
}
public void setEj bdndi Nane(String ej bJndi Nane)
{
thi s. ej bndi Name = ej bJndi Nane;
}

public String echo(String arQg)
t hrows CreateException, Nam ngException

{
| 0og. debug(" Lookup EcholLocal Hone@ +ej bJdndi Nane) ;
EchoLocal bean = hone.create();
String echo = hell oPrefix + bean. echo(arg);
return echo;

}

/1 --- Begin Dynami cMBean interface nethods

/**

* Returns the managenent interface that describes this dynamc
* resource. It is the responsibility of the inplenentation to
* make sure the description is accurate.
*
* @eturn the managenent interface descriptor.
*/
publ i ¢ MBeanl nfo get MBeanl nf o()
{
String classnane = getd ass(). get Name() ;
String description = "This is an MBean that uses a session bean in
t he"
+ " inplementation of its echo operation.";
MBeanl nfo[] constructors = null;
MBeanNot i ficationlnfo[] notifications = null;
MBeanl nf o nbeanl nfo = new MBeanl nf o(cl assnane,
description, attributes,
constructors, operations,
notifications);
// Log when this is called so we know when in the
lifecycle this is used
Thr owabl e trace = new Thr owabl e("get MBeanl nfo trace");
|l og.info("Don't panic, just a stack
trace", trace);
return nbeanl nf o;

* Returns the value of the attribute with the name matchi ng the
* passed string.

* @aramattribute the name of the attribute.

* @eturn the value of the attri bute.

* @xception Attribut eNot FoundExcepti on when there i s no such
* attribute.

* @xception MBeanExcepti on waps any error thrown by the

* resource when

* getting the attribute.

104

Deployment Ordering and Dependencies

* @xception ReflectionException waps any error invoking the
* resource.
*/
public Object getAttribute(String attribute)
throws AttributeNot FoundExcepti on,
MBeanExcepti on,
Ref | ecti onExcepti on

{
oj ect value = null;
if (attribute.equal s("HelloPrefix")) {
val ue = getHel |l oPrefi x();
} else if(attribute.equal s("E bindi Nane")) {
val ue = get Ej bdndi Nanme() ;
} else {
throw new Attribut eNot FoundExcepti on(" Unknown
attribute("+attri bute+") requested");
}
return val ue;
}
/**

* Returns the values of the attributes with names matching the
* passed string array.

* ©@param attri butes the nanes of the attribute.
* @eturn an {@ink AttributeList AttributelList} of name
* and val ue pairs.
*/
public AttributeList getAttributes(String[] attributes)
{
AttributelList values = new AttributeList();
for (int a =0; a < attributes.length; at+) {
String nane = attributes[a];
try {
hj ect value = getAttri bute(nane);
Attribute attr = new Attri bute(nane, val ue);
val ues. add(attr);
} catch(Exception e) {
log.error("Failed to find attribute: "+nanme, e);
}
}

return val ues;

}

/**
* Sets the value of an attribute. The attribute and new val ue

* are passed in the nane value pair {@ink Attribute
* Attribute}.

* @ee javax. managenent.Attribute

* @aram attri bute the nane and new val ue of the attribute.

* @xception Attribut eNot FoundExcepti on when there i s no such
* attribute.

* @xception InvalidAttributeVal ueExcepti on when the new val ue
* cannot be converted to the type of the attribute.

* @xception MBeanExcepti on waps any error thrown by the

105

Chapter 4. The JBoss JMX Microkernel

* resource when setting the new val ue.
* @xception ReflectionException waps any error invoking the
* resource.
*/
public void setAttribute(Attribute attribute)
throws AttributeNot FoundExcepti on,
I nval i dAttri but eVal ueExcepti on,
MBeanExcept i on,
Ref | ecti onExcepti on

String nane = attribute.get Nanme();

i f (nane.equal s("Hel | oPrefix")) {
String value = attribute.getValue().toString();
set Hel | oPrefi x(val ue);

} else if(nane. equal s("E bdndi Nane")) {
String value = attribute.getValue().toString();
set Ej bdndi Nane(val ue) ;

} else {
throw new Attribut eNot FoundExcepti on(" Unknown

attribute("+name+") requested");
}
}

* Sets the values of the attri butes passed as an
* {@ink AttributeList AttributelList} of name and new
* val ue pairs.

* ©@param attri butes the nane an new val ue pairs.
* @eturn an {@ink AttributeList AttributeList} of name and
* value pairs that were actually set.

*/
public AttributelList setAttributes(AttributeList attributes)
{
AttributelList setAttributes = new Attri buteList();
for(int a =0; a < attributes.size(); a++) {
Attribute attr = (Attribute) attributes. get(a);
try {
setAttribute(attr);
setAttributes.add(attr);
} catch(Exception ignore) ({
}
}
return setAttri butes;
}
/**

* | nvokes a resource operation.

* @aram acti onName the nane of the operation to perform

* @aram parans the paraneters to pass to the operation.

* @aram signature the signartures of the paraneters.

* @eturn the result of the operation.

* @xcepti on MBeanExcepti on waps any error thrown by the

* resource when perform ng the operation.

* @xception Reflecti onException waps any error invoking the
* resource.

106

Deployment Ordering and Dependencies

*/

public Object invoke(String actionName, Cbject[] parans,

String[] signature)
t hrows MBeanExcepti on,
Ref | ecti onExcepti on

oj ect rtnValue = null;
| og. debug(" Begi n i nvoke, acti onName="+acti onNane) ;
try {
i f (actionNanme. equal s("echo")) {
String arg = (String) parans[0];
rtnVal ue = echo(arg);
| og. debug(" Resul t: "+rtnVal ue);
} else if (actionNane.equal s("create")) {
super.create();
} else if (actionNane.equal s("start")) {
super.start();
} else if (actionNane.equal s("stop")) {
super. stop();
} else if (actionNane.equal s("destroy")) {
super . destroy();
} else {
t hrow new JMRunt i mreException("Invalid state,
don't know about op="+acti onNang);
}
} catch(Exception e) {
t hrow new Refl ecti onException(e, "echo failed");

}

| og. debug(" End i nvoke, acti onNane="+acti onNane);
return rtnVal ue;

-- End Dynanmi cMBean interface nethods

Believe it or not, this is a very trivial MBean. The vast majority of the code is there to provide the
MBean metadata and handle the callbacks from the MBean Server. This is required because a

Dynamic MBean is free to expose whatever management interface it wants. A Dynamic MBean

can in fact change its management interface at runtime simply by returning different metadata

from the get MBeanl nf o method. Of course, some clients may not be happy with such a
dynamic object, but the MBean Server will do nothing to prevent a Dynamic MBean from

changing its interface.

There are two points to this example. First, demonstrate how an MBean can depend on an EJB

for some of its functionality and second, how to create MBeans with dynamic management

interfaces. If we were to write a standard MBean with a static interface for this example it would
look like the following.

public interface Ej bMBeanAdapt or MBean

{

107

Chapter 4. The JBoss JMX Microkernel

public String getHelloPrefix();
public void setHelloPrefix(String prefix);
public String getE bJndi Narme();
public void set Ej bindi Nane(String jndi Nane);
public String echo(String arg) throws CreateException, Nam ngExcepti on;
public void create() throws Exception;
public void start() throws Exception;
public void stop();
c

public void destroy();

Moving to lines 67-83, this is where the MBean operation metadata is constructed. The
echo(String),create(),start(),stop() anddestroy() operations are defined by obtaining
the corresponding java.lang.reflect.Method object and adding a description. Let's go through the
code and discuss where this interface implementation exists and how the MBean uses the EJB.
Beginning with lines 40-51, the two MBeanAt t ri but el nf o instances created define the
attributes of the MBean. These attributes correspond to the get Hel | oPr ef i x/set Hel | oPrefi x
and get Ej bandi Narre/set Ej bJndi Nane of the static interface. One thing to note in terms of why
one might want to use a Dynamic MBean is that you have the ability to associate descriptive
text with the attribute metadata. This is not something you can do with a static interface.

Lines 88-103 correspond to the JBoss service life cycle callbacks. Since we are subclassing the
Ser vi ceMBeanSuppor t utility class, we override the cr eat eSer vi ce, st art Ser vi ce, and

st opSer vi ce template callbacks rather than the creat e, st art, and st op methods of the
service interface. Note that we cannot attempt to lookup the EchoLocal Horre interface of the
EJB we make use of until the st art Ser vi ce method. Any attempt to access the home interface
in an earlier life cycle method would result in the name not being found in JNDI because the
EJB container had not gotten to the point of binding the home interfaces. Because of this
dependency we will need to specify that the MBean service depends on the EchoLocal EJB
container to ensure that the service is not started before the EJB container is started. We will
see this dependency specification when we look at the service descriptor.

Lines 105-121 are the Hel | oPr ef i x and Ej bJndi Name attribute accessors implementations.
These are invoked in response to get At tri but e/set At tri but e invocations made through the
MBean Server.

Lines 123-130 correspond to the echo(St ri ng) operation implementation. This method invokes
the EcholLocal . echo(St ri ng) EJB method. The local bean interface is created using the
EcholLocal Hone that was obtained in the st art Ser vi ce method.

The remainder of the class makes up the Dynamic MBean interface implementation. Lines
133-152 correspond to the MBean metadata accessor callback. This method returns a
description of the MBean management interface in the form of the

j avax. managenent . MBeanl nf o object. This is made up of a descri pti on, the

MBeanAt t ri but el nf o and MBeanQper at i onl nf o metadata created earlier, as well as
constructor and notification information. This MBean does not need any special constructors or
notifications so this information is null.

108

Deployment Ordering and Dependencies

Lines 154-258 handle the attribute access requests. This is rather tedious and error prone code
so0 a toolkit or infrastructure that helps generate these methods should be used. A Model MBean
framework based on XML called XBeans is currently being investigated in JBoss. Other than
this, no other Dynamic MBean frameworks currently exist.

Lines 260-310 correspond to the operation invocation dispatch entry point. Here the request
operation action name is checked against those the MBean handles and the appropriate
method is invoked.

The j boss-servi ce. xnl descriptor for the MBean is given below. The dependency on the EJB
container MBean is highlighted in bold. The format of the EJB container MBean ObjectName is:
"j boss.j 2ee: servi ce=EJB, j ndi Name=" + <hone-j ndi - name> where the <home-jndi-name>
is the EJB home interface JNDI name.

<server>
<mbean code="org. | boss. book. j nx. ex3. Ej bMBeanAdapt or "
nane="j boss. book: ser vi ce=Ej bMBeanAdapt or " >
<attribute nane="Hel | oPrefi x">Adapt or Prefi x</attri bute>
<attribute nane="Ej bJndi Nane" >l ocal /j 2ee_chap2. EchoBean</ attri but e>
<depends>j boss. j 2ee: servi ce=EJB, j ndi Nane=I| ocal / j 2ee_chap2. EchoBean</ depends>
</ mbean>
</ server >

Deploy the example ear by running:

[exanpl es]$ ant -Dchap=j nx - Dex=3 run-exanpl e

On the server console there will be messages similar to the following:

14:57: 12,906 | NFO [EARDepl oyer] Init J2EE applicati on:
file:/private/tnp/jboss-eap-4.3/jboss-as/server/
producti on/ depl oy/j 2ee_chap2- ex3. ear
14:57: 13, 044 I NFO [Ej bMBeanAdaptor] Don't panic, just a stack trace
j ava. | ang. Throwabl e: get MBeanl nfo trace
at
org. j boss. book. j nx. ex3. Ej bMBeanAdapt or . get MBeanl nf o(Ej bMBeanAdapt or . j ava: 153)

14:57: 13,088 | NFO [Ej bMBeanAdaptor] preRegister notification seen
14:57: 13,093 I NFO [Ej bMBeanAdaptor] Don't panic, just a stack trace
j ava. | ang. Throwabl e: get MBeanlnfo trace
at
org. j boss. book. j nx. ex3. Ej bMBeanAdapt or . get MBeanl nf o(Ej bMBeanAdapt or . j ava: 153)

14:57: 13,117 INFO [Ej bMBeanAdaptor] Don't panic, just a stack trace
j ava. | ang. Thr owabl e: get MBeanl nfo trace
at
org. j boss. book. j nx. ex3. Ej bMBeanAdapt or . get MBeanl nf o(Ej bMBeanAdapt or . j ava: 153)

14:57: 13, 140 WARN [Ej bMBeanAdapt or] Unexcepted error accessi ng MBeanl nfo
for null
j ava. | ang. Nul | Poi nt er Excepti on

109

Chapter 4. The JBoss JMX Microkernel

at
org.j boss. syst em Ser vi ceMBeanSupport . post Regi st er (Servi ceMBeanSupport.java: 418)

14:57: 13, 203 I NFO [Ej bMBeanAdaptor] Don't panic, just a stack trace
j ava. | ang. Throwabl e: get MBeanlnfo trace
at
org. j boss. book. j nx. ex3. Ej bMBeanAdapt or . get MBeanl nf o(Ej bMBeanAdapt or . j ava: 153)

14:57: 13,232 I NFO [Ej bMBeanAdaptor] Don't panic, just a stack trace
j ava. | ang. Throwabl e: get MBeanl nfo trace
at
org. j boss. book. j nx. ex3. Ej bMBeanAdapt or . get MBeanl nf o(Ej bMBeanAdapt or . j ava: 153)

14: 57: 13, 420 | NFO [Ej bModul e] Depl oyi ng Chap2Echol nf oBean
14:57: 13, 443 I NFO [Ej bModul e] Depl oyi ng chap2. EchoBean
14:57: 13,488 I NFO [Ej bMBeanAdaptor] Don't panic, just a stack trace
j ava. | ang. Thr owabl e: get MBeanl nfo trace
at
org. j boss. book. j nx. ex3. Ej bMBeanAdapt or . get MBeanl nf o(Ej bMBeanAdapt or . j ava: 153)

14:57: 13,542 I NFO [Ej bMBeanAdaptor] Don't panic, just a stack trace
j ava. | ang. Thr owabl e: get MBeanl nfo trace
at
org.j boss. book. j nx. ex3. Ej bMBeanAdapt or . get MBeanl nf o(Ej bMBeanAdapt or . j ava: 153)

14:57: 13,558 I NFO [Ej bMBeanAdaptor] Begi n i nvoke, acti onNanme=create
14:57: 13,560 I NFO [Ej bMBeanAdaptor] Notified of create state
14:57: 13,562 | NFO [Ej bMBeanAdaptor] End invoke, actionNane=create
14:57: 13,604 I NFO [Ej bMBeanAdaptor] Don't panic, just a stack trace
j ava. | ang. Thr owabl e: get MBeanl nfo trace
at
org. j boss. book. j nx. ex3. Ej bMBeanAdapt or . get MBeanl nf o(Ej bMBeanAdapt or . j ava: 153)

14:57: 13,621 INFO [Ej bMBeanAdaptor] Don't panic, just a stack trace
j ava. | ang. Thr owabl e: get MBeanl nfo trace

at
org. j boss. book. j nx. ex3. Ej bMBeanAdapt or . get MBeanl nf o(Ej bMBeanAdapt or . j ava: 153)
14:57: 13,641 | NFO [Ej bMBeanAdaptor] Begi n i nvoke, acti onNane=get St at e
14:57: 13,942 I NFO [Ej bMBeanAdaptor] Begin invoke, acti onName=start
14: 57: 13,944 I NFO [Ej bMBeanAdaptor] Notified of start state
14:57: 13,951 I NFO [Ej bMBeanAdaptor] Testing Echo
14:57: 13,983 I NFO [EchoBean] echo, info=echo info, arg=, arg=startService
14:57: 13,986 I NFO [Ej bMBeanAdaptor] echo(startService) = start Service
14:57: 13,988 | NFO [Ej bMBeanAdaptor] End invoke, actionNane=start
14:57: 13,991 I NFO [EJBDepl oyer] Depl oyed:
file:/tnp/jboss-eap-4.3/jboss-as/server/production/tnp/depl oy
/t np60550j nx- ex3. ear -contents/j nmx-ex3.jar
14:57: 14, 075 I NFO [EARDepl oyer] Started J2EE applicati on:

The stack traces are not exceptions. They are traces coming from the Ej bvBeanAdapt or code
to demonstrate that clients ask for the MBean interface when they want to discover the MBean's
capabilities. Notice that the EJB container (lines with [EjpModule]) is started before the example
MBean (lines with [EjpMBeanAdaptor]).

110

JBoss Deployer Architecture

Now, let's invoke the echo method using the JMX console web application. Go to the JIMX
Console (http://localhost:8080/jmx-console) and find the service=EjbMBeanAdaptor in the
jboss.book domain. Click on the link and scroll down to the echo operation section. The view
should be like that shown in Figure 4.19, “The EjbMBeanAdaptor MBean operations JMX
console view".

[Bsisls) MBean Inspector

a4 http://localhost: 8080 /jmx-console /HtmlAdaptorZaction=inspectMI&) = Qr Coogle
|

A seanmspecor [0 e

List of MBean attributes:

|__Name | Type |Access _ value | ____ Description |

The prefix message to append to
the session echo reply

The JNDI name of the session bean
local home

HelloPrefix |java.lang.String|RW AdaptorPrefix

I

List of MBean operations:

EjbIndiName|java.lang.String|RW local/chap2.EchoBean

IfrApp!g.r Changes "

java.lang.String echo()

The echo op invokes the session bean echo method and returns its value prefixed with the helloPrefix
attribute value

ParamType ParamDescription

arg0 |java.lang.String|| -echo-arg| MBean Operation Parameter.

-’_' Invoke "

void create()

The JBoss Service.create

Invoke

-

Figure 4.19. The EjpMBeanAdaptor MBean operations JMX console view

As shown, we have already entered an argument string of - echo- ar g into the ParamValue text

field. Press the Invoke button and a result string of Adapt or Pr ef i x- echo- ar g is displayed on
the results page. The server console will show several stack traces from the various metadata
queries issues by the JMX console and the MBean invoke method debugging lines:

10: 51: 48, 671 | NFO [Ejl bMBeanAdapt or] Begi n i nvoke, acti onNane=echo

10: 51: 48, 671 | NFO [Ef bMBeanAdapt or] Lookup

EchoLocal Home@ ocal / j 2ee_chap2. EchoBean

10: 51: 48, 687 | NFO [EchoBean] echo, info=echo info, arg=, arg=-echo-arg
10: 51: 48, 687 | NFO [Ej bMBeanAdapt or] Resul t: AdaptorPrefix-echo-arg

10: 51: 48, 687 | NFO [Ejl bMBeanAdapt or] End i nvoke, acti onNane=echo

111

http://localhost:8080/jmx-console

Chapter 4. The JBoss JMX Microkernel

5. JBoss Deployer Architecture

JBoss has an extensible deployment architecture that allows one to incorporate components
into the bare JBoss JMX microkernel. The Mai nDepl oyer is the deployment entry point.
Requests to deploy a component are sent to the Mai nDepl oyer and it determines if there is a
subdeployer capable of handling the deployment, and if there is, it delegates the deployment to
the subdeployer. We saw an example of this when we looked at how the Mai nDepl oyer used
the SARDepl oyer to deploy MBean services. Among the deployers provided with JBoss are:

» AbstractWebDeployer: This subdeployer handles web application archives (WARS). It
accepts deployment archives and directories whose name ends with a war suffix. WARs must
have a WEB- I NF/ web. xm descriptor and may have a VEB- | NF/ j boss-web. xm descriptor.

« EARDeployer: This subdeployer handles enterprise application archives (EARS). It accepts
deployment archives and directories whose name ends with an ear suffix. EARs must have a
META- | NF/ appl i cati on. xnl descriptor and may have a META- | NF/ j boss- app. xm
descriptor.

« EJBDeployer: This subdeployer handles enterprise bean jars. It accepts deployment
archives and directories whose name ends with a j ar suffix. EJB jars must have a
META- | NF/ ej b-j ar. xnl descriptor and may have a META- | NF/ j boss. xml descriptor.

* JARDeployer: This subdeployer handles library JAR archives. The only restriction it places
on an archive is that it cannot contain a VEB- | NF directory.

 RARDeployer: This subdeployer handles JCA resource archives (RARSs). It accepts
deployment archives and directories whose name ends with a r ar suffix. RARs must have a
META- | NF/ ra. xml descriptor.

* SARDeployer: This subdeployer handles JBoss MBean service archives (SARS). It accepts
deployment archives and directories whose name ends with a sar suffix, as well as
standalone XML files that end with ser vi ce. xnl . SARSs that are jars must have a
META- | NF/ j boss- servi ce. xm descriptor.

« XSLSubDeployer: This subdeployer deploys arbitrary XML files. JBoss uses the
XSLSubDeployer to deploy ds. xni files and transform them into ser vi ce. xm files for the
SARDepl oyer . However, it is not limited to just this task.

 HARDeployer: This subdeployer deploys hibernate archives (HARS). It accepts deployment
archives and directories whose name ends with a har suffix. HARs must have a
META- | NF/ hi ber nat e- servi ce. xm descriptor.

« AspectDeployer: This subdeployer deploys AOP archives. It accepts deployment archives
and directories whose name ends with an aop suffix as well as aop. xnl files. AOP archives
must have a META- | NF/ j boss- aop. xm descriptor.

» ClientDeployer: This subdeployer deploys J2EE application clients. It accepts deployment
archives and directories whose name ends with a j ar suffix. J2EE clients must have a
META- | NF/ appl i cation-client.xm descriptor and may have a

112

Deployers and ClassLoaders

META- | NF/ j boss-cl i ent.xnl descriptor.

* BeanShellSubDeployer: This subdeployer deploys bean shell scripts as MBeans. It accepts
files whose name ends with a bsh suffix.

The MainDeployer, JARDeployer and SARDeployer are hard coded deployers in the JBoss
server core. All other deployers are MBean services that register themselves as deployers with
the MainDeployer using the addDepl oyer (SubDepl oyer) operation.

The Mai nDepl oyer communicates information about the component to be deployed the
SubDepl oyer using a Depl oynent | nf o object. The Depl oynent | nf o object is a data structure
that encapsulates the complete state of a deployable component.

When the Mai nDepl oyer receives a deployment request, it iterates through its registered
subdeployers and invokes the accept s(Depl oynent | nf o) method on the subdeployer. The first
subdeployer to return true is chosen. The MainDeployer will delegate the init, create, start, stop
and destroy deployment life cycle operations to the subdeployer.

5.1. Deployers and ClassLoaders

Deployers are the mechanism by which components are brought into a JBoss server. Deployers
are also the creators of the majority of UCL instances, and the primary creator is the
MainDeployer. The MainDeployer creates the UCL for a deployment early on during its init
method. The UCL is created by calling the Deploymentinfo.createClassLoaders() method. Only
the topmost Depl oynent | nf o will actually create a UCL. All subdeployments will add their class
paths to their parent Depl oynent | nf o UCL. Every deployment does have a standalone
URLClassLoader that uses the deployment URL as its path. This is used to localize the loading
of resources such as deployment descriptors. Figure 4.20, “An illustration of the class loaders
involved with an EAR deployment” provides an illustration of the interaction between Deployers,
Deploymentinfos and class loaders.

113

Chapter 4. The JBoss JMX Microkernel

MainDeployer r—-l

g &:ﬂhgﬂepluyer
BDeployer
ARDeployer

UnifiedLoade

SOMmS . SAF
+- META-INF /MANIFEST.MF

+- META-INEfapplication.ml
+— META-INE/jboss-app .xml -J [|
+- 1libfutil jar {(archiwe)

| o+ ... wéh‘.’pf
+- ejbs.jar {(archiwve) |

I +- META-INE/MANIFEST.MF Class-
| +- META-INF/fejb—jar. saml

| +- META-INF/jbo=s._sanl

| +- role=s properties
|

|

Deplnymentlnfn? UniﬂedtlamLuﬁadeﬂ
FN

e.ear

Jutil_jar

URLClassLoaders

+- users properties
= L.

+- wmb _war (archive)

+- META-INF fMANIFEST . MF

+= WEE-INE/[/jbos=s-web . sanl web.war ‘

+- WER-INF fweb _sanl L O

+- WEB-INE/flib/jbosstest-web-util.jar {(archiwve)

| += META-INF /MANTFEST. MF

| +- ...

+= WEE-INF [classes fw/y/Returnlata. class

| = .

+= dindex. html

=

—— o o e o o -

Figure 4.20. An illustration of the class loaders involved with an EAR
deployment

The figure illustrates an EAR deployment with EJB and WAR subdeployments. The EJB
deployment references the l'i b/ uti | . j ar utility jar via its manifest. The WAR includes classes
in its WEB- | NF/ cl asses directory as well as the WEB- | NF/ | i b/ j bosst est -web-util.jar. Each
deployment has a Depl oynent | nf o instance that has a URLCO assLoader pointing to the
deployment archive. The Depl oynent | nf o associated with sone. ear is the only one to have a
UCL created. The ej bs. j ar and web. war Depl oynent | nf os add their deployment archive to the
sone. ear UCL classpath, and share this UCL as their deployment UCL. The EJBDepl oyer also
adds any manifest jars to the EAR UCL.

The WARDepl oyer behaves differently than other deployers in that it only adds its WAR archive
to the Depl oynent | nf o UCL classpath. The loading of classes from the WAR

VEB- | NF/ ¢l asses and VEB- | NF/ | i b locations is handled by the servlet container class loader.
The servlet container class loaders delegate to the WAR Depl oynent | nf o UCL as their parent

114

Remote Access to Services, Detached

class loader, but the server container class loader is not part of the JBoss class loader
repository. Therefore, classes inside of a WAR are not visible to other components. Classes that
need to be shared between web application components and other components such as EJBs,
and MBeans need to be loaded into the shared class loader repository either by including the
classes into a SAR or EJB deployment, or by referencing a jar containing the shared classes
through a manifest C ass- Pat h entry. In the case of a SAR, the SAR classpath element in the
service deployment serves the same purpose as a JAR manifest C ass- Pat h.

6. Remote Access to Services, Detached Invokers

In addition to the MBean services notion that allows for the ability to integrate arbitrary
functionality, JBoss also has a detached invoker concept that allows MBean services to expose
functional interfaces via arbitrary protocols for remote access by clients. The notion of a
detached invoker is that remoting and the protocol by which a service is accessed is a functional
aspect or service independent of the component. Thus, one can make a haming service
available for use via RMI/JRMP, RMI/HTTP, RMI/SOAP, or any arbitrary custom transport.

Let's begin our discussion of the detached invoker architecture with an overview of the
components involved. The main components in the detached invoker architecture are shown in
Figure 4.21, “The main components in the detached invoker architecture”.

Proxy Factory

N

Client Proxy

Daetached | Invoker

invoke({Invocation)
Exposed Interface

Invoker Interceptor

MBaanSarvear

Target MBean

< 1
invoke({Invocation)

Exposed Interface

Figure 4.21. The main components in the detached invoker architecture

115

Chapter 4. The JBoss JMX Microkernel

On the client side, there exists a client proxy which exposes the interface(s) of the MBean
service. This is the same smart, compile-less dynamic proxy that we use for EJB home and
remote interfaces. The only difference between the proxy for an arbitrary service and the EJB is
the set of interfaces exposed as well as the client side interceptors found inside the proxy. The
client interceptors are represented by the rectangles found inside of the client proxy. An
interceptor is an assembly line type of pattern that allows for transformation of a method
invocation and/or return values. A client obtains a proxy through some lookup mechanism,
typically JNDI. Although RMI is indicated in Figure 4.21, “The main components in the detached
invoker architecture”, the only real requirement on the exposed interface and its types is that
they are serializable between the client server over JNDI as well as the transport layer.

The choice of the transport layer is determined by the last interceptor in the client proxy, which
is referred to as the Invoker Interceptor in Figure 4.21, “The main components in the detached
invoker architecture”. The invoker interceptor contains a reference to the transport specific stub
of the server side Detached Invoker MBean service. The invoker interceptor also handles the
optimization of calls that occur within the same VM as the target MBean. When the invoker
interceptor detects that this is the case the call is passed to a call-by-reference invoker that
simply passes the invocation along to the target MBean.

The detached invoker service is responsible for making a generic invoke operation available via
the transport the detached invoker handles. The | nvoker interface illustrates the generic invoke
operation.

package org.jboss.invocati on;

i mport java.rni.Renote;
i nport org.jboss. proxy.|nterceptor;
i mport org.jboss.util.id.GUJ D

public interface Invoker
ext ends Renot e

{

GUID ID = new GU () ;

String get Server Host Nane() throws Exception;

bj ect i nvoke(lnvocation invocation) throws Exception;
}

The Invoker interface extends Renot e to be compatible with RMI, but this does not mean that an
invoker must expose an RMI service stub. The detached invoker service simply acts as a
transport gateway that accepts invocations represented as the

org.j boss.invocation. | nvocation object over its specific transport, unmarshalls the
invocation, forwards the invocation onto the destination MBean service, represented by the
Target MBean in Figure 4.21, “The main components in the detached invoker architecture”, and
marshalls the return value or exception resulting from the forwarded call back to the client.

116

Invokers

The I nvocat i on object is just a representation of a method invocation context. This includes
the target MBean name, the method, the method arguments, a context of information
associated with the proxy by the proxy factory, and an arbitrary map of data associated with the
invocation by the client proxy interceptors.

The configuration of the client proxy is done by the server side proxy factory MBean service,
indicated by the Proxy Factory component in Figure 4.21, “The main components in the
detached invoker architecture”. The proxy factory performs the following tasks:

Create a dynamic proxy that implements the interface the target MBean wishes to expose.

Associate the client proxy interceptors with the dynamic proxy handler.

Associate the invocation context with the dynamic proxy. This includes the target MBean,
detached invoker stub and the proxy JNDI name.

* Make the proxy available to clients by binding the proxy into JNDI.

The last component in Figure 4.21, “The main components in the detached invoker architecture”
is the Target MBean service that wishes to expose an interface for invocations to remote clients.
The steps required for an MBean service to be accessible through a given interface are:

» Define a JMX operation matching the signature: publ i ¢ Obj ect
i nvoke(org.jboss.invocation.|lnvocation) throws Exception

« Create a HashMap<Long, Met hod> mapping from the exposed interface
java. |l ang. ref | ect. Met hods to the long hash representation using the
org. j boss.invocation. Marshal | edl nvocati on. cal cul at eHash method.

« Implement the i nvoke(| nvocati on) JMX operation and use the interface method hash
mapping to transform from the long hash representation of the invoked method to the
java. |l ang. refl ect. Met hod of the exposed interface. Reflection is used to perform the
actual invocation on the object associated with the MBean service that actually implements
the exposed interface.

6.1. A Detached Invoker Example, the MBeanServer Invoker
Adaptor Service

In the section on connecting to the JMX server we mentioned that there was a service that
allows one to access the j avax. managenent . MBeanSer ver via any protocol using an invoker
service. In this section we present the

org. j boss.j nx. connector. i nvoker. | nvoker Adapt or Ser vi ce and its configuration for
access via RMI/JRMP as an example of the steps required to provide remote access to an
MBean service.

The I nvoker Adapt or Ser vi ce is a simple MBean service that only exists to fulfill the target

117

Chapter 4. The JBoss JMX Microkernel

MBean role in the detached invoker pattern.

package org.jboss. | nx.connector.invoker;
public interface |nvokerAdaptor Servi ceMBean
extends org.j boss. system Servi ceMBean

{
Cl ass get Exportedl nterface();
voi d set Exportedl nterface(d ass exportedlnterface);
Ohj ect invoke(org.jboss.invocation.|lnvocation invocati on)
t hrows Excepti on;
}

package org.j boss.jnx.connector.invoker;

i mport java.lang.reflect.|nvocationTarget Excepti on;

i mport java.lang.refl ect. Met hod;

i mport java.lang. refl ect. Undecl aredThr owabl eExcepti on;
i mport java.util.Collections;

i mport java.util.HashMap;

i mport java.util.Mp;

i mport javax.managenent. MBeanSer ver ;
i mport javax. management . Cbj ect Namne;

i nport org.jboss.invocation.|nvocation;

i mport org.jboss.invocation. Marshal | edl nvocati on;
i mport org.jboss. nx. server. Server Const ant s;

i mport org.jboss. system Servi ceMBeanSupport ;

i mport org.jboss.system Regi stry;

public class |Invoker Adapt or Servi ce
ext ends Servi ceMBeanSupport
i mpl ement s | nvoker Adapt or Ser vi ceMBean, Server Const ant s

private static Object Name nbeanRegi stry;

static {
try {
nbeanRegi stry = new Obj ect Nane(MBEAN_REG STRY) ;
} catch (Exception e) {
t hrow new Runti neException(e.toString());
}
}

private Map marshal | edl nvocat i onMappi ng = new HashMap() ;
private Cl ass exportedlnterface;

public C ass get Exportedlnterface()

{
return exportedlnterface;
}
public void set Exportedl nterface(Cl ass exportedlnterface)
{
this. exportedl nterface = exportedlnterface;
}

118

A Detached Invoker Example,

the

protected void start Service()

{

t hrows Exception

// Build the interface method map
Met hod[] met hods = exportedl nterface. get Met hods() ;
HashMap t mpMap = new HashMap(net hods. | engt h);
for (int m=0; m< nmethods.length; m++) {
Met hod net hod = net hods[ni;
Long hash = new

Long(Mar shal | edl nvocat i on. cal cul at eHash(met hod)) ;

}

t npMap. put (hash, net hod);
}

mar shal | edl nvocat i onMappi ng = Col | ecti ons. unnodi fi abl eMap(t mpMap) ;
/1 Place our OnbjectName hash into the Registry so invokers can

/] resolve it

Regi stry. bi nd(new I nt eger (servi ceNane. hashCode()), serviceNane);

protected void stopService()

{
}

t hrows Exception

Regi stry. unbi nd(new I nt eger (servi ceNanme. hashCode())) ;

publ i c Obj ect invoke(lnvocation invocati on)

{

throws Exception

/1 Make sure we have the correct classloader before unmarshalling
Thread thread = Thread. current Thread();
Cl assLoader ol dCL = thread. get Cont ext Cl assLoader () ;

/1l Get the MBean this operation applies to
Cl assLoader newCL = nul | ;
Ohj ect Name obj ect Name = (Qbj ect Nane)
i nvocat i on. get Val ue(" JMX_OBJECT_NAME") ;
if (objectNane !'= null) {
/] Obtain the O assLoader associated with the MBean depl oynent
newCL = (C assLoader)
server. i nvoke(nbeanRegi stry, "getVal ue",
new Obj ect[] { objectNanme, CLASSLOADER },
new String[] { ObjectNane. cl ass. get Nane(),
"java.lang. String" });
}

if (newCL !'= null && newCL != ol dCL) {
t hr ead. set Cont ext d assLoader (newCL) ;

}

try {
/1 Set the nethod hash to Met hod mappi ng
if (invocation instanceof Marshall edl nvocation) {

Mar shal | edl nvocation mi = (Marshal | edl nvocati on) invocati on;

m . set Met hodMap(mar shal | edl nvocat i onMappi ng) ;

119

Chapter 4. The JBoss JMX Microkernel

}

/'l 1 nvoke the MBeanServer nethod via reflection
Met hod net hod = i nvocati on. get Met hod() ;

Chj ect[] args = invocation. get Argunents();
oj ect value = null;
try {

String nane = net hod. get Nane() ;
Class[] sig = nethod. get Par anet er Types() ;
Met hod nbeanSer ver Met hod =
MBeanSer ver . cl ass. get Met hod(nanme, sig);
val ue = nbeanServer Met hod. i nvoke(server, args);
} catch(lnvocationTar get Exception e) {
Throwabl e t = e. get Target Excepti on();
if (t instanceof Exception) ({
throw (Exception) t;
} else {
t hr ow new Undecl ar edThr owabl eExcepti on(t,
nmet hod. toString());

}
}

return val ue;
} finally {
if (newCL !'= null && newCL != ol dCL) {
t hr ead. set Cont ext Cl assLoader (ol dCL) ;

}

Example 4.16. The InvokerAdaptorService MBean

Let's go through the key details of this service. The | nvoker Adapt or Ser vi ceMBean Standard
MBean interface of the | nvoker Adapt or Ser vi ce has a single Expor t edl nt er f ace attribute
and a single i nvoke(I nvocati on) operation. The Export edl nt er f ace attribute allows
customization of the type of interface the service exposes to clients. This has to be compatible
with the MBeanSer ver class in terms of method name and signature. The i nvoke(| nvocati on)
operation is the required entry point that target MBean services must expose to participate in
the detached invoker pattern. This operation is invoked by the detached invoker services that
have been configured to provide access to the | nvoker Adapt or Ser vi ce.

Lines 54-64 of the InvokerAdaptorService build the HashMap<Long, Method> of the
Exportedinterface Class using the

org.j boss.invocation. Marshal | edl nvocati on. cal cul at eHash(Met hod) utility method.
Because j ava. | ang. ref | ect . Met hod instances are not serializable, a Mar shal | edl nvocat i on
version of the non-serializable I nvocat i on class is used to marshall the invocation between the
client and server. The Mar shal | edl nvocat i on replaces the Method instances with their
corresponding hash representation. On the server side, the Mar shal | edl nvocat i on must be

120

MBeanServer Invoker Adaptor Service

told what the hash to Method mapping is.

Line 64 creates a mapping between the | nvoker Adapt or Ser vi ce service name and its hash
code representation. This is used by detached invokers to determine what the target MBean
(bj ect Nane of an I nvocat i on is. When the target MBean name is store in the | nvocati on, its
store as its hashCode because (bj ect Nanes are relatively expensive objects to create. The
org. j boss. system Regi st ry is a global map like construct that invokers use to store the hash
code to bj ect Name mappings in.

Lines 77-93 obtain the name of the MBean on which the MBeanServer operation is being
performed and lookup the class loader associated with the MBean's SAR deployment. This
information is available via the or g. j boss. nx. server.regi stry. Basi cMBeanRegi stry, a
JBoss JMX implementation specific class. It is generally necessary for an MBean to establish
the correct class loading context because the detached invoker protocol layer may not have
access to the class loaders needed to unmarshall the types associated with an invocation.

Lines 101-105 install the ExposedI nt er f ace class method hash to method mapping if the
invocation argument is of type Mar shal | edl nvocat i on. The method mapping calculated
previously at lines 54-62 is used here.

Lines 107-114 perform a second mapping from the ExposedI nt er f ace Method to the matching
method of the MBeanServer class. The | nvoker Ser vi ceAdapt or decouples the

Exposedl nt er f ace from the MBeanServer class in that it allows an arbitrary interface. This is
needed on one hand because the standard j ava. | ang. ref | ect. Proxy class can only proxy
interfaces. It also allows one to only expose a subset of the MBeanServer methods and add
transport specific exceptions like j ava. r mi . Renot eExcept i on to the Exposedl nterf ace
method signatures.

Line 115 dispatches the MBeanServer method invocation to the MBeanServer instance to which
the I nvoker Adapt or Ser vi ce was deployed. The server instance variable is inherited from the
Ser vi ceMBeanSupport superclass.

Lines 117-124 handle any exceptions coming from the reflective invocation including the
unwrapping of any declared exception thrown by the invocation.

Line 126 is the return of the successful MBeanServer method invocation result.

Note that the | nvoker Adapt or Ser vi ce MBean does not deal directly with any transport specific
details. There is the calculation of the method hash to Method mapping, but this is a transport
independent detail.

Now let's take a look at how the | nvoker Adapt or Ser vi ce may be used to expose the same
org.j boss.jnx. adaptor.rn . RM Adapt or interface via RMI/JJRMP as seen in Connecting to
JMX Using RMI. We will start by presenting the proxy factory and | nvoker Adapt or Ser vi ce
configurations found in the default setup in the j mx- i nvoker - adapt or - ser vi ce. sar
deployment. Example 4.17, “The default jmx-invoker-adaptor-server.sar jboss-service.xml
deployment descriptor” shows the j boss- servi ce. xn descriptor for this deployment.

<server >

121

Chapter 4. The JBoss JMX Microkernel

<I-- The JRWP invoker proxy configuration for the |nvokerAdaptor Servi ce
—e
<nmbean code="org.]j boss.invocation.jrnp.server.JRWProxyFactory"

nane="j boss. j nx: t ype=adapt or, nane=I nvoker, pr ot ocol =j r np, servi ce=pr oxyFact ory" >

<I-- Use the standard JRWPI nvoker from conf/jboss-service.xm -->

<attribute
nanme="1| nvoker Nane" >j boss: ser vi ce=i nvoker, type=j rnp</attri bute>

<I-- The target MBean is the |nvokerAdaptor Servi ce configured bel ow
-->

<attribute
nanme="Tar get Nane" >j boss. j mx: t ype=adapt or, name=I nvoker </ attri but e>

<!-- \Were to bind the RM Adapt or proxy -->

<attribute nane="Jndi Nane" >j nx/i nvoker/ RM Adapt or</ attri bute>

<I-- The RM conpabitle MBeanServer interface -->

<attribute
nanme="Export edl nt erface">org. j boss.j nx.adaptor.rni . RM Adaptor</attri bute>

<attribute nane="Clientlnterceptors">

<iterceptors>
<i nt er cept or >or g. j boss. proxy. d i ent Met hodl nt er cept or </ i nt er cept or >
<i nt er cept or>
org. j boss.j nx. connector.invoker.client.|nvoker Adapt orCl i entl nterceptor
</i nt er cept or>
<i nt er cept or >or g. j boss. i nvocati on. | nvoker | nt er cept or </ i nt er cept or >
</iterceptors>
</attribute>
<depends>j boss: servi ce=i nvoker, t ype=j r np</ depends>

</ nbean>
<I-- This is the service that handl es the RM Adaptor invocations by
routing
themto the MBeanServer the service is depl oyed under. -->

<nbean code="org.j boss.j nx.connector.invoker. | nvoker Adapt or Servi ce"
nane="j boss. j nx: t ype=adapt or, nane=I nvoker ">
<attribute
nanme="Export edl nt erface">org. j boss. j nx. adaptor.rmni . RM Adaptor</attri bute>
</ mbean>
</ server >

Example 4.17. The default jmx-invoker-adaptor-server.sar
jboss-service.xml deployment descriptor

The first MBean, or g. j boss. i nvocati on. j rnp. server. JRVPPr oxyFact ory, is the proxy
factory MBean service that creates proxies for the RMI/JJRMP protocol. The configuration of this
service as shown in Example 4.17, “The default jmx-invoker-adaptor-server.sar
jboss-service.xml deployment descriptor” states that the JRMPInvoker will be used as the
detached invoker, the | nvoker Adapt or Ser vi ce is the target mbean to which requests will be
forwarded, that the proxy will expose the RM Adapt or interface, the proxy will be bound into
JNDI under the name j nx/ i nvoker/ RM Adapt or, and the proxy will contain 3 interceptors:

C i ent Met hodl nt er cept or, | nvoker Adapt or Cl i ent I nt ercept or, | nvoker | nterceptor. The
configuration of the | nvoker Adapt or Ser vi ce simply sets the RMIAdaptor interface that the
service is exposing.

122

Detached Invoker Reference

The last piece of the configuration for exposing the | nvoker Adapt or Ser vi ce via RMI/JRMP is
the detached invoker. The detached invoker we will use is the standard RMI/JRMP invoker used
by the EJB containers for home and remote invocations, and this is the

org.j boss.invocation.jrnp.server.JRWI nvoker MBean service configured in the

conf/j boss-service. xm descriptor. That we can use the same service instance emphasizes
the detached nature of the invokers. The JRMPInvoker simply acts as the RMI/JJRMP endpoint
for all RMI/JJRMP proxies regardless of the interface(s) the proxies expose or the service the
proxies utilize.

6.2. Detached Invoker Reference

6.2.1. The JRMPInvoker - RMI/JRMP Transport

The org. j boss. i nvocation.jrnp.server.JRVWI nvoker class is an MBean service that
provides the RMI/JRMP implementation of the Invoker interface. The JRMPInvoker exports itself
as an RMI server so that when it is used as the Invoker in a remote client, the JRMPInvoker
stub is sent to the client instead and invocations use the RMI/JJRMP protocol.

The JRMPInvoker MBean supports a number of attribute to configure the RMI/JJRMP transport
layer. Its configurable attributes are:

* RMIObjectPort: sets the RMI server socket listening port number. This is the port RMI clients
will connect to when communicating through the proxy interface. The default setting in the
j boss-servi ce. xnl descriptor is 4444, and if not specified, the attribute defaults to O to
indicate an anonymous port should be used.

RMIClientSocketFactory: specifies a fully qualified class name for the
java.rm .server. RM d i ent Socket Fact or y interface to use during export of the proxy
interface.

RMIServerSocketFactory: specifies a fully qualified class hame for the
java.rm . server. RM Server Socket Fact or y interface to use during export of the proxy
interface.

ServerAddress: specifies the interface address that will be used for the RMI server socket
listening port. This can be either a DNS hostname or a dot-decimal Internet address. Since
the RM Ser ver Socket Fact ory does not support a method that accepts an InetAddress
object, this value is passed to the RM Ser ver Socket Fact or y implementation class using
reflection. A check for the existence of a public void

set Bi ndAddr ess(j ava. net. | net Address addr) method is made, and if one exists the
RM Ser ver Socket Addr value is passed to the RM Ser ver Socket Fact ory implementation. If
the RM Ser ver Socket Fact ory implementation does not support such a method, the

Ser ver Addr ess value will be ignored.

» SecurityDomain: specifies the JNDI name of an or g. j boss. security. SecurityDonain
interface implementation to associate with the RM Ser ver Socket Fact or y implementation.
The value will be passed to the RM Ser ver Socket Fact or y using reflection to locate a method

123

Chapter 4. The JBoss JMX Microkernel

with a signature of public void
set Securit yDomai n(org. j boss. security. SecurityDonain d). If nosuch method exists
the Securi t yDomai n value will be ignored.

6.2.2. The PooledIinvoker - RMI/Socket Transport

The org. j boss. i nvocati on. pool ed. server. Pool edl nvoker is an MBean service that
provides RMI over a custom socket transport implementation of the Invoker interface. The
Pool edl nvoker exports itself as an RMI server so that when it is used as the | nvoker ina
remote client, the Pool edl nvoker stub is sent to the client instead and invocations use the
custom socket protocol.

The Pool edl nvoker MBean supports a number of attribute to configure the socket transport

layer. Its configurable attributes are:

« NumAcceptThreads: The number of threads that exist for accepting client connections. The
default is 1.

» MaxPoolSize: The number of server threads for processing client. The default is 300.

» SocketTimeout: The socket timeout value passed to the Socket . set SoTi neout () method.
The default is 60000.

« ServerBindPort: The port used for the server socket. A value of 0 indicates that an
anonymous port should be chosen.

» ClientConnectAddress: The address that the client passes to the Socket (addr, port)
constructor. This defaults to the server | net Addr ess. get Local Host () value.

« ClientConnectPort: The port that the client passes to the Socket (addr, port) constructor.
The default is the port of the server listening socket.

» ClientMaxPoolSize: The client side maximum number of threads. The default is 300.
» Backlog: The backlog associated with the server accept socket. The default is 200.

« EnableTcpNoDelay: A boolean flag indicating if client sockets will enable the TcpNoDel ay
flag on the socket. The default is false.

» ServerBindAddress: The address on which the server binds its listening socket. The default
is an empty value which indicates the server should be bound on all interfaces.

« TransactionManagerService: The JMX ObjectName of the JTA transaction manager
service.

6.2.3. The IIOPInvoker - RMI/IIOP Transport

The org. j boss.invocation.iiop.lIOPlnvoker classis an MBean service that provides the

124

Detached Invoker Reference

RMVI/IIOP implementation of the | nvoker interface. The I | OPI nvoker routes IIOP requests to
CORBA servants. This is used by the or g. j boss. proxy. ej b. | ORFact ory proxy factory to
create RMI/IIOP proxies. However, rather than creating Java proxies (as the JRMP proxy
factory does), this factory creates CORBA IORs. An | ORFact ory is associated to a given
enterprise bean. It registers with the IIOP invoker two CORBA servants:

anEj bHomeCor baSer vant for the bean's EJBHonme and an Ej bCbj ect Cor baSer vant for the
bean's EJBObj ect s.

The IIOPInvoker MBean has no configurable properties, since all properties are configured from
the conf/j acorb. properti es property file used by the JacORB CORBA service.

6.2.4. The JRMPProxyFactory Service - Building Dynamic JRMP
Proxies

The or g. j boss. i nvocation.jrnp. server. JRVMPPr oxyFact ory MBean service is a proxy
factory that can expose any interface with RMI compatible semantics for access to remote
clients using JRMP as the transport.

The JRMPProxyFactory supports the following attributes:

InvokerName: The server side JRMPInvoker MBean service JMX ObjectName string that will
handle the RMI/JRMP transport.

« TargetName: The server side MBean that exposes the i nvoke(| nvocati on) JMX operation
for the exported interface. This is used as the destination service for any invocations done
through the proxy.

e JndiName: The JNDI name under which the proxy will be bound.

« Exportedinterface: The fully qualified class name of the interface that the proxy implements.
This is the typed view of the proxy that the client uses for invocations.

» ClientIinterceptors: An XML fragment of interceptors/interceptor elements with each
interceptor element body specifying the fully qualified class name of an
org.j boss. proxy. I nt er cept or implementation to include in the proxy interceptor stack.
The ordering of the interceptors/interceptor elements defines the order of the interceptors.

6.2.5. The HttpInvoker - RMI/HTTP Transport

The org. j boss. i nvocation. http. server. Ht pl nvoker MBean service provides support for
making invocations into the JMX bus over HTTP. Unlike the JRVPI nvoker , the Ht t pl nvoker is
not an implementation of | nvoker, but it does implement the Invoker.invoke method. The
Httpinvoker is accessed indirectly by issuing an HTTP POST against the

org.j boss.invocation. http.servlet.|nvokerServlet. The Ht t pl nvoker exports a client
side proxy in the form of the or g. j boss. i nvocati on. http.interfaces. H t pl nvoker Pr oxy
class, which is an implementation of | nvoker, and is serializable. The Ht t pl nvoker is a drop in
replacement for the JRVPI nvoker as the target of the bean-i nvoker and hone-i nvoker EJB
configuration elements. The Htt pl nvoker and | nvoker Ser vl et are deployed in the

125

Chapter 4. The JBoss JMX Microkernel

htt p-i nvoker . sar discussed in the JNDI chapter in the section entitled Accessing JNDI over
HTTP

The Httplnvoker supports the following attributes:

« InvokerURL: This is either the http URL to the | nvoker Ser vl et mapping, or the name of a
system property that will be resolved inside the client VM to obtain the http URL to the
I nvoker Ser vl et .

* InvokerURLPrefix: If there is no i nvoker URL set, then one will be constructed via the
concatenation of i nvoker URLPr ef i x + the local host + i nvoker URLSuf f i x. The default prefix
ishttp://.

* InvokerURLSuffix: If there is no i nvoker URL set, then one will be constructed via the
concatenation of i nvoker URLPr ef i x + the local host + i nvoker URLSuf fi x. The default suffix
is : 8080/ i nvoker/ JMXI nvoker Ser vl et .

« UseHostName: A boolean flag if the | net Addr ess. get Host Nane() or get Host Addr ess()
method should be used as the host component of i nvoker URLPr ef i x + host +
i nvoker URLSuf fi x. If true get Host Name() is used, otherwise get Host Addr ess() is used.

6.2.6. The HA JRMPInvoker - Clustered RMI/JRMP Transport

The org. j boss. proxy. generi c. ProxyFact or yHA service is an extension of the

Pr oxyFact or yHA that is a cluster aware factory. The Pr oxyFact or yHA fully supports all of the
attributes of the JRMPPr oxyFact ory. This means that customized bindings of the port, interface
and socket transport are available to clustered RMI/JRMP as well. In addition, the following
cluster specific attributes are supported:

» PartitionObjectName: The JMX Obj ect Nane of the cluster service to which the proxy is to be
associated with.

« LoadBalancePolicy: The class name of the
org. j boss. ha. framewor k. i nt er f aces. LoadBal ancePol i cy interface implementation to
associate with the proxy.

6.2.7. The HA Httpinvoker - Clustered RMI/HTTP Transport

The RMI/HTTP layer allows for software load balancing of the invocations in a clustered
environment. The HA capable extension of the HTTP invoker borrows much of its functionality
from the HA-RMI/JRMP clustering. To enable HA-RMI/HTTP you need to configure the invokers
for the EJB container. This is done through either a j boss. xm descriptor, or the

st andar dj boss. xm descriptor.

6.2.8. HttpProxyFactory - Building Dynamic HTTP Proxies

The or g. j boss. i nvocation. http. server. H t pProxyFact ory MBean service is a proxy

126

Detached Invoker Reference

factory that can expose any interface with RMI compatible semantics for access to remote
clients using HTTP as the transport.

The HttpProxyFactory supports the following attributes:

InvokerName: The server side MBean that exposes the invoke operation for the exported
interface. The name is embedded into the Ht t pl nvoker Pr oxy context as the target to which
the invocation should be forwarded by the Ht t pl nvoker .

JndiName: The JNDI name under which the Ht t pl nvoker Pr oxy will be bound. This is the
name clients lookup to obtain the dynamic proxy that exposes the service interfaces and
marshalls invocations over HTTP. This may be specified as an empty value to indicate that
the proxy should not be bound into JNDI.

InvokerURL: This is either the http URL to the I nvoker Ser vl et mapping, or the name of a
system property that will be resolved inside the client VM to obtain the http URL to the
I nvoker Ser vl et .

InvokerURLPrefix: If there is no i nvoker URL set, then one will be constructed via the
concatenation of i nvoker URLPr ef i x + the local host + i nvoker URLSuf f i x. The default prefix
ishttp://.

InvokerURLSuffix: If there is no i nvoker URL set, then one will be constructed via the
concatenation of i nvoker URLPr ef i x + the local host + i nvoker URLSuf fi x. The default suffix
is : 8080/ i nvoker/ JMXI nvoker Ser vl et .

UseHostName: A boolean flag indicating if the | net Addr ess. get Host Name() or

get Host Addr ess() method should be used as the host component of i nvoker URLPr ef i x +
host + i nvoker URLSuf fi x. If true get Host Nane() is used, otherwise get Host Addr ess() is
used.

Exportedinterface: The name of the RMI compatible interface that the Ht t pl nvoker Pr oxy
implements.

6.2.9. Steps to Expose Any RMI Interface via HTTP

Using the Ht t pPr oxyFact ory MBean and JMX, you can expose any interface for access using
HTTP as the transport. The interface to expose does not have to be an RMI interface, but it
does have to be compatible with RMI in that all method parameters and return values are
serializable. There is also no support for converting RMI interfaces used as method parameters
or return values into their stubs.

The three steps to making your object invocable via HTTP are:

Create a mapping of longs to the RMI interface methods using the
Mar shal | edl nvocat i on. cal cul at eHash method. Here for example, is the procedure for an
RMI SRPRenot eSer ver | nt er f ace interface:

127

Chapter 4. The JBoss JMX Microkernel

i mport java.lang.reflect. Mt hod;
i mport java.util.HashMap;
i mport org.jboss.invocation. Marshal | edl nvocati on;

HashMap mar shal | edl nvocat i onMappi ng = new HashMap() ;

[/ Build the Nam ng interface nethod nmap
Met hod[] net hods = SRPRenot eServer | nterface. cl ass. get Met hods() ;
for(int m= 0; m< methods.|ength; m++) {
Met hod nmet hod = met hods[ni;
Long hash = new Long(Marshal | edl nvocat i on. cal cul at eHash(met hod)) ;
mar shal | edl nvocat i onMappi ng. put (hash, net hod);

« Either create or extend an existing MBean to support an invoke operation. Its signature is
Qbj ect invoke(lnvocation invocation) throws Exception, and the steps it performs
are as shown here for the SRPRenot eSer ver | nt er f ace interface. Note that this uses the
mar shal | edl nvocat i onMappi ng from step 1 to map from the Long method hashes in the
Mar shal | edl nvocat i on to the Met hod for the interface.

i mport org.jboss.invocation.|nvocation;
i mport org.jboss.invocation. Marshal | edl nvocati on;

public Object invoke(lnvocation invocation)
t hrows Exception
{
SRPRenpt eServer | nterface theServer = <the_actual _rm _server_obj ect >;
/'l Set the nethod hash to Met hod mappi ng
if (invocation instanceof Marshall edl nvocation) {
Mar shal | edl nvocation mi = (Marshal |l edl nvocati on) invocati on;
m . set Met hodMap(mar shal | edl nvocat i onMappi ng) ;

}

/1 Invoke the Nam ng nethod via reflection
Met hod nmet hod = invocation. get Met hod() ;
oj ect[] args = invocation. get Argunents();
oj ect value = null;
try {
val ue = met hod. i nvoke(theServer, args);
} catch(lnvocationTar get Exception e) {
Throwabl e t = e. get Target Excepti on();
if (t instanceof Exception) ({
throw (Exception) e;
} else {
t hr ow new Undecl ar edThr owabl eExcepti on(t, nethod.toString());
}
}

return val ue;

128

Detached Invoker Reference

« Create a configuration of the Ht t pPr oxyFact ory MBean to make the RMI/HTTP proxy
available through JNDI. For example:

<I-- Expose the SRP service interface via HITP -->

<mbean code="org.jboss.invocation. http.server. H tpProxyFactory"
nane="j boss. security.tests: servi ce=SRP/ HTTP" >
<attribute

name="| nvoker URL">ht t p: / /| ocal host : 8080/ i nvoker/ JMXI nvoker Servl et </ attri but e>
<attribute

name="1 nvoker Nane" >j boss. security.tests: servi ce=SRPServi ce</attri bute>
<attribute nane="Exportedl nterface">

org. j boss. security. srp. SRPRenot eSer ver | nterface
</attribute>

<attribute nane="Jndi Nane" >srp-test-http/ SRPServerlnterface</attribute>
</ mbean>

Any client may now lookup the RMI interface from JNDI using the name specified in the

Ht t pPr oxyFact ory (e.g., srp-test-http/ SRPServer | nt er f ace) and use the obtain proxy in
exactly the same manner as the RMI/JRMP version.

129

130

Chapter 5.

Naming on JBoss

The JNDI Naming Service

The naming service plays a key role in enterprise Java applications, providing the core
infrastructure that is used to locate objects or services in an application server. It is also the
mechanism that clients external to the application server use to locate services inside the
application server. Application code, whether it is internal or external to the JBoss instance,
need only know that it needs to talk to the a message queue named queue/ | nconmi ngOr der s
and would not need to worry about any of the details of how the queue is configured. In a
clustered environment, naming services are even more valuable. A client of a service would
desire to look up the Pr oduct Cat al og session bean from the cluster without worrying which
machine the service is residing. Whether it is a big clustered service, a local resource or just a
simple application component that is needed, the JNDI naming service provides the glue that
lets code find the objects in the system by name.

1. An Overview of JNDI

JNDI is a standard Java API that is bundled with JDK1.3 and higher. JNDI provides a common
interface to a variety of existing naming services: DNS, LDAP, Active Directory, RMI registry,
COS registry, NIS, and file systems. The JNDI APl is divided logically into a client API that is
used to access naming services, and a service provider interface (SPI) that allows the user to
create JNDI implementations for naming services.

The SPI layer is an abstraction that naming service providers must implement to enable the
core JNDI classes to expose the naming service using the common JNDI client interface. An
implementation of JNDI for a naming service is referred to as a JNDI provider. JBoss naming is
an example JNDI implementation, based on the SPI classes. Note that the JNDI SPI is not
needed by J2EE component developers.

For a thorough introduction and tutorial on JNDI, which covers both the client and service
provider APIs, see the Sun tutorial at http://java.sun.com/products/jndi/tutorial/.

The main JNDI API package is the j avax. nani ng package. It contains five interfaces, 10
classes, and several exceptions. There is one key class, | ni ti al Cont ext, and two key
interfaces, Cont ext and Name

1.1. Names

The notion of a name is of fundamental importance in INDI. The naming system determines the
syntax that the name must follow. The syntax of the naming system allows the user to parse
string representations of names into its components. A name is used with a naming system to
locate objects. In the simplest sense, a haming system is just a collection of objects with unique
names. To locate an object in a haming system you provide a name to the naming system, and
the naming system returns the object store under the name.

As an example, consider the Unix file system's naming convention. Each file is named from its

131

http://java.sun.com/products/jndi/tutorial/

Chapter 5. Naming on JBoss

path relative to the root of the file system, with each component in the path separated by the
forward slash character ("/ "). The file's path is ordered from left to right. The

pathname/ usr/ j boss/ r eadne. t xt , for example, names a file r eadne. t xt in the directory
j boss, under the directory usr, located in the root of the file system. JBoss naming uses a
UNIX-style namespace as its naming convention.

The j avax. nami ng. Nanme interface represents a generic name as an ordered sequence of
components. It can be a composite name (one that spans multiple namespaces), or a
compound name (one that is used within a single hierarchical naming system). The components
of a name are numbered. The indexes of a name with N components range from 0 up to, but
not including, N. The most significant component is at index 0. An empty name has no
components.

A composite name is a sequence of component names that span multiple namespaces. An
example of a composite name would be the hostname and file combination commonly used with
UNIX commands like scp. For example, the following command copies | ocal fi | e. t xt to the
file renmot efi | e. t xt in the t np directory on host ahost . soneor g. or g:

scp local file.txt ahost.soneorg.org:/tnp/renmotefile.txt

A compound name is derived from a hierarchical namespace. Each component in a compound
name is an atomic name, meaning a string that cannot be parsed into smaller components. A
file pathname in the UNIX file system is an example of a compound name.

ahost . soneorg. org:/tnp/ renotefile.txt isacomposite name that spans the DNS and
UNIX file system namespaces. The components of the composite name are

ahost . soneorg. org and/tnp/ renotefil e.txt.Acomponentis a string name from the
namespace of a naming system. If the component comes from a hierarchical namespace, that
component can be further parsed into its atomic parts by using the

j avax. nani ng. ConpoundNane class. The JNDI API provides the

j avax. nani ng. Conposi t eNare class as the implementation of the Nane interface for composite
names.

1.2. Contexts

The j avax. nani ng. Cont ext interface is the primary interface for interacting with a naming
service. The Cont ext interface represents a set of name-to-object bindings. Every context has
an associated naming convention that determines how the context parses string names into

j avax. nami ng. Nane instances. To create a name to object binding you invoke the bind method
of a Cont ext and specify a name and an object as arguments. The object can later be retrieved
using its name using the Cont ext lookup method. A Cont ext will typically provide operations for
binding a name to an object, unbinding a name, and obtaining a listing of all name-to-object
bindings. The object you bind into a Cont ext can itself be of type Cont ext . The Cont ext object
that is bound is referred to as a subcontext of the Cont ext on which the bind method was
invoked.

As an example, consider a file directory with a pathname / usr, which is a context in the UNIX

132

Contexts

file system. A file directory named relative to another file directory is a subcontext (commonly
referred to as a subdirectory). A file directory with a pathname / usr/j boss names a j boss
context that is a subcontext of usr . In another example, a DNS domain, such as or g, is a
context. A DNS domain named relative to another DNS domain is another example of a
subcontext. In the DNS domain j boss. or g, the DNS domain j boss is a subcontext of or g
because DNS names are parsed right to left.

1.2.1. Obtaining a Context using InitialContext

All naming service operations are performed on some implementation of the Cont ext interface.
Therefore, you need a way to obtain a Cont ext for the naming service you are interested in
using. The j avax. nami ng. I nti al Cont ext class implements the Cont ext interface, and
provides the starting point for interacting with a naming service.

When you create an | ni ti al Cont ext, it is initialized with properties from the environment. JNDI
determines each property's value by merging the values from the following two sources, in
order.

« The first occurrence of the property from the constructor's environment parameter and (for
appropriate properties) the applet parameters and system properties.

e Alljndi. properties resource files found on the classpath.

For each property found in both of these two sources, the property's value is determined as
follows. If the property is one of the standard JNDI properties that specify a list of INDI factories,
all of the values are concatenated into a single colon-separated list. For other properties, only
the first value found is used. The preferred method of specifying the JNDI environment
properties is through a j ndi . properti es file, which allows your code to externalize the JNDI
provider specific information so that changing JNDI providers will not require changes to your
code or recompilation.

The Cont ext implementation used internally by the I ni ti al Cont ext class is determined at
runtime. The default policy uses the environment property j ava. nam ng. factory.initial,
which contains the class name of the j avax. nami ng. spi . I ni ti al Cont ext Fact ory
implementation. You obtain the name of the | ni ti al Cont ext Fact ory class from the naming
service provider you are using.

Example 5.1, “A sample jndi.properties file” gives a sample j ndi . properti es file a client
application would use to connect to a JBossNS service running on the local host at port 1099.
The client application would need to have the j ndi . properti es file available on the application
classpath. These are the properties that the JBossNS JNDI implementation requires. Other
JNDI providers will have different properties and values.

JBoSSNS properties

java. nam ng.factory.initial=org.jnp.interfaces. Nam ngCont ext Fact ory
j ava. nam ng. provi der. url =j np:/ /| ocal host: 1099

java. nam ng. factory. url . pkgs=org.j boss. nam ng: org. j np. i nterfaces

133

Chapter 5. Naming on JBoss

Example 5.1. A sample jndi.properties file

2. The JBossNS Architecture

The JBossNS architecture is a Java socket/RMI based implementation of the

j avax. nami ng. Cont ext interface. It is a client/server implementation that can be accessed
remotely. The implementation is optimized so that access from within the same VM in which the
JBossNS server is running does not involve sockets. Same VM access occurs through an object
reference available as a global singleton. Figure 5.1, “Key components in the JBossNS
architecture.” illustrates some of the key classes in the JBossNS implementation and their
relationships.

Q

javax.naning. Context

RmiPort=Anonymous

org. jnp. interfaces. NamingContext Context Implementation 5 O
client

server
org.jnp.interfaces.Naming

I
)T\context | lockup
| |
| |
| |
| : org.jnp.server, Naningierver
: |Server Bootstrap
| |
| ! A
| : |
| |
| | . .
org.jnp. server.Main
I . . O g.inp
| hootstrap
| Socket
: Port=1099 A
|

manacges

|
|factory 1
org.jhoss.naming. NamingService
%org.jnp.interfaces.MamingEontextFactory 74 g g

. . . — org.jboss.naming. NamingServiceMBean
Javax,.naning. spi.InitialContextFactory g.3 g g

Figure 5.1. Key components in the JBossNS architecture.

We will start with the Nani ngSer vi ce MBean. The Nani ngSer vi ce MBean provides the JNDI
naming service. This is a key service used pervasively by the J2EE technology components.
The configurable attributes for the Nani ngSer vi ce are as follows.

134

The JBossNS Architecture

e Port: The jnp protocol listening port for the Nami ngSer vi ce. If not specified default is 1099,
the same as the RMI registry default port.

* RmiPort: The RMI port on which the RMI Naming implementation will be exported. If not
specified the default is 0 which means use any available port.

« BindAddress: The specific address the Nani ngSer vi ce listens on. This can be used on a
multi-homed host for a j ava. net . Ser ver Socket that will only accept connect requests on
one of its addresses.

* RmiBindAddress: The specific address the RMI server portion of the Nani ngSer vi ce listens
on. This can be used on a multi-homed host for a j ava. net . Ser ver Socket that will only
accept connect requests on one of its addresses. If this is not specified and the Bi ndAddr ess
is, the Rni Bi ndAddr ess defaults to the Bi ndAddr ess value.

« Backlog: The maximum queue length for incoming connection indications (a request to
connect) is set to the backl og parameter. If a connection indication arrives when the queue is
full, the connection is refused.

» ClientSocketFactory: An optional custom j ava. rni . server. RM O i ent Socket Fact ory
implementation class name. If not specified the default RM C i ent Socket Fact ory is used.

« ServerSocketFactory: An optional custom j ava. rni . server. RM Ser ver Socket Fact ory
implementation class name. If not specified the default RM Ser ver Socket Fact ory is used.

« JNPServerSocketFactory: An optional custom j avax. net . Ser ver Socket Fact ory
implementation class name. This is the factory for the Ser ver Socket used to bootstrap the
download of the JBossNS Nani ng interface. If not specified the
j avax. net . Ser ver Socket Fact ory. get Def aul t () method value is used.

The Nami ngSer vi ce also creates the j ava: conp context such that access to this context is
isolated based on the context class loader of the thread that accesses the j ava: conp context.
This provides the application component private ENC that is required by the J2EE specs. This
segregation is accomplished by binding a j avax. nani ng. Ref er ence to a context that uses the
org. j boss. nam ng. ENCFact ory as its j avax. nanmi ng. Qbj ect Fact ory. When a client performs
a lookup of j ava: conp, or any subcontext, the ENCFact or y checks the thread context

C assLoader, and performs a lookup into a map using the d assLoader as the key.

If a context instance does not exist for the class loader instance, one is created and associated
with that class loader in the ENCFact ory map. Thus, correct isolation of an application
component's ENC relies on each component receiving a unique d assLoader that is associated
with the component threads of execution.

The Nani ngSer vi ce delegates its functionality to an or g. j np. server. Mai n MBean. The
reason for the duplicate MBeans is because JBossNS started out as a stand-alone JNDI
implementation, and can still be run as such. The Nani ngSer vi ce MBean embeds the Mai n
instance into the JBoss server so that usage of JNDI with the same VM as the JBoss server
does not incur any socket overhead. The configurable attributes of the NamingService are really

135

Chapter 5. Naming on JBoss

the configurable attributes of the JBossNS Mai n MBean. The setting of any attributes on the
Nani ngSer vi ce MBean simply set the corresponding attributes on the Mai n MBean the
Nami ngSer vi ce contains. When the Nami ngSer vi ce is started, it starts the contained Mai n
MBean to activate the JNDI naming service.

In addition, the Nani ngSer vi ce exposes the Nani ng interface operations through a JIMX
detyped invoke operation. This allows the naming service to be accessed via JMX adaptors for
arbitrary protocols. We will look at an example of how HTTP can be used to access the naming
service using the invoke operation later in this chapter.

The details of threads and the thread context class loader won't be explored here, but the JNDI
tutorial provides a concise discussion that is applicable. See
http://java.sun.com/products/jndi/tutorial/beyond/misc/classloader.html for the details.

When the Mai n MBean is started, it performs the following tasks:

 Instantiates an or g. j np. nani ng. Nani ngSer vi ce instance and sets this as the local VM
server instance. This is used by any or g. j np. i nt er f aces. Nani ngCont ext instances that
are created within the JBoss server VM to avoid RMI calls over TCP/IP.

» Exports the Nani ngSer ver instance's or g. j np. nami ng. i nt er f aces. Nanmi ng RMI interface
using the configured Rmi Port, C i ent Socket Fact ory, Ser ver Socket Fact or yattributes.

» Creates a socket that listens on the interface given by the Bi ndAddr ess and Port attributes.

» Spawns a thread to accept connections on the socket.

3. The Naming InitialContext Factories

The JBoss JNDI provider currently supports several different I ni ti al Cont ext factory
implementations.

3.1. The standard naming context factory

The most commonly used factory is the or g. j np. i nt er f aces. Nanmi ngCont ext Fact ory
implementation. Its properties include:

e java.naming.factory.initial: The name of the environment property for specifying the initial
context factory to use. The value of the property should be the fully qualified class name of
the factory class that will create an initial context. If it is not specified, a
j avax. nami ng. Nol ni ti al Cont ext Except i on will be thrown when an | ni ti al Cont ext
object is created.

e java.naming.provider.url: The name of the environment property for specifying the location
of the JBoss JNDI service provider the client will use. The Nani ngCont ext Fact ory class uses
this information to know which JBossNS server to connect to. The value of the property
should be a URL string. For JBossNS the URL format is j np:// host: port/[j ndi _path].

136

http://java.sun.com/products/jndi/tutorial/beyond/misc/classloader.html

The standard naming context factory

The j np: portion of the URL is the protocol and refers to the socket/RMI based protocol used
by JBoss. The j ndi _pat h portion of the URL is an optional INDI name relative to the root
context, for example, apps or apps/ t np. Everything but the host component is optional. The
following examples are equivalent because the default port value is 1099.

* jnp://ww. j boss. org: 1099/

* ww. j boss. org: 1099

* Www. j boss. org

» java.naming.factory.url.pkgs: The name of the environment property for specifying the list
of package prefixes to use when loading in URL context factories. The value of the property
should be a colon-separated list of package prefixes for the class name of the factory class
that will create a URL context factory. For the JBoss JNDI provider this must be
org.j boss. naming:org.jnp.interfaces. This property is essential for locating the j np:
and j ava: URL context factories of the JBoss JNDI provider.

* jnp.socketFactory: The fully qualified class hame of the j avax. net . Socket Fact ory
implementation to use to create the bootstrap socket. The default value is
org.jnp.interfaces. Ti medSocket Fact ory. The Ti medSocket Fact ory is a simple
Socket Fact ory implementation that supports the specification of a connection and read
timeout. These two properties are specified by:

e jnp.timeout: The connection timeout in milliseconds. The default value is 0 which means the
connection will block until the VM TCP/IP layer times out.

e jnp.sotimeout: The connected socket read timeout in milliseconds. The default value is 0
which means reads will block. This is the value passed to the Socket . set SoTi meout on the
newly connected socket.

When a client creates an | ni ti al Cont ext with these JBossNS properties available, the
org.jnp.interfaces. Nan ngCont ext Fact ory object is used to create the Cont ext instance
that will be used in subsequent operations. The Nani ngCont ext Fact ory is the JBossNS
implementation of the j avax. nami ng. spi . I ni ti al Cont ext Fact ory interface. When the
Nami ngCont ext Fact ory class is asked to create a Cont ext , it creates an
org.jnp.interfaces. Nam ngCont ext instance with the I ni ti al Cont ext environment and
name of the context in the global INDI namespace. It is the Nanmi ngCont ext instance that
actually performs the task of connecting to the JBossNS server, and implements the Cont ext
interface. The Cont ext . PROVI DER_URL information from the environment indicates from which
server to obtain a Nami ngSer ver RMI reference.

The association of the Nani ngCont ext instance to a Narmi ngSer ver instance is done in a lazy
fashion on the first Cont ext operation that is performed. When a Cont ext operation is
performed and the Nani ngCont ext has no Nami ngSer ver associated with it, it looks to see if its
environment properties define a Cont ext . PROVI DER_URL. A Cont ext . PROVI DER_URL defines
the host and port of the JBossNS server the Cont ext is to use. If there is a provider URL, the
Nami ngCont ext first checks to see if a Nani ng instance keyed by the host and port pair has
already been created by checking a Nani ngCont ext class static map. It simply uses the existing
Nani ng instance if one for the host port pair has already been obtained. If no Nani ng instance

137

Chapter 5. Naming on JBoss

has been created for the given host and port, the Narmi ngCont ext connects to the host and port
using a j ava. net . Socket , and retrieves a Nanmi ng RMI stub from the server by reading a
java.rm . Marshal | edObj ect from the socket and invoking its get method. The newly obtained
Naming instance is cached in the Nani ngCont ext server map under the host and port pair. If no
provider URL was specified in the JNDI environment associated with the context, the

Nami ngCont ext simply uses the in VM Naming instance set by the Mai n MBean.

The Nani ngCont ext implementation of the Cont ext interface delegates all operations to the
Nani ng instance associated with the Narmi ngCont ext . The Nami ngSer ver class that implements
the Nani ng interface uses aj ava. uti | . Hasht abl e as the Cont ext store. There is one unique
Nani ngSer ver instance for each distinct JNDI Name for a given JBossNS server. There are
zero or more transient Nanmi ngCont ext instances active at any given moment that refers to a
Nami ngSer ver instance. The purpose of the Nanmi ngCont ext is to act as a Cont ext to the

Nani ng interface adaptor that manages translation of the JNDI hames passed to the

Nami ngCont ext . Because a JNDI name can be relative or a URL, it needs to be converted into
an absolute name in the context of the JBossNS server to which it refers. This translation is a
key function of the Nami ngCont ext .

3.2. The org.jboss.naming.NamingContextFactory

This version of the | ni ti al Cont ext Fact ory implementation is a simple extension of the jnp
version which differs from the jnp version in that it stores the last configuration passed to its

I nitial ContextFactory.getlnitial Context(Hashtable env) method in a public thread
local variable. This is used by EJB handles and other JNDI sensitive objects like the

User Tr ansact i on factory to keep track of the JNDI context that was in effect when they were
created. If you want this environment to be bound to the object even after its serialized across
vm boundaries, then you should the or g. j boss. nani ng. Nanmi ngCont ext Fact ory. If you want
the environment that is defined in the current VM j ndi . properti es or system properties, then
you should use the or g. j np. i nt er f aces. Nani ngCont ext Fact ory version.

3.3. Naming Discovery in Clustered Environments

When running in a clustered JBoss environment, you can choose not to specify a

Cont ext . PROVI DER_URL value and let the client query the network for available naming
services. This only works with JBoss servers running with the al | configuration, or an
equivalent configuration that has or g. j boss. ha. franewor k. server. Cl usterPartition and
org. j boss. ha. j ndi . HANani ngSer vi ce services deployed. The discovery process consists of
sending a multicast request packet to the discovery address/port and waiting for any node to
respond. The response is a HA-RMI version of the Nani ng interface. The following

I ni tial Context properties affect the discovery configuration:

* jnp.partitionName: The cluster partition name discovery should be restricted to. If you are
running in an environment with multiple clusters, you may want to restrict the naming
discovery to a particular cluster. There is no default value, meaning that any cluster response
will be accepted.

e jnp.discoveryGroup: The multicast IP/address to which the discovery query is sent. The

138

The HTTP InitialContext Factory

default is 230.0.0.4.
* jnp.discoveryPort: The port to which the discovery query is sent. The default is 1102.

e jnp.discoveryTimeout: The time in milliseconds to wait for a discovery query response. The
default value is 5000 (5 seconds).

* jnp.disableDiscovery: A flag indicating if the discovery process should be avoided.
Discovery occurs when either no Cont ext . PROVI DER_URL is specified, or no valid naming
service could be located among the URLSs specified. If the j np. di sabl eDi scovery flag is
true, then discovery will not be attempted.

3.4. The HTTP InitialContext Factory Implementation

The JNDI naming service can be accessed over HTTP. From a JNDI client's perspective this is
a transparent change as they continue to use the JNDI Cont ext interface. Operations through
the Cont ext interface are translated into HTTP posts to a servlet that passes the request to the
NamingService using its JIMX invoke operation. Advantages of using HTTP as the access
protocol include better access through firewalls and proxies setup to allow HTTP, as well as the
ability to secure access to the JNDI service using standard servlet role based security.

To access JNDI over HTTP you use the or g. j boss. nami ng. Ht t pNani ngCont ext Fact ory as
the factory implementation. The complete set of support | ni ti al Cont ext environment
properties for this factory are:

» java.naming.factory.initial: The name of the environment property for specifying the initial
context factory, which must be or g. j boss. nami ng. Ht t pNani ngCont ext Fact ory.

e java.naming.provider.url (or Cont ext . PROVI DER_URL): This must be set to the HTTP URL of
the JNDI factory. The full HTTP URL would be the public URL of the JBoss servlet container
plus /i nvoker/ JNDI Fact ory. Examples include:

e http://wwuv j boss. org: 8080/ i nvoker/ JNDI Fact ory
e http://ww. jboss. org/invoker/JNDI Fact ory
e https://ww.jboss. org/invoker/JNDI Factory

The first example accesses the servlet using the port 8080. The second uses the standard
HTTP port 80, and the third uses an SSL encrypted connection to the standard HTTPS port
443.

» java.naming.factory.url.pkgs: For all JBoss JNDI provider this must be
org.j boss. nami ng: org.jnp.interfaces. This property is essential for locating the j np:
and j ava: URL context factories of the JBoss JNDI provider.

The JNDI Cont ext implementation returned by the Ht t pNani ngCont ext Fact ory is a proxy that
delegates invocations made on it to a bridge servlet which forwards the invocation to the

Nanmi ngSer vi ce through the JMX bus and marshalls the reply back over HTTP. The proxy
needs to know what the URL of the bridge servlet is in order to operate. This value may have

139

Chapter 5. Naming on JBoss

been bound on the server side if the JBoss web server has a well known public interface. If the
JBoss web server is sitting behind one or more firewalls or proxies, the proxy cannot know what
URL is required. In this case, the proxy will be associated with a system property value that
must be set in the client VM. For more information on the operation of JNDI over HTTP see
Section 4.1, “Accessing JNDI over HTTP”.

3.5. The Login InitialContext Factory Implementation

JAAS is the preferred method for authenticating a remote client to JBoss. However, for
simplicity and to ease the migration from other application server environment that do not use
JAAS, JBoss allows you the security credentials to be passed through the I ni ti al Cont ext .
JAAS is still used under the covers, but there is no manifest use of the JAAS interfaces in the
client application.

The factory class that provides this capability is the
org.j boss.security.jndi.Loginlnitial ContextFactory. The complete set of support
I ni tial Cont ext environment properties for this factory are:

e java.naming.factory.initial: The name of the environment property for specifying the initial
context factory, which must be or g. j boss. security.jndi. Loginlnitial ContextFactory.

e java.naming.provider.url: This must be set to a Nanm ngCont ext Fact ory provider URL. The
Logi nl nti al Cont ext is really just a wrapper around the Nani ngCont ext Fact ory that adds a
JAAS login to the existing Nam ngCont ext Fact ory behavior.

» java.naming.factory.url.pkgs: For all JBoss JNDI provider this must be
org.j boss. naming: org.jnp.interfaces. This property is essential for locating the j np:
and j ava: URL context factories of the JBoss JNDI provider.

e java.naming.security.principal (or Cont ext . SECURI TY_PRI NCI PAL): The principal to
authenticate. This may be either aj ava. security. Princi pal implementation or a string
representing the name of a principal.

* java.naming.security.credentials (or Cont ext . SECURI TY_CREDENTI ALS), The credentials
that should be used to authenticate the principal, e.g., password, session key, etc.

e java.naming.security.protocol: (Cont ext . SECURI TY_PROTOCOL) This gives the name of the
JAAS login module to use for the authentication of the principal and credentials.

3.6. The ORBInitialContextFactory

When using Sun's CosNaming it is necessary to use a different naming context factory from the
default. CosNaming looks for the ORB in JNDI instead of using the the ORB configured in

depl oy/ii op-service.xm ?. It is necessary to set the global context factory to

org.j boss.iiop.nanm ng. ORBI ni ti al Cont ext Fact ory, which sets the ORB to JBoss's ORB.
This is done in the conf/j ndi . properti es file:

140

Implementation

DO NOT EDIT THI S FI LE UNLESS YOU KNOW WHAT YOU ARE DO NG

#

java. nam ng. factory.initial =org.jboss.iiop.namn ng. ORBI ni ti al Cont ext Factory
java. nam ng. factory. url . pkgs=org. j boss. nam ng: org. j np. i nterfaces

It is also necessary to use ORBI ni ti al Cont ext Fact ory when using CosNaming in an
application client.

4. JNDI over HTTP

In addition to the legacy RMI/JRMP with a socket bootstrap protocol, JBoss provides support for
accessing its INDI naming service over HTTP.

4.1. Accessing JNDI over HTTP
This capability is provided by ht t p-i nvoker . sar. The structure of the ht t p-i nvoker. sar is:

htt p-i nvoker. sar

+- META- | NF/ j boss-servi ce. xm

+- i nvoker. war

| +- WVAEB- | NF/j boss-web. xmi

| +- WEB-INF/cl asses/org/jboss/invocation/http/servlet/|nvokerServlet.class
|+

VEB- | NF/ cl asses/ or g/ j boss/invocation/ http/servl et/ Nan ngFact oryServl et. cl ass
|+
VEB- | NF/ cl asses/ or g/ j boss/invocati on/ http/servl et/ ReadOnl yAccessFilter.cl ass
| +- WEB-INF/cl asses/rol es. properties
| +- WEB-I NF/cl asses/users. properties
| +- WEB-INF/ web. xm

| +- META-I| NF/ MANI FEST. M-

+- META- | NF/ MANI FEST. M

The j boss- servi ce. xm descriptor defines the Ht t pl nvoker and Ht t pl nvoker HA MBeans.
These services handle the routing of methods invocations that are sent via HTTP to the
appropriate target MBean on the JMX bus.

The htt p-i nvoker. war web application contains servlets that handle the details of the HTTP
transport. The Nanmi ngFact or ySer vl et handles creation requests for the JBoss JNDI haming
service j avax. nami ng. Cont ext implementation. The | nvoker Ser vl et handles invocations
made by RMI/HTTP clients. The ReadOnl yAccessFi | t er allows one to secure the JNDI naming
service while making a single JNDI context available for read-only access by unauthenticated
clients.

141

Chapter 5. Naming on JBoss

Lookup via HTTP NamingFactoryServlet
Queries

|
L)
Creates m HttpProxyFactory
|
L]

org.jnp.interfaces.Naming

HttpinvokerProxy

InvokerServlet

JMX
ProxyHandler

“jnp.interfaces.NamingContext

f E:}x.naming.(:nntext

Figure 5.2. The HTTP invoker proxy/server structure for a JNDI Context

NamingService

Before looking at the configurations let's look at the operation of the ht t p-i nvoker services.
Figure 5.2, “The HTTP invoker proxy/server structure for a JNDI Context” shows a logical view
of the structure of a JBoss JNDI proxy and its relationship to the JBoss server side components
of the ht t p-i nvoker . The proxy is obtained from the Nani ngFact or ySer vl et using an

I nitial Context with the Cont ext. | NI TI AL_CONTEXT_FACTORY property set to

org. j boss. nami ng. Ht t pNani ngCont ext Fact ory, and the Cont ext . PROVI DER_URL property
set to the HTTP URL of the Nani ngFact or ySer vl et . The resulting proxy is embedded in an
org.jnp.interfaces. Nam ngCont ext instance that provides the Cont ext interface
implementation.

The proxy is an instance of or g. j boss. i nvocati on. http.interfaces. Htt pl nvoker Proxy,
and implements the or g. j np. i nt er f aces. Nani ng interface. Internally the Ht t pl nvoker Pr oxy
contains an invoker that marshalls the Nani ng interface method invocations to the

I nvoker Ser vl et via HTTP posts. The | nvoker Servl et translates these posts into JMX
invocations to the Nami ngSer vi ce, and returns the invocation response back to the proxy in the
HTTP post response.

There are several configuration values that need to be set to tie all of these components
together and Figure 5.3, “The relationship between configuration files and JNDI/HTTP
component” illustrates the relationship between configuration files and the corresponding
components.

142

Accessing JNDI over HTTP

deploy/http-invoker.sar
+- META-INF /jboss-service.xml

+—- http-invoker.war (archive)
| +- HEB—IHFfwf:h.mnl

InvokerServlet NamingFactoryServiet HttpProx ﬂFactur}r

J'II’II".___ J'II’I\'-_

=

VOV

conf/jboss-service.xml P NamingService

Figure 5.3. The relationship between configuration files and JNDI/HTTP
component

The http-invoker. sar/ META- | NF/ j boss- servi ce. xnl descriptor defines the
Ht t pPr oxyFact ory that creates the Ht t pl nvoker Pr oxy for the Nani ngSer vi ce. The attributes
that need to be configured for the Ht t pPr oxyFact or y include:

¢ InvokerName: The JMX bj ect Nanme of the Nani ngSer vi ce defined in the
conf/j boss-servi ce. xnl descriptor. The standard setting used in the JBoss distributions is
j boss: servi ce=Nami ng.

e InvokerURL or InvokerURLPrefix + InvokerURLSuffix + UseHostName. You can specify
the full HTTP URL to the I nvoker Ser vl et using the | nvoker URL attribute, or you can specify
the hostname independent parts of the URL and have the Ht t pPr oxyFact or y fill them in. An
example | nvoker URL value would be
http://jbosshost 1. dot. com 8080/ i nvoker/ JMXI nvoker Ser vl et . This can be broken
down into:

» InvokerURLPrefix: the URL prefix prior to the hostname. Typically this will be http: // or

143

Chapter 5. Naming on JBoss

https:// if SSL is to be used.

» InvokerURLSuffix: the URL suffix after the hostname. This will include the port number of
the web server as well as the deployed path to the | nvoker Ser vl et . For the example
I nvoker URL value the | nvoker URLSuf fi x would be : 8080/ i nvoker/ JMXI nvoker Ser vl et
without the quotes. The port number is determined by the web container service settings.
The path to the | nvoker Ser vl et is specified in the
htt p-i nvoker. sar/i nvoker.war/WEB- | NF/ web. xm descriptor.

» UseHostName: a flag indicating if the hosthame should be used in place of the host IP
address when building the hostname portion of the full I nvoker URL. If true,
I net Addr ess. get Local Host () . get Host Name method will be used. Otherwise, the
I net Addr ess. get Local Host () . get Host Addr ess() method is used.

« Exportedinterface: The org. j np. i nterfaces. Nani ng interface the proxy will expose to
clients. The actual client of this proxy is the JBoss JNDI implementation Nani ngCont ext
class, which JNDI client obtain from | ni ti al Cont ext lookups when using the JBoss JNDI
provider.

e JndiName: The name in JNDI under which the proxy is bound. This needs to be set to a
blank/empty string to indicate the interface should not be bound into JNDI. We can't use the
JNDI to bootstrap itself. This is the role of the Nami ngFact oryServl et .

The htt p-invoker. sar/invoker. war/WEB- | NF/ web. xm descriptor defines the mappings of
the Nami ngFact orySer vl et and I nvoker Ser vl et along with their initialization parameters. The
configuration of the Nanmi ngFact or ySer vl et relevant to JNDI/HTTP is the JNDI Fact ory entry
which defines:

* A nanmi ngPr oxyMBean initialization parameter that maps to the Ht t pPr oxyFact ory MBean
name. This is used by the Nanmi ngFact or ySer vl et to obtain the Nani ng proxy which it will
return in response to HTTP posts. For the default
htt p-i nvoker. sar/ META- | NF/ j boss- servi ce. xn settings the name
j boss: servi ce=i nvoker, type=http,target =Nani ng.

« A proxy initialization parameter that defines the name of the nani ngPr oxyMBean attribute to
query for the Naming proxy value. This defaults to an attribute name of Pr oxy.

» The servlet mapping for the JNDI Fact or y configuration. The default setting for the unsecured
mapping is / INDI Fact or y/ *. This is relative to the context root of the
htt p-i nvoker. sar/invoker . war, which by default is the WAR name minus the . war suffix.

The configuration of the | nvoker Ser vl et relevant to JINDI/HTTP is the JMXI nvoker Ser vl et
which defines:

» The servlet mapping of the I nvoker Ser vl et . The default setting for the unsecured mapping

144

Accessing JNDI over HTTPS

is / IMXI nvoker Ser vl et/ *. This is relative to the context root of the
htt p-i nvoker. sar/invoker. war, which by default is the WAR name minus the . war suffix.

4.2. Accessing JNDI over HTTPS

To be able to access JNDI over HTTP/SSL you need to enable an SSL connector on the web
container. The details of this are covered in the Integrating Servlet Containers for Tomcat. We
will demonstrate the use of HTTPS with a simple example client that uses an HTTPS URL as
the JNDI provider URL. We will provide an SSL connector configuration for the example, so
unless you are interested in the details of the SSL connector setup, the example is self
contained.

We also provide a configuration of the Ht t pPr oxyFact ory setup to use an HTTPS URL. The
following example shows the section of the ht t p-i nvoker . sarj boss- servi ce. xnl descriptor
that the example installs to provide this configuration. All that has changed relative to the
standard HTTP configuration are the | nvoker URLPr ef i x and | nvoker URLSuf f i x attributes,
which setup an HTTPS URL using the 8443 port.

<l -- Expose the Nam ng service interface via HITPS -->
<mbean code="org.jboss.invocation. http.server. H t pProxyFactory"
nane="j boss: servi ce=i nvoker, t ype=htt ps, t ar get =Nam ng" >

<l-- The Nanming service we are proxying -->
<attribute nane="Invoker Nane" >j boss: servi ce=Nani ng</attri bute>
<!-- Conpose the invoker URL fromthe cluster node address -->

<attribute nane="Invoker URLPrefix">https://</attribute>
<attribute nanme="I nvoker URLSuf fi x">: 8443/ i nvoker/ JMXI nvoker Ser vl et
</attribute>
<attribute name="UseHost Name">true</attri bute>
<attribute nanme="Exportedl nterface">org.jnp.interfaces. Nam ng
</attribute>
<attribute name="Jndi Nane"/>
<attribute nane="Clientlnterceptors">
<i nt er cept or s>
<i nt er cept or >or g. j boss. proxy. d i ent Met hodl nt er cept or
</interceptor>
<i nt er cept or >or g. j boss. proxy. Securityl nterceptor
</int er cept or>
<i nt er cept or >or g. j boss. nam ng. i nt er cept or s. Excepti onl nt er cept or
</interceptor>
<i ntercept or>org.j boss. i nvocati on. | nvoker | nt er cept or
</int er cept or>
</interceptors>
</attribute>
</ mbean>

At a minimum, a JNDI client using HTTPS requires setting up a HTTPS URL protocol handler.
We will be using the Java Secure Socket Extension (JSSE) for HTTPS. The JSSE
documentation does a good job of describing what is necessary to use HTTPS, and the
following steps were needed to configure the example client shown in Example 5.2, “A JNDI
client that uses HTTPS as the transport”:

145

Chapter 5. Naming on JBoss

A protocol handler for HTTPS URLs must be made available to Java. The JSSE release

includes an HTTPS handler in the com sun. net . ssl . i nt er nal . ww. pr ot ocol package. To

enable the use of HTTPS URLSs you include this package in the standard URL protocol
handler search property, j ava. pr ot ocol . handl er. pkgs. We set the
j ava. prot ocol . handl er . pkgs property in the Ant script.

The JSSE security provider must be installed in order for SSL to work. This can be done
either by installing the JSSE jars as an extension package, or programatically. We use the
programatic approach in the example since this is less intrusive. Line 18 of the ExCl i ent
code demonstrates how this is done.

The INDI provider URL must use HTTPS as the protocol. Lines 24-25 of the Exd i ent code
specify an HTTP/SSL connection to the localhost on port 8443. The hostname and port are

defined by the web container SSL connector.

The validation of the HTTPS URL hostname against the server certificate must be disabled.

By default, the JSSE HTTPS protocol handler employs a strict validation of the hostname
portion of the HTTPS URL against the common name of the server certificate. This is the

same check done by web browsers when you connect to secured web site. We are using a
self-signed server certificate that uses a common name of "Chapter 8 SSL Exanpl e" rather
than a particular hostname, and this is likely to be common in development environments or

intranets. The JBoss Ht t pl nvoker Pr oxy will override the default hostname checking if a

org.j boss. security.ignoreHtpsHost system property exists and has a value of true. We

setthe org. j boss. security.ignoreHttpsHost property to true in the Ant script.

package org.j boss. chap3. ex1;

i nmport
i mport
i mport
i mport

public
{

java. security. Security;
java. util.Properties;

j avax. nam ng. Cont ext ;

j avax. nam ng. I ni ti al Cont ext ;

class ExC i ent

public static void main(String args[]) throws Exception

{

Properties env = new Properties();
env. set Property(Context. | N Tl AL_CONTEXT_FACTCRY,

"org.j boss. nani ng. Ht t pNani ngCont ext Fact ory") ;
env. set Propert y(Cont ext. PROVI DER_URL,

"https://|ocal host: 8443/i nvoker/JNDI Fact orySSL") ;

Context ctx = new | nitial Context(env);
Systemout.println("Created Initial Context, env=" + env);

bj ect data = ctx. | ookup("jnx/invoker/RM Adaptor");
System out . printl n("l ookup(j mx/invoker/RM Adaptor): " + data);

146

Securing Access to JNDI over HTTP

Example 5.2. A JNDI client that uses HTTPS as the transport

To test the client, first build the chapter 3 example to create the chap3 configuration fileset.

[exanpl es] $ ant - Dchap=nam ng config

Next, start the JBoss server using the nani ng configuration fileset:

[bin]$ sh run.sh -c nam ng

And finally, run the Exd i ent using:

[exanpl es] $ ant - Dchap=nam ng - Dex=1 run-exanpl e
run- exanpl el:

[java] Created Initial Context, env={java.nam ng. \
provi der.url =https://| ocal host: 8443/i nvoker/JNDI Fact orySSL, java.nam ng. \
factory.initial =org.jboss. nam ng. Ht t pNam ngCont ext Fact or y}
[java] | ookup(jm/invoker/RM Adaptor): org.jboss.invocation.jrm. \
i nterfaces. JRVWPI nvoker P
roxy@ac3f a

4.3. Securing Access to JNDI over HTTP

One benefit to accessing JNDI over HTTP is that it is easy to secure access to the JNDI

I ni tial Context factory as well as the naming operations using standard web declarative
security. This is possible because the server side handling of the INDI/HTTP transport is
implemented with two servlets. These servlets are included in the

htt p-i nvoker. sar/i nvoker. war directory found in the def aul t and al | configuration deploy
directories as shown previously. To enable secured access to JNDI you need to edit the

i nvoker . war/ WEB- | NF/ web. xm descriptor and remove all unsecured servlet mappings. For
example, the web. xm descriptor shown in Example 5.3, “An example web.xml descriptor for
secured access to the JNDI servlets” only allows access to the i nvoker . war servlets if the user
has been authenticated and has a role of Ht t pl nvoker .

<?xm version="1.0" encodi ng="UTF- 8" ?>
<! DOCTYPE web- app PUBLI C
"-//Sun M crosystens, Inc.//DTD Wb Application 2.3//EN'
"http://java. sun. com dt d/ web-app_2_3.dtd">
<web- app>
<! -- ### Servlets -->
<servl et >
<servl et - name>JMXI nvoker Ser vl et </ servl et - name>
<servl et -cl ass>
org.j boss.invocation. http.servlet.|nvoker Servl et

147

Chapter 5. Naming on JBoss

</servl et-cl ass>
<l oad-on-start up>1</| oad- on- st art up>
</servlet> <servlet>
<ser vl et - nane>JNDI Fact or y</ ser vl et - nane>
<servl et -cl ass>
org.j boss.invocation. http. servl et. Nam ngFact or ySer vl et
</servl et-cl ass>
<i ni t-paranp
<par am nanme>nani ngPr oxy MBean</ par am nane>
<par am val ue>j boss: servi ce=i nvoker, type=htt p, t ar get =Nam ng</ par am val ue>
</init-paranp
<i ni t - paranp
<par am nane>pr oxyAt tri but e</ par am nane>
<par am val ue>Pr oxy</ par am val ue>
</init-paranmp
<l oad- on- st art up>2</ | oad-on-start up>
</servlet>
<!-- ### Servlet Mappings -->
<ser vl et - mappi ng>
<servl et - name>JNDI Fact or y</ ser vl et - nane>
<url-pattern>/restricted/ JND Factory/*</url -pattern>
</ servl et - mappi ng>
<servl et - mappi ng>
<servl et - nane>JMXI nvoker Ser vl et </ ser vl et - name>
<url-pattern>/restricted/ JMXI nvoker Servl et/ *</url -pattern>
</ servl et - mappi ng> <security-constraint>
<web- resour ce-col | ecti on>
<web- r esour ce- nane>Ht t pl nvoker s</ web- r esour ce- nane>
<descri pti on>An exanpl e security config that only allows users
wi th
the role Httplnvoker to access the HITP i nvoker servlets
</ descri pti on>
<url-pattern>/restricted/ *</url -pattern>
<ht t p- met hod>GET</ ht t p- met hod>
<ht t p- met hod>POST</ ht t p- net hod>
</ web-resour ce-col | ecti on>
<aut h- const r ai nt >
<r ol e- name>Ht t pl nvoker </ r ol e- nane>
</ aut h-constrai nt >
</ security-constraint>
<l ogi n-confi g>
<aut h- met hod>BASI C</ aut h- met hod>
<r eal m name>JBoss HTTP | nvoker </ real m name>
</l ogi n-confi g> <security-rol e>
<rol e- name>Ht t pl nvoker </ r ol e- name>
</security-rol e>
</ web- app>

Example 5.3. An example web.xml descriptor for secured access to the
JNDI servlets

The web. xm descriptor only defines which sevlets are secured, and which roles are allowed to

148

Securing Access to JNDI with a Read-Only

access the secured servlets. You must additionally define the security domain that will handle
the authentication and authorization for the war. This is done through the j boss- web. xm
descriptor, and an example that uses the ht t p- i nvoker security domain is given below.

<j boss- web>
<security-donmai n> ava:/j aas/ http-i nvoker</security-domai n>
</ j boss- web>

The securi ty-domai n element defines the name of the security domain that will be used for the
JAAS login module configuration used for authentication and authorization. See Section 1.6,
“Enabling Declarative Security in JBoss” for additional details on the meaning and configuration
of the security domain name.

4.4. Securing Access to JNDI with a Read-Only Unsecured
Context

Another feature available for the JNDI/HTTP naming service is the ability to define a context that
can be accessed by unauthenticated users in read-only mode. This can be important for
services used by the authentication layer. For example, the SRPLogi nMbdul e needs to lookup
the SRP server interface used to perform authentication. We'll now walk through how read-only
JNDI works in JBoss.

First, the ReadOnl yJNDI Fact ory is declared in i nvoker . sar/ WEB- | NF/ web. xn . It will be
mapped to / i nvoker / ReadOnl yJNDI Fact ory.

<servl et>
<servl et - name>ReadOnl yJNDI Fact or y</ servl et - nane>
<descri ption>A servl et that exposes the JBoss JNDI Nami ng service stub
through http, but only for a single read-only context. The return
cont ent
is serialized Marshal | edVal ue contai ni ng the
org.jnp.interfaces. Nam ng
st ub.
</ descri pti on>
<servl et -cl ass>org. j boss. i nvocati on. http. servl et. Nanm ngFact oryServl et </ servl et - cl ass>
<i ni t - parane
<par am nane>nani ngPr oxy MBean</ par am nane>
<par am val ue>j boss: servi ce=i nvoker, t ype=htt p, t ar get =Nam ng, r eadonl y=t r ue</ par am val u
</init-paranm
<i ni t - parane
<par am nane>pr oxyAt t ri but e</ par am nane>
<par am val ue>Pr oxy</ par am val ue>
</init-paranm
<l oad- on- st art up>2</| oad- on- st art up>
</ servlet>

<l-- ... -->

<servl et - mappi ng>
<ser vl et - name>ReadOnl yJNDI Fact or y</ ser vl et - nane>
<url - pattern>/ ReadOnl yJNDI Fact ory/*</url - pattern>
</ servl et - mappi ng>

149

Chapter 5. Naming on JBoss

The factory only provides a JNDI stub which needs to be connected to an invoker. Here the
invoker is j boss: servi ce=i nvoker, t ype=ht t p, t ar get =Nani ng, r eadonl y=t r ue. This invoker
is declared in the ht t p-i nvoker . sar/ META-| NF/ j boss- servi ce. xni file.

<nbean code="org. | boss.invocation. http.server. HttpProxyFactory"
name="j boss: servi ce=i nvoker, t ype=http, t ar get =Nam ng, r eadonl y=t r ue" >
<attribute nanme="Invoker Name" >j boss: servi ce=Nani ng</attri but e>
<attribute name="Invoker URLPrefix">http://</attribute>
<attribute
nanme="1 nvoker URLSuf f i x">: 8080/ i nvoker/readonl y/ JMXl nvoker Servl et </ attri but e>
<attribute nane="UseHost Nane">true</attri bute>
<attribute
nanme="Exportedl nterface">org.jnp.interfaces. Nam ng</attri bute>
<attribute name="Jndi Name"></attri bute>
<attribute nane="Clientlnterceptors">
<i nt er cept or s>
<i ntercept or>org. j boss. proxy. C i ent Met hodl nt er cept or </ i nt er cept or >
<i ntercept or>org. j boss. proxy. Securityl nterceptor</interceptor>
<i nt er cept or >or g. j boss. nam ng. i nt ercept ors. Excepti onl nt er cept or </ i nt er cept or >
<i nt er cept or >or g. j boss. i nvocati on. | nvoker | nt er cept or </ i nt er cept or >
</interceptors>
</attribute>
</ nbean>

The proxy on the client side needs to talk back to a specific invoker servlet on the server side.
The configuration here has the actual invocations going to

/i nvoker/readonl y/ IMXI nvoker Ser vl et . This is actually the standard JMXI nvoker Ser vl et
with a read-only filter attached.

<filter>
<filter-name>ReadOnl yAccessFilter</filter-name>
<filter-class>org.jboss.invocation. http.servlet.ReadOnl yAccessFilter</filter-class>
<i ni t - paran>
<par am name>r eadOnl yCont ext </ par am nane>
<par am val ue>r eadonl y</ par am val ue>
<descri ption>The top | evel JNDI context the filter will enforce
read-only access on. If specified only Context.|ookup
oper ati ons
will be allowed on this context. Another other operations or
| ookups on any other context will fail. Do not associate
this
filter with the JMXI nvokerServlets if you want unrestricted
access. </description>
</init-paranp
<i ni t - parane
<par am nanme>i nvoker Nanme</ par am nane>
<par am val ue>j boss: servi ce=Nani ng</ par am val ue>
<descri pti on>The JMX Obj ect Name of the nam ng service nbean
</ descri pti on>
</init-paranp
</filter>

150

Unsecured Context

<filter-mppi ng>
<filter-name>ReadOnl yAccessFilter</filter-name>
<url - pattern>/readonly/*</url -pattern>
</filter-mppi ng>

<l-- ... -->
<I-- A mapping for the JMXI nvokerServl et that only allows invocations
of | ookups under a read-only context. This is enforced by the

ReadOnl yAccessFil ter
-->
<servl et - mappi ng>
<servl et - name>JMXI nvoker Ser vl et </ ser vl et - nane>
<url - pattern>/readonly/ JMXI nvoker Servl et/ *</ url - pattern>
</ servl et - mappi ng>

The r eadOnl yCont ext parameter is set to r eadonl y which means that when you access JBoss
through the ReadOnl yJNDI Fact ory, you will only be able to access data in the r eadonl y
context. Here is a code fragment that illustrates the usage:

Properties env = new Properties();
env. set Property(Context. | N Tl AL_CONTEXT_ FACTCRY,
"org. j boss. nam ng. Ht t pNam ngCont ext Fact ory");
env. set Propert y(Cont ext. PROVI DER_URL,
"http://1ocal host: 8080/i nvoker/ ReadOnl yJNDI Fact ory");

Context ctx2 = new I nitial Context(env);
hj ect data = ctx2.| ookup("readonly/data");

Attempts to look up any objects outside of the readonly context will fail. Note that JBoss doesn't
ship with any data in the r eadonl y context, so the readonly context won't be bound usable
unless you create it.

5. Additional Naming MBeans

In addition to the Nani ngSer vi ce MBean that configures an embedded JBossNS server within
JBoss, there are several additional MBean services related to naming that ship with JBoss.
They are Jndi Bi ndi ngSer vi ceMyr, Nami ngAl i as, Ext er nal Cont ext, and JNDI Vi ew.

5.1. JNDI Binding Manager

The JNDI binding manager service allows you to quickly bind objects into JNDI for use by
application code. The MBean class for the binding service is

or g. j boss. nanmi ng. JNDI Bi ndi ngSer vi ceMyr . It has a single attribute, Bi ndi ngsConf i g, which
accepts an XML document that conforms to the j ndi - bi ndi ng-servi ce_1_0. xsd schema. The
content of the Bi ndi ngsConf i g attribute is unmarshalled using the JBossXB framework. The
following is an MBean definition that shows the most basic form usage of the JNDI binding
manager service.

<mbean code="org.j boss. nam ng. JNDI Bi ndi ngSer vi ceMyr "
nane="j boss. t est s: nane=exanpl el" >

151

Chapter 5. Naming on JBoss

<attribute nane="Bi ndi ngsConfi g" serial Dat aType="j bxb" >
<j ndi : bi ndi ngs xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: j ndi ="urn: j boss: j ndi - bi ndi ng- servi ce"
xs: schemaLocat i on="ur n: j boss: j ndi - bi ndi ng-service \
resour ce: j ndi - bi ndi ng-service_1_0. xsd">
<j ndi : bi ndi ng name="bi ndexanpl e/ nessage" >
<jndi:value trim"true">
Hel I o, JNDI!
</jndi : val ue>
</ j ndi : bi ndi ng>
</ j ndi : bi ndi ngs>
</attri bute>
</ nbean>

This binds the text string "Hel | o, JNDI ! " under the JNDI name bi ndexanpl e/ nessage. An
application would look up the value just as it would for any other JNDI value. The t ri mattribute
specifies that leading and trailing whitespace should be ignored. The use of the attribute here is
purely for illustrative purposes as the default value is true.

new | nitial Context();
(String) ctx.lookup("bindexanpl e/ nessage");

I nitial Context ctx
String t ext

String values themselves are not that interesting. If a JavaBeans property editor is available, the
desired class name can be specified using the t ype attribute

<j ndi : bi ndi ng nanme="url s/j boss- hone" >
<j ndi : val ue type="j ava. net. URL">htt p://wwv. j boss. or g</j ndi : val ue>
</ j ndi : bi ndi ng>

The edi t or attribute can be used to specify a particular property editor to use.

<j ndi : bi ndi ng nane="host s/ | ocal host ">
<j ndi : val ue editor="org.jboss.util.propertyeditor.I|netAddressEditor">
127.0.0.1
</j ndi : val ue>
</ j ndi : bi ndi ng>

For more complicated structures, any JBossXB-ready schema may be used. The following
example shows how a j ava. util . Properti es object would be mapped.

<j ndi : bi ndi ng nane="nmaps/t est Props">
<j ava: properties xnl ns:java="urn:jboss:java-properties"
xm ns: xs="http://ww. w3. or g/ 2001/ XM_Scherma- i nst ance"
xs: schemaLocat i on="ur n: j boss: j ava- properties \
resource: java-properties_1 0.xsd">
<j ava: property>
<j ava: key>keyl</j ava: key>
<j ava: val ue>val uel</j ava: val ue>
</java: property>

152

The org.jboss.naming.NamingAlias MBean

<j ava: property>
<j ava: key>key2</j ava: key>
<j ava: val ue>val ue2</j ava: val ue>
</j ava: property>
</java: properties>
</j ndi : bi ndi ng>

For more information on JBossXB, see the JBossXB wiki pagel.

5.2. The org.jboss.naming.NamingAlias MBean

The Nani ngAl i as MBean is a simple utility service that allows you to create an alias in the form
of a JNDI j avax. nam ng. Li nkRef from one JNDI name to another. This is similar to a symbolic
link in the UNIX file system. To an alias you add a configuration of the Nami ngAl i as MBean to
the j boss- servi ce. xnl configuration file. The configurable attributes of the Nani ngAl i as
service are as follows:

* FromName: The location where the Li nkRef is bound under JNDI.

* ToName: The to name of the alias. This is the target name to which the Li nkRef refers. The
name is a URL, or a name to be resolved relative to the I ni ti al Cont ext, or if the first
character of the name is a dot (.), the name is relative to the context in which the link is
bound.

The following example provides a mapping of the INDI name QueueConnect i onFact ory to the
name Connecti onFactory.

<mbean code="org.j boss. nam ng. Nanm ngAl i as"
nane="j boss. ng: servi ce=Nami ngAl i as, f r onName=QueueConnect i onFact ory" >
<attribute nanme="ToNane">Connecti onFactory</attribute>
<attribute nane="FronNane">QueueConnecti onFactory</attri bute>
</ nbean>

5.3. org.jboss.naming.ExternalContext MBean

The Ext er nal Cont ext MBean allows you to federate external INDI contexts into the JBoss
server JNDI namespace. The term external refers to any naming service external to the
JBossNS naming service running inside of the JBoss server VM. You can incorporate LDAP
servers, file systems, DNS servers, and so on, even if the JNDI provider root context is not
serializable. The federation can be made available to remote clients if the naming service
supports remote access.

To incorporate an external JINDI naming service, you have to add a configuration of the
Ext er nal Cont ext MBean service to the j boss- servi ce. xnl configuration file. The

1 http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossXB

153

http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossXB
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossXB

Chapter 5. Naming on JBoss

configurable attributes of the Ext er nal Cont ext service are as follows:

« JndiName: The JNDI name under which the external context is to be bound.

* RemoteAccess: A boolean flag indicating if the external I ni ti al Cont ext should be bound
using a Seri al i zabl e form that allows a remote client to create the external
I nitial Context . When a remote client looks up the external context via the JBoss JNDI
I nitial Context, they effectively create an instance of the external | ni ti al Cont ext using
the same env properties passed to the Ext er nal Cont ext MBean. This will only work if the
client can do a new I ni ti al Cont ext (env) remotely. This requires that the
Cont ext . PROVI DER_URL value of env is resolvable in the remote VM that is accessing the
context. This should work for the LDAP example. For the file system example this most likely
won't work unless the file system path refers to a common network path. If this property is not
given it defaults to false.

» CacheContext: The cacheCont ext flag. When set to true, the external Cont ext is only
created when the MBean is started and then stored as an in memory object until the MBean
is stopped. If cacheContext is set to false, the external Cont ext is created on each lookup
using the MBean properties and InitialContext class. When the uncached Cont ext is looked
up by a client, the client should invoke cl ose() on the Context to prevent resource leaks.

« InitialContext: The fully qualified class name of the I ni ti al Cont ext implementation to use.
Must be one of: j avax. nami ng. I ni ti al Cont ext,
javax. nam ng. directory. I nitial Di rContext or
j avax. nami ng. | dap. I ni ti al LdapCont ext . In the case of the I ni ti al LdapCont ext a null
Control s array is used. The default is j avax. nam ng. I ni ti al Cont ex.

» Properties: The Properti es attribute contains the JNDI properties for the external
I ni tial Cont ext. The input should be the text equivalent to what would go into a
j ndi . properti es file.

» PropertiesURL: This set the j ndi . properti es information for the external | ni ti al Cont ext
from an external properties file. This is either a URL, string or a classpath resource name.
Examples are as follows:

« file:///config/myldap.properties

« http://config.mycompany.com/myldap.properties
* /conf/myldap.properties

* myldap.properties

The MBean definition below shows a binding to an external LDAP context into the JBoss JNDI
namespace under the name ext er nal / | dap/ j boss.

<I-- Bind a rennote LDAP server -->
<nmbean code="org. | boss. nan ng. Ext er nal Cont ext "
nanme="j boss. j ndi : servi ce=Ext er nal Cont ext, j ndi Name=ext er nal / | dap/ j boss" >
<attribute nane="Jndi Nane" >ext ernal /| dap/j boss</attri bute>
<attribute name="Properties">
java. nam ng. factory.initial =com sun.jndi.|dap. LdapCt xFact ory
j ava. nam ng. provi der. url =l dap: / /| daphost . j boss. or g: 389/ 0=j boss. org

154

The org.jboss.naming.JNDIView MBean

j ava. nam ng. security. princi pal =cn=Di r ect ory Manager
j ava. nam ng. security. aut henticati on=si npl e
j ava. nam ng. security. credenti al s=secr et
</attribute>
<attribute name="Initial Context"> javax.nam ng. | dap.|nitial LdapCont ext
</attri bute>
<attribute nane="Renpt eAccess">true</attribute>
</ nbean>

With this configuration, you can access the external LDAP context located at
| dap: / /1 daphost . j boss. or g: 389/ o=j boss. or g from within the JBoss VM using the following
code fragment:

Initial Context iniCtx = new Initial Context();
LdapCont ext | dapCtx = ini Cx.| ookup("external/Ildap/jboss");

Using the same code fragment outside of the JBoss server VM will work in this case because
the Renot eAccess property was set to true. If it were set to false, it would not work because the
remote client would receive a Ref er ence object with an Obj ect Fact or y that would not be able
to recreate the external I ni ti al Cont ext

<l-- Bind the /usr/local file systemdirectory -->
<nbean code="org.j boss. nam ng. Ext er nal Cont ext "
name="j boss. j ndi : servi ce=Ext er nal Cont ext , j ndi Name=ext ernal / f s/ usr/| ocal ">
<attribute nanme="Jndi Nane" >ext ernal /fs/usr/local </attri bute>
<attribute nane="Properties">
java. nam ng.factory.initial =com sun.jndi.fscontext.Ref FSCont ext Fact ory
j ava. nam ng. provi der.url =file:///usr/| ocal
</attribute>
<attribute nane="Initi al Cont ext">j avax. nam ng. | nti al Context</attribute>
</ mbean>

This configuration describes binding a local file system directory / usr/ | ocal into the JBoss
JNDI namespace under the name ext ernal / fs/ usr/ | ocal .

With this configuration, you can access the external file system context located at
file:///usr/local from within the JBoss VM using the following code fragment:

Initial Context iniCtx = new Initial Context();
Cont ext | dapCtx = iniCx.|ookup("external/fs/usr/local");

Note that the use the Sun JNDI service providers, which must be downloaded from
http://java.sun.com/products/jndi/serviceproviders.html. The provider JARs should be placed in
the server configuration | i b directory.

5.4. The org.Jboss.naming.JNDIView MBean

155

http://java.sun.com/products/jndi/serviceproviders.html

Chapter 5. Naming on JBoss

The JNDIView MBean allows the user to view the JNDI namespace tree as it exists in the JBoss
server using the JMX agent view interface. To view the JBoss JNDI hamespace using the
JNDIView MBean, you connect to the JIMX Agent View using the http interface. The default
settings put this at ht t p: / /| ocal host : 8080/ j nx- consol e/ . On this page you will see a
section that lists the registered MBeans sorted by domain. It should look something like that
shown in Figure 5.4, “The JMX Console view of the configured JBoss MBeans”.

[E (&) - JBoss JMX Management Console

@ . @ - €A http: //localhost:B080/jmx-console/ "'Q q
. e —
0

il

= JMX Agent View toki.local

ObjectName Filter (e.g. "jboss:*", "*:service=invoker,*") :
(Apply‘Fiit&r‘]

Catalina
- l!E'E:S'EN'ET
JMImplementation

« name=Default.servicesLoaderRepository
« type=MBeanReqgistry
« type=MBeanServerDelegate

jboss

database=localDB.service=Hypersonic
name=PropertyEditorManager.type=Service
name=systemProperties.type=sService
readonly=true.service=sinvokertarget=Naming.type=http
servicesAttributePersistenceService
service=ClientUserTransaction

service=sJNDIView
service=KeyGeneratorFactory.type=HiLo

servicesKeyGeneratorFactory.type=UulD
service=Mail

servicesNaming

L B I B B B B

“'S-l«. 4| r{

Figure 5.4. The JMX Console view of the configured JBoss MBeans

Selecting the INDIView link takes you to the JNDIView MBean view, which will have a list of the
JNDIView MBean operations. This view should look similar to that shown in Figure 5.5, “The
JMX Console view of the JINDIView MBean”.

156

The org.jboss.naming.JNDIView MBean

MBean Inspector

[8006
l

MBeanmspecor |

@ A http: / /localhost: 8080,/ jmx-console/HtmlAdaptorZaction=inspe«@® = Qr Coogle

MBean description:

JNDIView Service. List deployed application java:comp namespaces, the java: namespace as well as the

global InitialContext JNDI namespace.

List of MBean attributes:

Name i‘ava.lang.string R INDIView

The class name of the MBean

State lint IR

3

The status of the MBean

StateString|h‘ ava.lang. String"R

Started

The status of the MBean in text form

List of MBean operations:

java.lang.String list{)

Output JNDI info as text

ParamType ParambDescription

sabiialbesiess ®True O If true, list the class of each object in addition to its
False name

Invoke

java.lang.String listXML()

Output JNDI info in XML format

Figure 5.5. The JMX Console view of the JNDIView MBean

The list operation dumps out the JBoss server JNDI namespace as an HTML page using a
simple text view. As an example, invoking the list operation produces the view shown in

Figure 5.6, “The JMX Console view of the JINDIView list operation output”.

&“ afpl

157

Chapter 5. Naming on JBoss

I o000 Operation Results

- !

| . " < |
TR e + | @ htp://localhost:8080/jmx-console/HtmlAdaptor © 21 Q~ Google =

| [c] - |
C P — E—

java: Namespace

+- XAConnectionFactory (class: org.jboss.mg.SpyXAConnectionFactory)
+- DefaultDs (class: javax.sgl.DataSource) m
+- SecurityProxyFactory (class: org.jboss.security.SubjectSecurityProxyFactory)
+- DefaultJMSProvider (class: org.jboss.jms.jndi.JNDIProvideradapter)
+- comp (class: javax.naming.Context)
+- JmsXA (class: org.jboss.resource.adapter.jms.JmsConnectionFactoryImpl)
+- ConnectionFactory (class: org.jboss.mg.SpyConnectionFactory)
+- jaas (class: javax.naming.Context)
| +- JmsXARealm (class: org.jboss.security.plugins.securityDomainContext)
| +- jbossmg (class: org.jboss.security.plugins.SecurityDomainContext)
| +- HsglDbRealm (class: org.jboss.security.plugins.SecurityDomainContext)
+- timedCacheFactory (class: javax.naming.Context)
Failed to lookup: timedCacheFactory, errmsg=null
+- TransactionPropagationContextExporter (class: org.jboss.tm.TransactionPropagationContext]
+- StdIMSPool (class: org.jboss.jms.asf.StdServerSessionPoolFactory)
+- Mail (class: javax.mail.session)
+- TransactionPropagationContextImporter (class: org.jboss.tm.TransactionPropagationContext!
+- TransactionManager (class: org.jboss.tm.TxManager)

Global JNDI Namespace

+- XAConnectionFactory (class: ord.jboss.mg.SpyXAConnectionFactory)

+- UILZConnectionFactory[link -> ConnectionFactory] (class: javax.naming.LinkRef)

+- UserTransactionSessionFactory (proxy: $Proxyll implements interface org.jboss.tm.usertx.
+- HTTPConnectionFactory (class: org.jboss.mq.SpyConnectionFactory)

+- consele (class: org.jnp.interfaces.NamingContext)

| +- PluginManager (proxy: $Proxy36 implements interface org.jboss.console.manager.Pluginl

+- UILZXAConnectionFactory[link -> XAConnectionFactory] (class: javax.naming.LinkRef) 2
+- UUIDEeyGeneratorFactory (class: org.jboss.ejb.plugins.keygenerator.uuid.UUIDKeyGenerator. ¥
= -} Y
-_J 14w

A

Figure 5.6. The JMX Console view of the JNDIView list operation output

6. J2EE and JNDI - The Application Component
Environment

JNDI is a fundamental aspect of the J2EE specifications. One key usage is the isolation of J2EE
component code from the environment in which the code is deployed. Use of the application
component's environment allows the application component to be customized without the need
to access or change the application component's source code. The application component
environment is referred to as the ENC, the enterprise naming context. It is the responsibility of
the application component container to make an ENC available to the container components in
the form of INDI Context. The ENC is utilized by the participants involved in the life cycle of a
J2EE component in the following ways.

» Application component business logic should be coded to access information from its ENC.

158

J2EE and JNDI - The Application

The component provider uses the standard deployment descriptor for the component to
specify the required ENC entries. The entries are declarations of the information and
resources the component requires at runtime.

« The container provides tools that allow a deployer of a component to map the ENC
references made by the component developer to the deployment environment entity that
satisfies the reference.

» The component deployer utilizes the container tools to ready a component for final
deployment.

« The component container uses the deployment package information to build the complete
component ENC at runtime

The complete specification regarding the use of JNDI in the J2EE platform can be found in
section 5 of the J2EE 1.4 specification. The J2EE specification is available at
http://java.sun.com/j2ee/download.html.

An application component instance locates the ENC using the JNDI API. An application
component instance creates a j avax. nami ng. I ni ti al Cont ext object by using the no
argument constructor and then looks up the naming environment under the name

j ava: conp/ env. The application component's environment entries are stored directly in the
ENC, or in its subcontexts. Example 5.4, “ENC access sample code” illustrates the prototypical
lines of code a component uses to access its ENC.

/] Obtain the application component's ENC
Context iniCtx = new Initial Context();
Cont ext conmpEnv = (Context) iniCtx.|ookup("java: conp/env");

Example 5.4. ENC access sample code

An application component environment is a local environment that is accessible only by the
component when the application server container thread of control is interacting with the
application component. This means that an EJB Beanl1 cannot access the ENC elements of EJB
Bean2, and vice versa. Similarly, Web application Web1 cannot access the ENC elements of
Web application Web2 or Beanl or Bean?2 for that matter. Also, arbitrary client code, whether it is
executing inside of the application server VM or externally cannot access a component's

j ava: conp JNDI context. The purpose of the ENC is to provide an isolated, read-only
namespace that the application component can rely on regardless of the type of environment in
which the component is deployed. The ENC must be isolated from other components because
each component defines its own ENC content. Components A and B, for example, may define
the same name to refer to different objects. For example, EJB Beanl may define an
environment entry j ava: conp/ env/ r ed to refer to the hexadecimal value for the RGB color for
red, while Web application Web1 may bind the same name to the deployment environment
language locale representation of red.

159

http://java.sun.com/j2ee/download.html

Chapter 5. Naming on JBoss

There are three commonly used levels of naming scope in JBoss: names under j ava: conp,
names under j ava: , and any other name. As discussed, the j ava: conp context and its
subcontexts are only available to the application component associated with that particular
context. Subcontexts and object bindings directly under j ava: are only visible within the JBoss
server virtual machine and not to remote clients. Any other context or object binding is available
to remote clients, provided the context or object supports serialization. You'll see how the
isolation of these naming scopes is achieved in the Section 2, “The JBossNS Architecture”.

An example of where the restricting a binding to the j ava: context is useful would be a

j avax. sql . Dat aSour ce connection factory that can only be used inside of the JBoss server
where the associated database pool resides. On the other hand, an EJB home interface would
be bound to a globally visible name that should accessible by remote client.

6.1. ENC Usage Conventions

JNDI is used as the API for externalizing a great deal of information from an application
component. The JNDI name that the application component uses to access the information is
declared in the standard ej b-j ar. xm deployment descriptor for EJB components, and the
standard web. xm deployment descriptor for Web components. Several different types of
information may be stored in and retrieved from JNDI including:

« Environment entries as declared by the env- ent ry elements

EJB references as declared by ej b-ref and ej b-1ocal -ref elements.
» Resource manager connection factory references as declared by the r esour ce-ref elements

» Resource environment references as declared by the r esour ce- env-ref elements

Each type of deployment descriptor element has a JNDI usage convention with regard to the
name of the JNDI context under which the information is bound. Also, in addition to the standard
deploymentdescriptor element, there is a JBoss server specific deployment descriptor element
that maps the JNDI name as used by the application component to the deployment environment
JNDI name.

6.1.1. Environment Entries

Environment entries are the simplest form of information stored in a component ENC, and are
similar to operating system environment variables like those found on UNIX or Windows.
Environment entries are a name-to-value binding that allows a component to externalize a value
and refer to the value using a name.

An environment entry is declared using an env- ent ry element in the standard deployment
descriptors. The env- ent ry element contains the following child elements:

« An optional description element that provides a description of the entry

160

Component Environment

* An env-entry-name element giving the name of the entry relative to j ava: conp/ env

* An env-entry-type element giving the Java type of the entry value that must be one of:
* java.lang. Byte
* java. |l ang. Bool ean
* java.l ang. Character
* java.l ang. Doubl e
* java.l ang. Fl oat
e java.l ang. I nteger
* java.l ang. Long
* java.l ang. Short
* java.lang. String

* An env-entry-value element giving the value of entry as a string

An example of an env- ent ry fragment from an ej b-j ar. xm deployment descriptor is given in
Example 5.5, “An example ejb-jar.xml env-entry fragment”. There is no JBoss specific
deployment descriptor element because an env- ent ry is a complete name and value
specification. Example 5.6, “ENC env-entry access code fragment” shows a sample code
fragment for accessing the maxExenpt i ons and t axRat eenv- ent ry values declared in the
deployment descriptor.

<l-- ... -->

<sessi on>
<ej b- nane>ASessi onBean</ ej b- nane>
<l-- ... -->

<env-entry>
<descri pti on>The maxi mum nunber of tax exenptions all owed
</ descri pti on>
<env-ent ry- name>maxExenpt i ons</ env-ent ry- nane>
<env-entry-type>j ava. |l ang. | nt eger </ env-entry-type>
<env-entry-val ue>15</ env-ent ry-val ue>
</env-entry>
<env-entry>
<descri ption>The tax rate </description>
<env- ent ry- nane>t axRat e</ env- ent r y- nane>
<env-entry-type>j ava. |l ang. Fl oat </ env-entry-type>
<env-entry-val ue>0. 23</ env-entry- val ue>
</ env-entry>
</ sessi on>
<l-- ... -->

Example 5.5. An example ejb-jar.xml env-entry fragment

Initial Context iniCtx = new Initial Context();
Context envCtx = (Context) iniCx.|ookup("java: conp/env");
I nt eger maxExenptions = (Integer) envCx. | ookup(" maxExenpti ons");

161

Chapter 5. Naming on JBoss

Fl oat taxRate = (Float) envCtx.| ookup("taxRate");

Example 5.6. ENC env-entry access code fragment

6.1.2. EJB References

It is common for EJBs and Web components to interact with other EJBs. Because the JNDI
name under which an EJB home interface is bound is a deployment time decision, there needs
to be a way for a component developer to declare a reference to an EJB that will be linked by
the deployer. EJB references satisfy this requirement.

An EJB reference is a link in an application component naming environment that points to a
deployed EJB home interface. The name used by the application component is a logical link
that isolates the component from the actual name of the EJB home in the deployment
environment. The J2EE specification recommends that all references to enterprise beans be
organized in the j ava: conp/ env/ ej b context of the application component's environment.

An EJB reference is declared using an ej b- r ef element in the deployment descriptor. Each

ej b-ref element describes the interface requirements that the referencing application
component has for the referenced enterprise bean. The ej b-r ef element contains the following
child elements:

« An optional description element that provides the purpose of the reference.

« An ejb-ref-name element that specifies the name of the reference relative to the
j ava: conp/ env context. To place the reference under the recommended
j ava: conp/ env/ ej b context, use an ej b/ | i nk- nanme form for the ej b-r ef - nane value.

« An ejb-ref-type element that specifies the type of the EJB. This must be either Enti ty or
Sessi on.

* A home element that gives the fully qualified class name of the EJB home interface.
* Aremote element that gives the fully qualified class name of the EJB remote interface.

« An optional ejb-link element that links the reference to another enterprise bean in the same
EJB JAR or in the same J2EE application unit. The ej b- | i nk value is the ej b- nane of the
referenced bean. If there are multiple enterprise beans with the same ej b- nane, the value
uses the path name specifying the location of the ej b-j ar file that contains the referenced
component. The path name is relative to the referencing ej b-j ar file. The Application
Assembler appends the ej b- nare of the referenced bean to the path name separated by #.
This allows multiple beans with the same name to be uniquely identified.

An EJB reference is scoped to the application component whose declaration contains the

162

ENC Usage Conventions

ej b-ref element. This means that the EJB reference is not accessible from other application
components at runtime, and that other application components may define ej b-r ef elements
with the same ej b- r ef - name without causing a name conflict. Example 5.7, “An example
ejb-jar.xml ejb-ref descriptor fragment” provides an ej b-j ar. xm fragment that illustrates the
use of the ej b-ref element. A code sample that illustrates accessing the Shoppi ngCar t Home
reference declared in Example 5.7, “An example ejb-jar.xml ejb-ref descriptor fragment” is given
in Example 5.8, “ENC ejb-ref access code fragment”.

<l-- ... -->

<sessi on>
<ej b- name>Shoppi ngCar t Bean</ ej b- nane>
<l-- L L-->

</ sessi on>

<sessi on>
<ej b- name>Pr oduct BeanUser </ ej b- nane>
<l--,..-->
<ej b-ref>
<description>This is a reference to the store products entity
</ descri pti on>
<ej b-r ef - nanme>ej b/ Pr oduct Hone</ ej b-r ef - nane>
<ej b-ref-type>Entity</ejb-ref-type>
<hone>or g. j boss. st ore. ej b. Product Hone</ hone>
<renote> org. j boss. store. ej b. Product </ r enot e>
</ ej b-ref>

</ sessi on>

<sessi on>
<ej b-ref>
<ej b- nane>Shoppi ngCar t User </ ej b- nane>
<l--...-->

<ej b-r ef - nane>ej b/ Shoppi ngCar t Hone</ ej b- r ef - name>
<ej b-ref-type>Sessi on</ ej b-ref-type>
<home>or g. j boss. st ore. ej b. Shoppi ngCar t Honme</ hone>
<renot e> org. | boss. store. ej b. Shoppi ngCart </ r enot e>
<ej b- | i nk>Shoppi ngCar t Bean</ ej b- | i nk>
</ejb-ref>
</ sessi on>
<entity>
<descri pti on>The Product entity bean </description>
<ej b- name>Pr oduct Bean</ ej b- name>
<l--, ., .-->

</entity>

<l--, . -->

Example 5.7. An example ejb-jar.xml ejb-ref descriptor fragment

Initial Context iniCtx = new Initial Context();

163

Chapter 5. Naming on JBoss

Context ejbCtx = (Context) iniCx.|ookup("java: conp/env/ejb");
Shoppi ngCart Home hone = (Shoppi ngCart Horre)
ej bCt x. | ookup(" Shoppi ngCar t Hone") ;

Example 5.8. ENC ejb-ref access code fragment

6.1.3. EJB References with jboss. xm and j boss- web. xm

The JBoss specific j boss. xnl EJB deployment descriptor affects EJB references in two ways.
First, the j ndi - nane child element of the sessi on and ent i t y elements allows the user to
specify the deployment JNDI name for the EJB home interface. In the absence of aj boss. xm
specification of the j ndi - nanme for an EJB, the home interface is bound under the

ej b-j ar. xm ej b- narme value. For example, the session EJB with the ej b- narme of

Shoppi ngCar t Bean in Example 5.7, “An example ejb-jar.xml ejb-ref descriptor fragment” would
have its home interface bound under the JNDI hame Shoppi ngCar t Bean in the absence of a

j boss. xnl j ndi - name specification.

The second use of the j boss. xm descriptor with respect to ej b-r ef s is the setting of the
destination to which a component's ENC ej b-r ef refers. The ej b-1i nk element cannot be
used to refer to EJBs in another enterprise application. If your ej b-r ef needs to access an
external EJB, you can specify the INDI name of the deployed EJB home using the

j boss. xnl ej b-ref/j ndi - name element.

The j boss-web. xm descriptor is used only to set the destination to which a Web application

ENC ej b-ref refers. The content model for the JBoss ej b-r ef is as follows:

* An ejb-ref-name element that corresponds to the ejb-ref-name element in the ejb-jar.xml or
web.xml standard descriptor

* Ajndi - namre element that specifies the INDI name of the EJB home interface in the

deployment environment

Example 5.9, “An example jboss.xml ejb-ref fragment” provides an example j boss. xni
descriptor fragment that illustrates the following usage points:

e The Product BeanUser ej b-r ef link destination is set to the deployment name of
j boss/ st or e/ Product Hone

* The deployment JNDI name of the Pr oduct Bean is set to j boss/ st or e/ Pr oduct Hone

<I- >
<sessi on>
<ej b- name>Pr oduct BeanUser </ ej b- nane>

164

ENC Usage Conventions

<ej b-ref>
<ej b-r ef - name>ej b/ Pr oduct Hone</ ej b-r ef - nane>
<j ndi - nanme>j boss/ st or e/ Pr oduct Hone</ j ndi - nane>
</ ej b-ref>
</ sessi on>

<entity>
<ej b- nanme>Pr oduct Bean</ ej b- nane>
<j ndi - name>j boss/ st or e/ Pr oduct Hone</ j ndi - nane>
<l-- ... -=->
</entity>
<l-- ... -->

Example 5.9. An example jboss.xml ejb-ref fragment

6.1.4. EJB Local References

EJB 2.0 added local interfaces that do not use RMI call by value semantics. These interfaces
use a call by reference semantic and therefore do not incur any RMI serialization overhead. An
EJB local reference is a link in an application component naming environment that points to a
deployed EJB local home interface. The name used by the application component is a logical
link that isolates the component from the actual name of the EJB local home in the deployment
environment. The J2EE specification recommends that all references to enterprise beans be
organized in the j ava: conp/ env/ ej b context of the application component's environment.

An EJB local reference is declared using an ej b- 1 ocal -ref element in the deployment
descriptor. Each ej b- 1 ocal - r ef element describes the interface requirements that the
referencing application component has for the referenced enterprise bean. The ej b-1 ocal - r ef
element contains the following child elements:

< An optional description element that provides the purpose of the reference.

« An ejb-ref-name element that specifies the name of the reference relative to the
j ava: conp/ env context. To place the reference under the recommended
j ava: conp/ env/ ej b context, use an ej b/ | i nk- nane form for the ej b-r ef - nane value.

« An ejb-ref-type element that specifies the type of the EJB. This must be either Enti ty or
Sessi on.

» Alocal-home element that gives the fully qualified class hame of the EJB local home
interface.

* Alocal element that gives the fully qualified class nhame of the EJB local interface.

« An ejb-link element that links the reference to another enterprise bean in the ej b-j ar file or
in the same J2EE application unit. The ej b- 1 i nk value is the ej b- nane of the referenced
bean. If there are multiple enterprise beans with the same ej b- name, the value uses the path

165

Chapter 5. Naming on JBoss

name specifying the location of the ej b-j ar file that contains the referenced component. The
path name is relative to the referencing ej b-j ar file. The Application Assembler appends the
ej b- name of the referenced bean to the path name separated by #. This allows multiple
beans with the same name to be uniquely identified. An ej b- | i nk element must be specified
in JBoss to match the local reference to the corresponding EJB.

An EJB local reference is scoped to the application component whose declaration contains the
ej b-1 ocal -ref element. This means that the EJB local reference is not accessible from other
application components at runtime, and that other application components may define

ej b-1 ocal -ref elements with the same ej b- r ef - nanme without causing a hame conflict.
Example 5.10, “An example ejb-jar.xml ejb-local-ref descriptor fragment” provides an

ej b-jar.xm fragment that illustrates the use of the ej b-1 ocal - r ef element. A code sample
that illustrates accessing the Pr obeLocal Hone reference declared in Example 5.10, “An
example ejb-jar.xml ejb-local-ref descriptor fragment” is given in Example 5.11, “ENC
ejb-local-ref access code fragment”.

<l-- ... -->
<sessi on>
<ej b- name>Pr obe</ ej b- nane>
<home>or g. j boss. test. perf.interfaces. ProbeHome</ home>
<renot e>org. j boss.test.perf.interfaces. Probe</renote>
<l ocal - home>or g. j boss. test. perf.interfaces. ProbeLocal Hone</| ocal - hone>
<l ocal >org. j boss.test.perf.interfaces. ProbeLocal </I| ocal >
<ej b-cl ass>org. j boss.test. perf.ejb. ProbeBean</ej b-cl ass>
<sessi on-type>St at el ess</ sessi on-type>
<transaction-type>Bean</transacti on-type>
</ sessi on>
<sessi on>
<ej b- name>Per f Test Sessi on</ ej b- nane>
<home>or g. j boss. test. perf.interfaces. PerfTest Sessi onHome</ hone>
<renot e>org. j boss. test. perf.interfaces. PerfTest Sessi on</renot e>
<ej b-cl ass>org. j boss.test. perf.ejb. PerfTest Sessi onBean</ ej b-cl ass>
<sessi on-type>St at el ess</ sessi on-t ype>
<transacti on-type>Cont ai ner</transacti on-type>
<ej b-ref>
<ej b-r ef - nanme>ej b/ Pr obeHone</ ej b-r ef - nane>
<ej b-ref-type>Sessi on</ej b-ref-type>
<home>or g. j boss. test. perf.interfaces. Sessi onHome</ hone>
<renot e>org. j boss. test. perf.interfaces. Sessi on</renot e>
<ej b-1i nk>Pr obe</ ej b-1i nk>
</ ej b-ref>
<ej b-1 ocal -ref >
<ej b-r ef - nane>ej b/ ProbelLocal Hone</ ej b- r ef - name>
<ej b-ref-type>Sessi on</ ej b-ref-type>
<l ocal - hone>org. j boss. test. perf.interfaces. ProbeLocal Hone</ | ocal - home>
<l ocal >org.] boss. test.perf.interfaces. ProbelLocal </l ocal >
<ej b- i nk>Pr obe</ ej b-1i nk>
</ ej b-1ocal -ref>
</ sessi on>
<l-- ... -->

166

ENC Usage Conventions

Example 5.10. An example ejb-jar.xml ejb-local-ref descriptor fragment

Initial Context iniCtx = new Initial Context();
Context ejbCtx = (Context) iniCx.|ookup("java: conp/env/ejb");
Pr obeLocal Home hone = (ProbelLocal Hone) ej bCtx. | ookup("ProbelLocal Home") ;

Example 5.11. ENC ejb-local-ref access code fragment

6.1.5. Resource Manager Connection Factory References

Resource manager connection factory references allow application component code to refer to
resource factories using logical names called resource manager connection factory references.
Resource manager connection factory references are defined by the r esour ce-r ef elements in
the standard deployment descriptors. The Depl oyer binds the resource manager connection
factory references to the actual resource manager connection factories that exist in the target
operational environment using the j boss. xm and j boss- web. xml descriptors.

Each resour ce-ref element describes a single resource manager connection factory
reference. The resour ce-ref element consists of the following child elements:

« An optional description element that provides the purpose of the reference.

« Ares-ref-name element that specifies the name of the reference relative to the
j ava: conp/ env context. The resource type based naming convention for which subcontext to
place the r es-r ef - nane into is discussed in the next paragraph.

« Ares-type element that specifies the fully qualified class name of the resource manager
connection factory.

« Ares-auth element that indicates whether the application component code performs resource
signon programmatically, or whether the container signs on to the resource based on the
principal mapping information supplied by the Deployer. It must be one of Appl i cati on or
Cont ai ner.

< An optional res-sharing-scope element. This currently is not supported by JBoss.
The J2EE specification recommends that all resource manager connection factory references
be organized in the subcontexts of the application component's environment, using a different

subcontext for each resource manager type. The recommended resource manager type to
subcontext name is as follows:

» JDBC Dat aSour ce references should be declared in the j ava: conp/ env/ j dbc subcontext.

167

Chapter 5. Naming on JBoss

« JMS connection factories should be declared in the j ava: conp/ env/j ns subcontext.

« JavaMail connection factories should be declared in the j ava: conp/ env/ mai | subcontext.
« URL connection factories should be declared in the j ava: conp/ env/ ur| subcontext.
Example 5.12, “A web.xml resource-ref descriptor fragment” shows an example web. xni
descriptor fragment that illustrates the r esour ce-r ef element usage. Example 5.13, “ENC

resource-ref access sample code fragment” provides a code fragment that an application
component would use to access the Def aul t Mai | resource declared by the resource-ref.

<web>
<l-- ... -->
<servl et >
<servl et - name>ASer vl et </ ser vl et - nane>
<l-- ... -->
</servlet>
<l-- ... -->

<l -- JDBC Dat aSources (java: conp/env/jdbc) -->

<resource-ref>
<descri pti on>The default DS</description>
<res-ref - nane>j dbc/ Def aul t DS</ r es-r ef - name>
<res-type>j avax. sql . Dat aSour ce</r es-type>
<r es- aut h>Cont ai ner </ r es- aut h>

</resource-ref>

<I-- JavaMai| Connection Factories (java:conp/env/mil) -->

<resource-ref>
<descri pti on>Def aul t Mail </ descri pti on>
<res-ref-nane>mai | / Def aul t Mai | </ res-r ef - nane>
<res-type>j avax. mai | . Sessi on</res-type>
<r es- aut h>Cont ai ner </ r es- aut h>

</resource-ref>

<l-- JMS Connection Factories (java:conp/env/jns) -->

<resource-ref>
<descri pti on>Def aul t QueueFact ory</descri pti on>
<res-ref - nane>j ms/ QueueFact or y</res-ref - nane>
<res-type>j avax. j ms. QueueConnect i onFact ory</res-type>
<r es- aut h>Cont ai ner </ r es- aut h>

</resource-ref>

<web>

Example 5.12. A web.xml resource-ref descriptor fragment

Context initCtx = new Initial Context();
javax. mail . Session s = (javax. mail. Sessi on)
initCx.|ookup("java: conp/ env/ mail/Defaul t Mail");

168

ENC Usage Conventions

Example 5.13. ENC resource-ref access sample code fragment

6.1.6. Resource Manager Connection Factory References with
jboss.xml and jboss-web.xml

The purpose of the JBoss j boss. xmi EJB deployment descriptor and j boss-web. xml Web
application deployment descriptor is to provide the link from the logical name defined by the
res-r ef - nanme element to the JNDI name of the resource factory as deployed in JBoss. This is
accomplished by providing a r esour ce-ref elementin the j boss. xnl orj boss-web. xn
descriptor. The JBoss r esour ce-r ef element consists of the following child elements:

« Ares-ref-name element that must match the r es- r ef - nane of a corresponding
resour ce-ref element from the ej b-j ar. xm or web. xnl standard descriptors

« An optional res-type element that specifies the fully qualified class hame of the resource
manager connection factory

« Ajndi-name element that specifies the JNDI name of the resource factory as deployed in
JBoss

* Ares-url element that specifies the URL string in the case of ar esour ce-ref of type
j ava. net . URL

Example 5.14, “A sample jboss-web.xml resource-ref descriptor fragment” provides a sample
j boss-web. xnml descriptor fragment that shows sample mappings of the r esour ce-r ef
elements given in Example 5.12, “A web.xml resource-ref descriptor fragment”.

<j boss- web>
<l-- ... -->
<resource-ref>
<res-ref-nanme>j dbc/ Def aul t DS</ r es-r ef - name>
<res-type>j avax. sql . Dat aSour ce</r es-type>
<j ndi - name>j ava: / Def aul t DS</ j ndi - name>
</resource-ref>
<resource-ref>
<res-ref-nane>mai | / Def aul t Mai | </ res-r ef - nane>
<res-type>j avax. mai | . Sessi on</res-type>
<j ndi - name>j ava: / Mai | </ j ndi - nanme>
</resource-ref>
<resource-ref>
<res-ref-name>j ns/ QueueFact or y</res-r ef - nane>
<res-type>j avax. j ms. QueueConnect i onFact ory</res-type>
<j ndi - name>QueueConnect i onFact or y</ j ndi - nane>
</resource-ref>
<l-- ... -->
</ j boss- web>

169

Chapter 5. Naming on JBoss

Example 5.14. A sample jboss-web.xml resource-ref descriptor fragment

6.1.7. Resource Environment References

Resource environment references are elements that refer to administered objects that are
associated with a resource (for example, JMS destinations) using logical names. Resource
environment references are defined by the r esour ce- env-r ef elements in the standard
deployment descriptors. The Depl oyer binds the resource environment references to the actual
administered objects location in the target operational environment using the j boss. xm and

j boss-web. xm descriptors.

Each resour ce- env-ref element describes the requirements that the referencing application
component has for the referenced administered object. The r esour ce- env-ref element
consists of the following child elements:

< An optional description element that provides the purpose of the reference.

« Aresource-env-ref-name element that specifies the name of the reference relative to the
j ava: conp/ env context. Convention places the name in a subcontext that corresponds to the
associated resource factory type. For example, a JMS queue reference named MyQueue
should have ar esour ce- env-r ef - name of j ns/ MyQueue.

* Aresource-env-ref-type element that specifies the fully qualified class name of the
referenced object. For example, in the case of a JMS queue, the value would be
j avax. j ns. Queue.

Example 5.15, “An example ejb-jar.xml resource-env-ref fragment” provides an example
resour ce-r ef - env element declaration by a session bean. Example 5.16, “ENC
resource-env-ref access code fragment” gives a code fragment that illustrates how to look up
the St ockl nf o queue declared by the r esour ce- env-ref.

<sessi on>
<ej b- name>MyBean</ ej b- nane>
<l-- ... -->

<r esour ce- env-ref >
<description>This is a reference to a JMS queue used in the
processing of Stock info
</ descri pti on>
<r esour ce- env-r ef - nane>j s/ St ockl nf o</ r esour ce- env- r ef - name>
<resour ce-env-ref-type>j avax. j ns. Queue</ resource-env-ref-type>
</ resource-env-ref>
<l-- ... -->
</ sessi on>

Example 5.15. An example ejb-jar.xml resource-env-ref fragment

170

ENC Usage Conventions

Initial Context iniCtx = new Initial Context();
javax.jms. Queue q = (javax.]j ns. Queue)
envCt x. | ookup("j ava: conp/ env/j ns/ St ockl nf 0") ;

Example 5.16. ENC resource-env-ref access code fragment

6.1.8. Resource Environment References and jboss.xml,
jboss-web.xml

The purpose of the JBoss j boss. xmi EJB deployment descriptor and j boss- web. xm Web
application deployment descriptor is to provide the link from the logical name defined by the
resour ce- env-r ef - nane element to the JNDI nhame of the administered object deployed in
JBoss. This is accomplished by providing a r esour ce- env-ref element in the j boss. xnl or
j boss-web. xm descriptor. The JBoss r esour ce- env-ref element consists of the following
child elements:

e Aresource-env-ref - nane element that must match the r esour ce- env-ref - nane of a
corresponding r esour ce- env-ref element from the ej b-j ar. xm or web. xnl standard
descriptors

« Ajndi - nane element that specifies the JNDI hame of the resource as deployed in JBoss
Example 5.17, “A sample jboss.xml resource-env-ref descriptor fragment” provides a sample

j boss. xnl descriptor fragment that shows a sample mapping for the
St ockl nf or esour ce-env-ref.

<sessi on>
<ej b- name>MyBean</ ej b- name>
<l-- ... -->

<resour ce-env-ref>
<r esour ce- env-r ef - nane>j ms/ St ockl nf o</ r esour ce- env- r ef - name>
<j ndi - name>queue/ St ockl nf oQueue</j ndi - name>
</resource-env-ref>
<l-- ... -->
</ sessi on>

Example 5.17. A sample jboss.xml resource-env-ref descriptor fragment

171

172

Chapter 6.

Connectors on JBoss

The JCA Configuration and Architecture

This chapter discusses the JBoss server implementation of the J2EE Connector Architecture
(JCA). JCA is a resource manager integration APl whose goal is to standardize access to
non-relational resources in the same way the JDBC API standardized access to relational data.
The purpose of this chapter is to introduce the utility of the JCA APIs and then describe the
architecture of JCA in JBoss

1. JCA Overview

J2EE 1.4 contains a connector architecture (JCA) specification that allows for the integration of
transacted and secure resource adaptors into a J2EE application server environment. The JCA
specification describes the notion of such resource managers as Enterprise Information
Systems (EIS). Examples of EIS systems include enterprise resource planning packages,
mainframe transaction processing, hon-Java legacy applications, etc.

The reason for focusing on EIS is primarily because the notions of transactions, security, and
scalability are requirements in enterprise software systems. However, the JCA is applicable to
any resource that needs to integrate into JBoss in a secure, scalable and transacted manner. In
this introduction we will focus on resource adapters as a generic notion rather than something
specific to the EIS environment.

The connector architecture defines a standard SPI (Service Provider Interface) for integrating
the transaction, security and connection management facilities of an application server with
those of a resource manager. The SPI defines the system level contract between the resource
adaptor and the application server.

The connector architecture also defines a Common Client Interface (CCIl) for accessing
resources. The CCl is targeted at EIS development tools and other sophisticated users of
integrated resources. The CCI provides a way to minimize the EIS specific code required by
such tools. Typically J2EE developers will access a resource using such a tool, or a resource
specific interface rather than using CCI directly. The reason is that the CCl is not a type specific
API. To be used effectively it must be used in conjunction with metadata that describes how to
map from the generic CCI API to the resource manager specific data types used internally by
the resource manager.

The purpose of the connector architecture is to enable a resource vendor to provide a standard
adaptor for its product. A resource adaptor is a system-level software driver that is used by a
Java application to connect to resource. The resource adaptor plugs into an application server
and provides connectivity between the resource manager, the application server, and the
enterprise application. A resource vendor need only implement a JCA compliant adaptor once to
allow use of the resource manager in any JCA capable application server.

An application server vendor extends its architecture once to support the connector architecture
and is then assured of seamless connectivity to multiple resource managers. Likewise, a

173

Chapter 6. Connectors on JBoss

resource manager vendor provides one standard resource adaptor and it has the capability to
plug in to any application server that supports the connector architecture.

Application Server

Component JZEE API »| Application
Container Component

JCA CCl

Connection or RA AR

Pooling

Transaction JCA 5P| - Resource
Manager Adaptor

Security
Manager Resource
APl

1 A

Resource

Figure 6.1. The relationship between a J2EE application server and a JCA
resource adaptor

Figure 6.1, “The relationship between a J2EE application server and a JCA resource adaptor”

illustrates that the application server is extended to provide support for the JCA SPI to allow a

resource adaptor to integrate with the server connection pooling, transaction management and
security management facilities. This integration API defines a three-part system contract.

e Connection management: a contract that allows the application server to pool resource
connections. The purpose of the pool management is to allow for scalability. Resource
connections are typically expense objects to create and pooling them allows for more
effective reuse and management.

« Transaction Management: a contract that allows the application server transaction manager
to manage transactions that engage resource managers.

e Security Management: a contract that enables secured access to resource managers.
The resource adaptor implements the resource manager side of the system contract. This

entails using the application server connection pooling, providing transaction resource
information and using the security integration information. The resource adaptor also exposes

174

JCA Overview

the resource manager to the application server components. This can be done using the CCI
and/or a resource adaptor specific API.

The application component integrates into the application server using a standard J2EE
container to component contract. For an EJB component this contract is defined by the EJB
specification. The application component interacts with the resource adaptor in the same way as
it would with any other standard resource factory, for example, a j avax. sql . Dat aSour ce JDBC
resource factory. The only difference with a JCA resource adaptor is that the client has the
option of using the resource adaptor independent CCl API if the resource adaptor supports this.

Figure 6.2, “The JCA 1.0 specification class diagram for the connection management
architecture.” (from the JCA 1.5 specification) illustrates the relationship between the JCA
architecture participants in terms of how they relate to the JCA SPI, CCl and JTA packages.

N

imterface

inceeface
« o dpd. LacalTransacifomn

\(

coimphemen

app server specific

neAticsllasaey

Comsect 1onkgr Impl

<{iaplenentationl ey
|ConmectionlvestListeneringl
1

—
—

jJavax. transaction.xa

INEEETACE

« o Bt ac P ion. s SBesomrce

(I"' Javax , remouros, Al \ interface i
|5 a5 ool Commee | iond aciary oo, i §
Javax. rescuros. ool
Ry
inEsEfase <Cimplepentationt basg
v oo A, Cona Fionifasarer D f il t Cannect dnnligr
x A L 3 s
PR wiimplesentationllasy

Fansgrdionmect § 4 il
oo BpA. ManagodCommes | oaFacbory a o actoryln

< implemenrationClasss’s f..1

COARPLABETERTLORC LRSS

« o« S HanagedConnect 1on Fanagedonnect i oalngl Comnect ionl actoryIngl
Bl D..1
intecface
s i CEL tallate 1 <oump lemeratat) ond | s
Fanagrd. ompect 1 onbiet abat almpl
inrerfece
wu.ipl. CommectionEvent Listener
0.l

| S ig] eREtATE nl L e
Local Trasssct inalogl

.1

ecimplenentationl]ansss
KRcsowroelnpl

resource adaptor specific

P4

Figure 6.2. The JCA 1.0 specification class diagram for the connection

management architecture.

The JBossCX architecture provides the implementation of the application server specific

classes. Figure 6.2, “The JCA 1.0 specification class diagram for the connection management

architecture.” shows that this comes down to the implementation of the
j avax. resour ce. spi . Connect i onManager and

Chapter 6. Connectors on JBoss

j avax. resource. spi . Connect i onEvent Li st ener interfaces. The key aspects of this
implementation are discussed in the following section on the JBossCX architecture.

2. An Overview of the JBossCX Architecture

The JBossCX framework provides the application server architecture extension required for the
use of JCA resource adaptors. This is primarily a connection pooling and management
extension along with a number of MBeans for loading resource adaptors into the JBoss server.

There are three coupled MBeans that make up a RAR deployment. These are the

org.j boss. resource. depl oynent . RARDepl oynent ,

org. j boss. resource. connect i onmanager . RARDepl oynent , and

org. j boss.resource. connecti onmanager . BaseConnect i onManager 2. The

org. j boss. resource. depl oyment . RARDepl oynent is simply an encapsulation of the metadata
of a RAR META- I NF/ ra. xnl descriptor. It exposes this information as a DynamicMBean simply
to make it available to the or g. j boss. resour ce. connect i onmanager . RARDepl oynent MBean.

The RARDeployer service handles the deployment of archives files containing resource
adaptors (RARS). It creates the or g. j boss. resour ce. depl oynent . RARDepl oyment MBeans
when a RAR file is deployed. Deploying the RAR file is the first step in making the resource
adaptor available to application components. For each deployed RAR, one or more connection
factories must be configured and bound into JNDI. This task performed using a JBoss service
descriptor that sets up a

org. j boss. resource. connecti onmanager . BaseConnect i onManager 2 MBean implementation
with a or g. j boss. resour ce. connect i onngr . RARDepl oynment dependent.

2.1. BaseConnectionManager2 MBean

The or g. j boss. resour ce. connect i onmanager . BaseConnect i onManager 2 MBean is a base
class for the various types of connection managers required by the JCA spec. Subclasses
include NoTxConnect i onManager , Local TxConnect i onManager and XATxConnect i onManager .
These correspond to resource adaptors that support no transactions, local transaction and XA
transaction respectively. You choose which subclass to use based on the type of transaction
semantics you want, provided the JCA resource adaptor supports the corresponding transaction
capability.

The common attributes supported by the BaseConnectionManager2 MBean are:

« ManagedConnectionPool: This specifies the ObjectName of the MBean representing the
pool for this connection manager. The MBean must have an ManagedConnect i onPool
attribute that is an implementation of the
org. j boss. resour ce. connecti onmanager . ManagedConnect i onPool interface. Normally it
will be an embedded MBean in a depends tag rather than an Qbj ect Name reference to an
existing MBean. The default MBean for use is the
org. j boss. resour ce. connect i onmanager . JBossManagedConnect i onPool . Its configurable
attributes are discussed below.

« CachedConnectionManager: This specifies the Obj ect Nanme of the

176

RARDeployment MBean

CachedConnect i onManager MBean implementation used by the connection manager.
Normally this is specified using a depends tag with the Obj ect Nane of the unique
CachedConnect i onVanager for the server. The name

j boss. j ca: servi ce=CachedConnect i onManager is the standard setting to use.

SecurityDomainJdndiName: This specifies the INDI name of the security domain to use for
authentication and authorization of resource connections. This is typically of the form

j ava: / j aas/ <donai n> where the <domai n> value is the name of an entry in the

conf/ 1 ogi n-config. xm JAAS login module configuration file. This defines which JAAS
login modules execute to perform authentication.

JaasSecurityManagerService: This is the bj ect Nane of the security manager service. This
should be set to the security manager MBean name as defined in the

conf/j boss-service. xm descriptor, and currently this is

j boss. security: service=JaasSecurit yManager . This attribute will likely be removed in the
future.

2.2. RARDeployment MBean

The or g. j boss. resour ce. connect i onnanager . RARDepl oyment MBean manages

configuration and instantiation ManagedConnect i onFact ory instance. It does this using the
resource adaptor metadata settings from the RAR META- I NF/ ra. xm descriptor along with the
RARDepl oynment attributes. The configurable attributes are:

« OldRarDeployment: This is the Obj ect Nanme of the or g. j boss. r esour ce. Rar Depl oynent
MBean that contains the resource adaptor metadata. The form of this name is

j boss. j ca: servi ce=RARDepl oynent , name=<r a- di spl ay- nane> where the

<r a- di spl ay- name> is the r a. xnl descriptor di spl ay- name attribute value. The

RARDepl oyer creates this when it deploys a RAR file. This attribute will likely be removed in
the future.

 ManagedConnectionFactoryProperties: This is a collection of (hame, type, value) triples
that define attributes of the ManagedConnect i onFact or y instance. Therefore, the names of
the attributes depend on the resource adaptor ManagedConnect i onFact ory instance. The

following example shows the structure of the content of this attribute.

<properties>

<confi g- property>
<confi g- property-nane>AttrONanme</ confi g- property-nane>
<confi g-property-type>AttrO0Type</confi g-property-type>
<confi g- property-val ue>Attr0OVal ue</ confi g- property-val ue>

</ confi g- property>

<confi g- property>
<confi g- property-nane>Attr 1Nanme</ confi g- property-nane>
<confi g-property-type>Attr2Type</config-property-type>
<confi g- property-val ue>Attr2Val ue</ confi g- property-val ue>

</ confi g- property>

</ properties>

177

Chapter 6. Connectors on JBoss

At 't r XNarre is the Xth attribute name, At t r XType is the fully qualified Java type of the
attribute, and At t r Xval ue is the string representation of the value. The conversion from string
to At t r XType is done using the j ava. beans. Propert yEdi t or class for the At t r XType.

« JndiName: This is the JNDI nhame under which the resource adaptor will be made available.
Clients of the resource adaptor use this name to obtain either the
j avax. resource. cci . Connect i onFact ory or resource adaptor specific connection factory.
The full INDI name will be j ava: / <Indi Nane> meaning that the Jndi Nane attribute value will
be prefixed with j ava: / . This prevents use of the connection factory outside of the JBoss
server VM. In the future this restriction may be configurable.

2.3. JBossManagedConnectionPool MBean

The org. j boss. resour ce. connect i onnmanager . JBossManagedConnect i onPool MBean is a
connection pooling MBean. It is typically used as the embedded MBean value of the
BaseConnect i onManager 2ManagedConnect i onPool attribute. When you setup a connection
manager MBean you typically embed the pool configuration in the connection manager
descriptor. The configurable attributes of the JBossManagedConnect i onPool are:

* ManagedConnectionFactoryName: This specifies the Cbj ect Narre of the MBean that
creates j avax. resour ce. spi . ManagedConnect i onFact or y instances. Normally this is
configured as an embedded MBean in a depends element rather than a separate MBean
reference using the RARDepl oynent MBean. The MBean must provide an appropriate
st art ManagedConnect i onFact ory operation.

« MinSize: This attribute indicates the minimum number of connections this pool should hold.
These are not created until a Subj ect is known from a request for a connection. M nSi ze
connections will be created for each sub-pool.

* MaxSize: This attribute indicates the maximum number of connections for a pool. No more
than MaxSize connections will be created in each sub-pool.

» BlockingTimeoutMillis: This attribute indicates the maximum time to block while waiting for
a connection before throwing an exception. Note that this blocks only while waiting for a
permit for a connection, and will never throw an exception if creating a new connection takes
an inordinately long time.

 IdleTimeoutMinutes: This attribute indicates the maximum time a connection may be idle
before being closed. The actual maximum time depends also on the idle remover thread scan
time, which is 1/2 the smallest idle timeout of any pool.

* NoTxSeparatePools: Setting this to true doubles the available pools. One pool is for
connections used outside a transaction the other inside a transaction. The actual pools are
lazily constructed on first use. This is only relevant when setting the pool parameters

178

CachedConnectionManager MBean

associated with the Local TxConnect i onManager and XATxConnecti onManager . ItS use case
is for Oracle (and possibly other vendors) XA implementations that don't like using an XA
connection with and without a JTA transaction.

 Criteria: This attribute indicates if the JAAS j avax. securi ty. aut h. Subj ect from security
domain associated with the connection, or app supplied parameters (such as from
get Connecti on(user, pw)) are used to distinguish connections in the pool. The allowed
values are:
» ByContainer: use Subj ect
» ByApplication: use application supplied parameters only
» ByContainerAndApplication: use both
» ByNothing: all connections are equivalent, usually if adapter supports reauthentication

2.4. CachedConnectionManager MBean

The or g. j boss. resour ce. connect i onmanager . CachedConnect i onManager MBean manages
associations between meta-aware objects (those accessed through interceptor chains) and
connection handles, as well as between user transactions and connection handles. Normally
there should only be one such MBean, and this is configured in the core j boss- servi ce. xni
descriptor. It is used by CachedConnect i onl nt er cept or, JTA User Tr ansact i on
implementation and all BaseConnect i onManager 2 instances. The configurable attributes of the
CachedConnect i onManager MBean are:

« SpecCompliant: Enable this boolean attribute for spec compliant non-shareable connections
reconnect processing. This allows a connection to be opened in one call and used in another.
Note that specifying this behavior disables connection close processing.

« Debug: Enable this boolean property for connection close processing. At the completion of an
EJB method invocation, unclosed connections are registered with a transaction
synchronization. If the transaction ends without the connection being closed, an error is
reported and JBoss closes the connection. This is a development feature that should be
turned off in production for optimal performance.

« TransactionManagerServiceName: This attribute specifies the IMX Obj ect Nane of the JTA
transaction manager service. Connection close processing is now synchronized with the
transaction manager and this attribute specifies the transaction manager to use.

2.5. A Sample Skeleton JCA Resource Adaptor

To conclude our discussion of the JBoss JCA framework we will create and deploy a single
non-transacted resource adaptor that simply provides a skeleton implementation that stubs out
the required interfaces and logs all method calls. We will not discuss the details of the
requirements of a resource adaptor provider as these are discussed in detail in the JCA
specification. The purpose of the adaptor is to demonstrate the steps required to create and
deploy a RAR in JBoss, and to see how JBoss interacts with the adaptor.

179

Chapter 6. Connectors on JBoss

The adaptor we will create could be used as the starting point for a non-transacted file system
adaptor. The source to the example adaptor can be found in the

src/ mai n/ or g/ j boss/ book/ j ca/ ex1 directory of the book examples. A class diagram that
shows the mapping from the required j avax. r esour ce. spi interfaces to the resource adaptor
implementation is given in Figure 6.3, “The file system RAR class diagram”.

Figure 6.3. The file system RAR class diagram

We will build the adaptor, deploy it to the JBoss server and then run an example client against
an EJB that uses the resource adaptor to demonstrate the basic steps in a complete context.
We'll then take a look at the JBoss server log to see how the JBoss JCA framework interacts
with the resource adaptor to help you better understand the components in the JCA system
level contract.

To build the example and deploy the RAR to the JBoss server depl oy/ | i b directory, execute
the following Ant command in the book examples directory.

[exanpl es] $ ant -Dchap=jca buil d-chap

The deployed files include a j ca- ex1. sar and a not xf s- servi ce. xm service descriptor. The
example resource adaptor deployment descriptor is shown in Example 6.1, “The
nontransactional file system resource adaptor deployment descriptor.”.

<?xm version="1.0" encodi ng="UTF-8"?>
<connect or
xm ns="http://java. sun. com xm / ns/"Whats_new_i n_JBoss_4-J2EE Certificati on_and_St andards_Com
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://java. sun. com xm / ns/j 2ee
http://java. sun. com xm / ns/j 2ee/ connector_1_5. xsd"
version="1.5">

180

A Sample Skeleton JCA Resource Adaptor

<di spl ay- name>Fi | e Syst em Adapt er </ di spl ay- nane>
<vendor - name>JBoss</ vendor - nanme>
<ei s-type>Fi | eSyst enx/ ei s-type>
<r esour ceadapt er - ver si on>1. 0</ r esour ceadapt er - ver si on>
<l i cense>
<descri pti on>LGPL</ descri pti on>
<l i cense-required>fal se</|icense-required>
</license>
<r esour ceadapt er >
<r esour ceadapt er - cl ass>
org.j boss. resource. depl oynment . DunmyResour ceAdapt er
</resour ceadapt er - cl ass>
<out bound-r esour ceadapt er >
<connecti on-definition>
<managedconnecti onf act ory- cl ass>
org. j boss. book. j ca. ex1. ra. FSManagedConnect i onFact ory
</ managedconnect i onf act ory- cl ass>
<confi g- property>
<confi g- property-name>Fi | eSyst enRoot Di r </ confi g- pr operty-nane>
<confi g- property-type>java. |l ang. Stri ng</ confi g- property-type>
<confi g- property-val ue>/tnp/ db/fs_store</config-property-val ue>
</ confi g- property>
<confi g- property>
<confi g- property- nane>User Nanme</ conf i g- pr opert y- name>
<confi g- property-type>java. | ang. Stri ng</ confi g- property-type>
<confi g- property-val ue/ >
</ confi g- property>
<confi g- property>
<confi g- property- name>Passwor d</ confi g- pr opert y- nanme>
<confi g-property-type>j ava. |l ang. Stri ng</confi g- property-type>
<confi g- property-val ue/ >
</ confi g- property>
<connecti onfactory-interface>
org. j boss. book. j ca. ex1. ra. Di r Cont ext Factory </connecti onfactory-interface>
<connectionfactory-inpl -cl ass>
org. j boss. book. j ca. ex1. ra. Di r Cont ext Fact oryl np
</ connecti onfactory-inmpl - cl ass> <connection-interface>
j avax. nam ng. di rectory. Di r Cont ext </connecti on-interface>
<connection-i npl -cl ass> org. j boss. book. j ca. exl. ra. FSDi r Cont ext
</ connection-i npl - cl ass>
</ connecti on-definition>
<transacti on-support>NoTransacti on</transacti on- support >
<aut henti cati on- mechani s
<aut henti cati on- nechani smt ype>Basi cPasswor d</ aut henti cati on- mrechani smtype>
<credential -interface>
j avax. resource. spi . security. Passwor dCredenti a
</credential -interface>
</ aut henti cati on- mechani sn»
<reaut henti cati on-support >true</reauthentication-support>
</ out bound- r esour ceadapt er >
<security-perm ssi on>
<descri ption> Read/ Wite access is required to the contents of
t he
Fi | eSyst emRoot Di r </ descri pti on>
<security-perni ssion-spec> perm ssion java.io.FilePerm ssion
"/trmp/db/fs_store/*", "read,wite";

181

Chapter 6. Connectors on JBoss

</ security-perm ssi on-spec>
</ security-permn ssion>
</ resour ceadapt er >
</ connect or >

Example 6.1. The nontransactional file system resource adaptor
deployment descriptor.

The key items in the resource adaptor deployment descriptor are highlighted in bold. These
define the classes of the resource adaptor, and the elements are:

* managedconnectionfactory-class: The implementation of the ManagedConnect i onFact ory
interface, or g. j boss. book. j ca. ex1. ra. FSManagedConnect i onFact ory

» connectionfactory-interface: This is the interface that clients will obtain when they lookup
the connection factory instance from JNDI, here a proprietary resource adaptor value,
org.j boss. book. j ca. ex1. ra. Di r Cont ext Fact ory. This value will be needed when we
create the JBoss ds. xni to use the resource.

» connectionfactory-impl-class: This is the class that provides the implementation of the
connectionfactory-interface, org.j boss. book. jca. exl.ra. DirContextFactoryl npl .

e connection-interface: This is the interface for the connections returned by the resource
adaptor connection factory, here the JNDI j avax. nani ng. di rect ory. Di r Cont ext interface.

« connection-impl-class: This is he class that provides the connecti on-i nterface
implementation, or g. j boss. book. j ca. ex1. ra. FSDi r Cont ext .

 transaction-support: The level of transaction support, here defined as NoTr ansact i on,
meaning the file system resource adaptor does not do transactional work.

The RAR classes and deployment descriptor only define a resource adaptor. To use the
resource adaptor it must be integrated into the JBoss application server using a ds. xm
descriptor file. An example of this for the file system adaptor is shown in Example 6.2, “The
notxfs-ds.xml resource adaptor MBeans service descriptor.”.

<I DOCTYPE connecti on-factories PUBLIC
"-//JBoss//DTD JBOSS JCA Config 1.5//EN'
"http://ww.jboss.org/j2ee/dtd/jboss-ds_1 5.dtd">
<I--
The non-transaction Fil eSystem resource adaptor service configuration
-->
<connecti on-factori es>
<no-t x- connecti on-factory>
<j ndi - name>NoTr ansFS</ j ndi - name>
<rar - name>j ca- ex1. rar</rar - name>

182

A Sample Skeleton JCA Resource Adaptor

<connecti on-definition>
org.j boss. book. j ca. ex1. ra. Di r Cont ext Fact ory
</ connecti on-definition>
<confi g-property nane="Fi |l eSyst enRoot Di r"
type="java.l ang. String">/tnp/db/fs_store</config-property>
</ no-tx-connecti on-factory>
</ connecti on-factories>

Example 6.2. The notxfs-ds.xml resource adaptor MBeans service
descriptor.

The main attributes are:

 jndi-name: This specifies where the connection factory will be bound into JNDI. For this
deployment that binding will be j ava: / NoTr ansFS.

* rar-name: This is the name of the RAR file that contains the definition for the resource we
want to provide. For nested RAR files, the name would look like
nyappl i cati on. ear #ny. rar. In this example, itis simply j ca-ex1. rar.

e connection-definition: This is the connection factory interface class. It should match the
connectionfactory-interfaceinthera.xm file. Here our connection factory interface is
org.j boss. book. jca. exl.ra. D r Cont ext Factory.

« config-property: This can be used to provide non-default settings to the resource adaptor
connection factory. Here the Fi | eSyst enRoot Di r is being setto /t np/ db/ fs_st ore. This
overrides the default value in the ra. xm file.

To deploy the RAR and connection manager configuration to the JBoss server, run the
following:

[exanpl es] $ ant -Dchap=jca config

The server console will display some logging output indicating that the resource adaptor has
been deployed.

Now we want to test access of the resource adaptor by a J2EE component. To do this we have
created a trivial stateless session bean that has a single method called echo. Inside of the echo
method the EJB accesses the resource adaptor connection factory, creates a connection, and
then immediately closes the connection. The echo method code is shown below.

public String echo(String arg)
{

| og. i nfo("echo, arg="+arg);

183

Chapter 6. Connectors on JBoss

try {
Initial Context ctx = new Initial Context();

hj ect ref =
ct x. | ookup("j ava: conp/ env/ ral/ Di r Cont ext Factory");
| og. i nfo("echo, ra/DirContextFactory=" + ref);

Di r Cont ext Factory dcf = (DirContextFactory) ref;
| og.i nfo("echo, found dcf=" + dcf);

Di r Cont ext dc = dcf. get Connection();
| 0og.info("echo, |ookup dc=" + dc);

dc. cl ose();
} catch(Nam ngException e) {
| og.error("Failed during JND access", e);

}

return arg;

Example 6.3. The stateless session bean echo method code that shows
the access of the resource adaptor connection factory.

The EJB is not using the CCI interface to access the resource adaptor. Rather, it is using the
resource adaptor specific APl based on the proprietary Di r Cont ext Fact or y interface that
returns a JNDI Di r Cont ext object as the connection object. The example EJB is simply
exercising the system contract layer by looking up the resource adaptor connection factory,
creating a connection to the resource and closing the connection. The EJB does not actually do
anything with the connection, as this would only exercise the resource adaptor implementation
since this is a non-transactional resource.

Run the test client which calls the EchoBean. echo method by running Ant as follows from the
examples directory:

[exanpl es]$ ant -Dchap=jca -Dex=1 run-exanpl e

You'll see some output from the bean in the system console, but much more detailed logging
output can be found in the server/ producti on/ | og/ server. | og file. Don't worry if you see
exceptions. They are just stack traces to highlight the call path into parts of the adaptor. To help
understand the interaction between the adaptor and the JBoss JCA layer, we'll summarize the
events seen in the log using a sequence diagram. Figure 6.4, “A sequence diagram illustrating
the key interactions between the JBossCX framework and the example resource adaptor that
result when the EchoBean accesses the resource adaptor connection factory.” is a sequence
diagram that summarizes the events that occur when the EchoBean accesses the resource
adaptor connection factory from JNDI and creates a connection.

184

A Sample Skeleton JCA Resource Adaptor

BaauuiConrecL Ao actorr
eienFactary

FiMungeatonnec

ARGt extEactony e Linnar Cunnock iAol ImLennalPeel

D eCententFas vory Ingl WoTxCeames tiantansges BaseRool TetenalHan sgedtannsc Laombesl
F 4
£ haliean

K

Dirfomtest
=l 112 i bseatatomnestion (NanageaCennaceionFuctary, Confiecttonis puastInto) 1 Obyect

(Brw

1|

Figure 6.4. A sequence diagram illustrating the key interactions between
the JBossCX framework and the example resource adaptor that result
when the EchoBean accesses the resource adaptor connection factory.

The starting point is the client's invocation of the EchoBean. echo method. For the sake of
conciseness of the diagram, the client is shown directly invoking the EchoBean.echo method
when in reality the JBoss EJB container handles the invocation. There are three distinct
interactions between the EchoBean and the resource adaptor; the lookup of the connection
factory, the creation of a connection, and the close of the connection.

The lookup of the resource adaptor connection factory is illustrated by the 1.1 sequences of
events. The events are:

« 1, the echo method invokes the get Connect i on method on the resource adaptor connection
factory obtained from the JNDI lookup on the j ava: conp/ env/ r a/ Di r Cont ext Fact ory hame
which is a link to the j ava: / NoTr ansFS location.

e 1.1, the Di r Cont ext Fact oryl npl class asks its associated Connect i onManager to allocate a
connection. It passes in the ManagedConnect i onFact ory and FSRequest | nf o that were
associated with the Di r Cont ext Fact or yl npl during its construction.

e 1.1.1, the Connect i onManager invokes its get ManagedConnect i on method with the current
Subj ect and FSRequest I nf o.

e 1.1.1.1, the Connect i onManager asks its object pool for a connection object. The
JBossManagedConnect i onPool $BasePool is get the key for the connection and then asks the
matching I nt er nal Pool for a connection.

e 1.1.1.1.1, Since no connections have been created the pool must create a new connection.

185

Chapter 6. Connectors on JBoss

This is done by requesting a new managed connection from the

ManagedConnect i onFact ory. The Subj ect associated with the pool as well as the
FSRequest | nf o data are passed as arguments to the cr eat eManagedConnect i on method
invocation.

« 1.1.1.1.1.1, the Connecti onFact ory creates a new FSManagedConnect i on instance and
passes in the Subj ect and FSRequest | nf o data.

« 1.1.1.2, ajavax. resource. spi . Connect i onLi st ener instance is created. The type of
listener created is based on the type of Connect i onManager . In this case it is an
org. j boss. resour ce. connecti onngr. BaseConnect i onManager 2$NoTr ansact i onLi st ener
instance.

« 1.1.1.2.1, the listener registers as a j avax. r esour ce. spi . Connect i onEvent Li st ener with
the ManagedConnect i on instance created in 1.2.1.1.

« 1.1.2, the ManagedConnect i on is asked for the underlying resource manager connection. The
Subj ect and FSRequest I nf o data are passed as arguments to the get Connect i on method
invocation.

« The resulting connection object is cast to a j avax. nani ng. di rect ory. Di r Cont ext instance
since this is the public interface defined by the resource adaptor.

« After the EchoBean has obtained the Di r Cont ext for the resource adaptor, it simply closes
the connection to indicate its interaction with the resource manager is complete.

This concludes the resource adaptor example. Our investigation into the interaction between the
JBossCX layer and a trivial resource adaptor should give you sufficient understanding of the
steps required to configure any resource adaptor. The example adaptor can also serve as a
starting point for the creation of your own custom resource adaptors if you need to integrate
non-JDBC resources into the JBoss server environment.

3. Configuring JDBC DataSources

Rather than configuring the connection manager factory related MBeans discussed in the
previous section via a mbean services deployment descriptor, JBoss provides a simplified
datasource centric descriptor. This is transformed into the standard j boss- ser vi ce. xm
MBean services deployment descriptor using a XSL transform applied by the

or g. j boss. depl oynent . XSLSubDepl oyer included in the j boss-j ca. sar deployment. The
simplified configuration descriptor is deployed the same as other deployable components. The
descriptor must be named using a *- ds. xm pattern in order to be recognized by the
XSLSubDepl oyer .

The schema for the top-level datasource elements of the *- ds. xm configuration deployment
file is shown in Figure 6.5, “The simplified JCA DataSource configuration descriptor top-level
schema elements”.

186

Configuring JDBC DataSources

| * mbean

K + local-tx-datasource g

/ |+ xa-datasource

+ datasourcesp r;wf
\ + nn-tu-datasnurteE

T - ha-local-tx-datasource z

M ha-xa-datasnun:eE

Figure 6.5. The simplified JCA DataSource configuration descriptor
top-level schema elements

Multiple datasource configurations may be specified in a configuration deployment file. The child
elements of the datasources root are:

* mbean: Any number mbean elements may be specified to define MBean services that should
be included in the j boss- servi ce. xm descriptor that results from the transformation. This
may be used to configure services used by the datasources.

* no-tx-datasource: This element is used to specify the
(org.j boss. resource. connecti onmanager) NoTxConnect i onManager service configuration.
NoTxConnect i onManager is a JCA connection manager with no transaction support. The
no- t x- dat asour ce child element schema is given in Figure 6.6, “The non-transactional
DataSource configuration schema”.

 local-tx-datasource: This element is used to specify the
(org.j boss. resource. connecti onmanager) Local TxConnect i onManager service
configuration. Local TxConnect i onManager implements a Connect i onEvent Li st ener that
implements XAResour ce to manage transactions through the transaction manager. To ensure
that all work in a local transaction occurs over the same ManagedConnect i on, it includes a xid
to ManagedConnect i on map. When a Connection is requested or a transaction started with a
connection handle in use, it checks to see if a ManagedConnect i on already exists enrolled in
the global transaction and uses it if found. Otherwise, a free ManagedConnect i on has its
Local Transacti on started and is used. The | ocal - t x- dat asour ce child element schema is
given in Figure 6.7, “The non-XA DataSource configuration schema”

« Xa-datasource: This element is used to specify the
(org.j boss. resource. connecti onmanager) XATxConnect i onManager service configuration.

187

Chapter 6. Connectors on JBoss

XATxConnect i onManager implements a Connect i onEvent Li st ener that obtains the
XAResour ce to manage transactions through the transaction manager from the adaptor
ManagedConnect i on. To ensure that all work in a local transaction occurs over the same
ManagedConnect i on, it includes a xid to ManagedConnect i on map. When a Connect i on is
requested or a transaction started with a connection handle in use, it checks to see if a
ManagedConnect i on already exists enrolled in the global transaction and uses it if found.
Otherwise, a free ManagedConnect i on has its Local Tr ansact i on started and is used. The
xa- dat asour ce child element schema is given in Figure 6.8, “The XA DataSource
configuration schema”.

« ha-local-tx-datasource: This element is identical to | ocal - t x- dat asour ce, with the addition
of the experimental datasource failover capability allowing JBoss to failover to an alternate
database in the event of a database failure.

* ha-xa-datasource: This element is identical to xa- dat asour ce, with the addition of the
experimental datasource failover capability allowing JBoss to failover to an alternate database
in the event of a database failure.

188

Configuring JDBC DataSources

* ndi-name -

| * m—}m—mnuﬂ*

* ponnection-url g

+ driver-rlasag

(%|* connecion—propenmypy

7 ¥ USer-name

7| * passnnrdq

L Imli:itlm-lmmutd-:uur'rtr:l

-~

i-":,'\-/ + srcuriny-domaing

w2 Ty
,

-.‘“‘x,_ + sequrity-domain-and-application s

(3| * min-pool-sizey
* nu-t:—dal:smrce-h,_l F|* I'I'Ii.H:—pﬂ-ﬂl—!-lIE*

3| * Blockin g'!-l'li.llﬁl..'l'l'-rlﬁl-ix»#

'q.-:": + HHFIH‘I‘I!EIHﬂI‘lHI‘I‘!.:

!"_'].--_ - I'H—EDM!EIHI‘I—E:'E

7 * diadt—wl:l—mnnacﬂm—sqlq

F* 'ﬂld—mnnemun-durj.ﬂ—rhsﬁ-nmq

: + Ilrmim-anrt!r-:hm-nm;

-{"} + TraCk—STALE mAnes —

(7| * prepared-sarement-cache-size

(7| * share-prepared-statements '

I-'-'

* tpendsq

e
L3 * lype-mapping

Figure 6.6. The non-transactional DataSource configuration schema

189

Chapter 6. Connectors on JBoss

+ local-x-datasource),

-
-

+ jndi-name

+ uu-jn:-cnm:tq

COnnECTion-urs

* drver-dass g

_..
sy |
s

* mnﬂninn—h'nhrhnn

* I'.EII'II'I!I:I:IDﬂ—FI‘ﬂp!I‘tf*

* uier-name-

* password g

ks -t ;ppir;lm-rmnlyd—;lmi;‘ll-l

F
s?.\/ + security-domain
i |

Rl smntr-ﬂntmn—am-appiuumq

+ min-poni-size -

+* ma:u—pnul-slze*

o # bl Eing-rimedin-millis -

2 i'"hﬂt—'l'lrrmwt—ninmsq

+ no-tx-xepar 'iii-':;:ﬁi.,-l

* new-Connecon-5qis

7| ¥ cheds-valid -connection-sgl

o ﬂll—{nm&n!nn—diﬂ!r—ﬂu:—num#

| ¥ excepion-sorier-chass-name g

¢ # Track-SIarements —

+ prepared-statement-cache-sizey

* share-prepared-stalemeniy

* dependsy

0 F ypR-mapping

Figure 6.7. The non-XA DataSource configuration schema

190

Configuring JDBC DataSources

::?.:|* use=java=rnnteRt 5

+ m—cmamun-w—m,:I

+ wa-datasource-dass g

f '-|'* ra=datasnuroe=progeeriy 5

LS

-

1t I:SamRH—mmu—ualutq

Tl mmm—hdaﬂnnq

* UsEr-name

)

L

"jﬁi* passwords

|* applicaton-managed-securivy -

el

£ [# secunty-domainJ

\:* :.:ruribp—:hma.h—lnd—appliuﬁurlq

F* mm—pnnl—slzeq

+ a-datasounce

£

- mi.x-p-n-ul—slth

-'-,.:{* Hnrhngmmul-mllsq

7 * idle-TmesuT-MiNUTES m

(7| * no-D-separate-pools

—
et

i* new=ronnection=sql

+ gheck-valid-conneclon-sgle

o

!

+ \Eld—mmm-mecker—dﬂs-mq

ol

* E:nphnn—mﬂtr—dm-nqu

-

.
oty

|'* Irack-Statements—

+ prepared- sraement-cache-size g

[

L

b

+ share-prepared-statements]

[.{* depends =

7| * type-mapping g

Figure 6.8. The XA DataSource configuration schema

191

Chapter 6. Connectors on JBoss

* jndi-name

I . u“-j.ﬂ-rmin[ﬂ'

ol

™ I:I!I'H'I-E:IJHI.—I.II'I#

—
|'I drivier-class o

1:| # gramssction-isolabon o

2| ® COONATEIDN-PIOpeTTY e

-!.1 L] p-lll.ﬂl‘lﬂE

_| * applicaton—man g ed- secu rmy -

,:”f |'I m:urm'-nlnrrumq

. :nlnw-ﬁ:mm-uwptmnq

=l

* mll—pnrnl—sluq
* ha-lecl-m-datasource x

- * rrl.al--fnﬂl-d?rﬂ'

7| * blocking timeout millis

1.1 * inlle-tiEmenut—mimes =

7| ® no-tx-separate-pools -
4"‘ new-connection-sals

heck-1valic-oo inecn on-5qlg

it

]

5 * valid- connection- checker-dass-name o4
1

=l

L .’!l'l'lp‘l‘hl-l.ﬂ'lﬂ'-d.ll‘l.-rlﬂ'-i

T| * mﬂt-muuunu_l

-_.1 * prepared-starement—ache-size g

| @ ﬂum-prn:nmd—:t:l'—'_h

_-i * dependsg

7 * ype-mappingy

Figure 6.9. The schema for the experimental non-XA DataSource with
failover

192

Configuring JDBC DataSources

|... e name_

r_s{i m—pﬂ-rmmnjl

|*‘ m—mﬂhﬂ-h'ui'_l

|' =a-dalasaure-daiig

'{*n-ﬂm AL 6 - PO T
|* Tl Ty

* |l e

.ji* iﬁlmll-muld--nm4
'T{' ITANSACTINN - ool atian,|
s

i3 W

I_Ii apipEcaTha n-snanaged -5 rru ATy
ri"x\ |l' LUy - oM
1 Imm-ﬁd-imﬂmq

*h-:ul.-:hhu.mm;‘

ol t]

G17nlra -

rj-{" I:Huurg-t-m.rt—nll:#

,a:,{- TV LT T VL g
"11‘ =T =S [A~ B |
;"'nlﬁ T~ O R TR T 5#4

ey

f?{' Wl =g DTN = et kT =155 - Rt
ﬁi*_r:i:rﬂ'llnn—smnr—rhn—-mm:#
;-'1,'11 rack -SaTEments |

;'-].ii mFH:H.i.-EH_'I.I-H--ﬂ.IﬂI-!.!.IH

._].*i 1.h.|l'r-|:|"p|.|._rll-ln'm.nn
.':'1* depencip
o Bt

Figure 6.10. The schema for the experimental XA Datasource with failover

Elements that are common to all datasources include:

 jndi-name: The JNDI name under which the Dat aSour ce wrapper will be bound. Note that
this name is relative to the j ava: / context, unless use-j ava- cont ext is set to false.

193

Chapter 6. Connectors on JBoss

Dat aSour ce wrappers are not usable outside of the server VM, so they are normally bound
under the j ava: / , which isn't shared outside the local VM.

* use-java-context: If this is set to false the the datasource will be bound in the global JNDI
context rather than the j ava: context.

e user-name: This element specifies the default username used when creating a new
connection. The actual username may be overridden by the application code get Connecti on
parameters or the connection creation context JAAS Subject.

« password: This element specifies the default password used when creating a new
connection. The actual password may be overridden by the application code get Connect i on
parameters or the connection creation context JAAS Subject.

« application-managed-security: Specifying this element indicates that connections in the
pool should be distinguished by application code supplied parameters, such as from
get Connecti on(user, pw).

» security-domain: Specifying this element indicates that connections in the pool should be
distinguished by JAAS Subject based information. The content of the securi t y- domai n is the
name of the JAAS security manager that will handle authentication. This name correlates to
the JAAS | ogi n- confi g. xml descriptor appl i cati on- pol i cy/ name attribute.

» security-domain-and-application: Specifying this element indicates that connections in the
pool should be distinguished both by application code supplied parameters and JAAS Subject
based information. The content of the securi t y- donai n is the name of the JAAS security
manager that will handle authentication. This name correlates to the JAAS
| ogi n-confi g. xm descriptor appl i cati on-pol i cy/ nane attribute.

e min-pool-size: This element specifies the minimum number of connections a pool should
hold. These pool instances are not created until an initial request for a connection is made.
This default to 0.

e max-pool-size: This element specifies the maximum number of connections for a pool. No
more than the max- pool - si ze number of connections will be created in a pool. This defaults
to 20.

* blocking-timeout-millis: This element specifies the maximum time in milliseconds to block
while waiting for a connection before throwing an exception. Note that this blocks only while
waiting for a permit for a connection, and will never throw an exception if creating a new
connection takes an inordinately long time. The default is 5000.

« idle-timeout-minutes: This element specifies the maximum time in minutes a connection
may be idle before being closed. The actual maximum time depends also on the
I dl eRenpver scan time, which is 1/2 the smallest idle-timeout-minutes of any pool.

e new-connection-sql: This is a SQL statement that should be executed when a new
connection is created. This can be used to configure a connection with database specific
settings not configurable via connection properties.

194

Configuring JDBC DataSources

check-valid-connection-sql: This is a SQL statement that should be run on a connection
before it is returned from the pool to test its validity to test for stale pool connections. An
example statement could be: sel ect count (*) from x.

exception-sorter-class-name: This specifies a class that implements the

org.j boss.resource. adapter.j dbc. Excepti onSorter interface to examine database
exceptions to determine whether or not the exception indicates a connection error. Current
implementations include:

 org.jboss.resource.adapter.jdbc.vendor.OracleExceptionSorter
 org.jboss.resource.adapter.jdbc.vendor.MySQLEXxceptionSorter

» org.jboss.resource.adapter.jdbc.vendor.SybaseExceptionSorter
 org.jboss.resource.adapter.jdbc.vendor.InformixExceptionSorte

valid-connection-checker-class-name: This specifies a class that implements the

org.j boss. resource. adapter. j dbc. Val i dConnect i onChecker interface to provide a
SQLException isValidConnecti on(Connection e) method that is called with a connection
that is to be returned from the pool to test its validity. This overrides the

check-val i d- connecti on-sql when present. The only provided implementation is

org.j boss. resource. adapter.jdbc. vendor. O acl eVal i dConnect i onChecker .

track-statements: This boolean element specifies whether to check for unclosed statements
when a connection is returned to the pool. If true, a warning message is issued for each
unclosed statement. If the log4j category

org.j boss.resource. adapter.j dbc. WappedConnect i on has trace level enabled, a stack
trace of the connection close call is logged as well. This is a debug feature that can be turned
off in production.

prepared-statement-cache-size: This element specifies the number of prepared statements
per connection in an LRU cache, which is keyed by the SQL query. Setting this to zero
disables the cache.

depends: The depends element specifies the IMX Obj ect Nane string of a service that the
connection manager services depend on. The connection manager service will not be started
until the dependent services have been started.

type-mapping: This element declares a default type mapping for this datasource. The type
mapping should match a t ype- mappi ng/ name element from st andar dj bosscnp-j dbc. xm .

Additional common child elements for both no-t x- dat asour ce and | ocal - t x- dat asour ce
include:

e connection-url: This is the JDBC driver connection URL string, for example,
jdbc: hsql db: hsql : //1 ocal host: 1701.

« driver-class: This is the fully qualified name of the JDBC driver class, for example,
org. hsql db. j dbcDri ver.

195

Chapter 6. Connectors on JBoss

e connection-property: The connecti on- property element allows you to pass in arbitrary
connection properties to the j ava. sql . Dri ver. connect (url, props) method. Each
connect i on- property specifies a string name/value pair with the property name coming
from the name attribute and the value coming from the element content.

Elements in common to the | ocal -t x- dat asour ce and xa- dat asour ce are:

 transaction-isolation: This element specifies the j ava. sgl . Connect i on transaction
isolation level to use. The constants defined in the Connection interface are the possible
element content values and include:

TRANSACTION_READ_UNCOMMITTED

TRANSACTION_READ_COMMITTED

TRANSACTION_REPEATABLE_READ

TRANSACTION_SERIALIZABLE

¢ TRANSACTION_NONE

* no-tx-separate-pools: The presence of this element indicates that two connection pools are
required to isolate connections used with JTA transaction from those used without a JTA
transaction. The pools are lazily constructed on first use. Its use case is for Oracle (and
possibly other vendors) XA implementations that don't like using an XA connection with and
without a JTA transaction.

The unigue xa- dat asour ce child elements are:

 track-connection-by-tx: Specifying a true value for this element makes the connection
manager keep an xid to connection map and only put the connection back in the pool when
the transaction completes and all the connection handles are closed or disassociated (by the
method calls returning). As a side effect, we never suspend and resume the xid on the
connection's XAResour ce. This is the same connection tracking behavior used for local
transactions.

The XA spec implies that any connection may be enrolled in any transaction using any xid for
that transaction at any time from any thread (suspending other transactions if necessary). The
original JCA implementation assumed this and aggressively delisted connections and put
them back in the pool as soon as control left the EJB they were used in or handles were
closed. Since some other transaction could be using the connection the next time work
needed to be done on the original transaction, there is no way to get the original connection
back. It turns out that most XADat aSour ce driver vendors do not support this, and require that
all work done under a particular xid go through the same connection.

« Xa-datasource-class: The fully qualified name of the j avax. sql . XADat aSour ce
implementation class, for example, com i nf or nmi x. j dbcx. | f xXADat aSour ce.

» Xa-datasource-property: The xa- dat asour ce- pr oper t y element allows for specification of
the properties to assign to the XADat aSour ce implementation class. Each property is

196

Configuring JDBC DataSources

identified by the name attribute and the property value is given by the

xa- dat asour ce- proper ty element content. The property is mapped onto the XADat aSour ce
implementation by looking for a JavaBeans style getter method for the property name. If
found, the value of the property is set using the JavaBeans setter with the element text
translated to the true property type using the j ava. beans. Propert yEdi t or for the type.

» isSameRM-override-value: A boolean flag that allows one to override the behavior of the
j avax. transacti on. xa. XAResour ce. i sSameRM XAResour ce xaRes) method behavior on
the XA managed connection. If specified, this value is used unconditionally as the
i sSameRM xaRes) return value regardless of the xaRes parameter.

The failover options common to ha- xa- dat asour ce and ha- | ocal - t x- dat asour ce are:

« url-delimeter: This element specifies a character used to separate multiple JDBC URLSs.

« url-property: In the case of XA datasources, this property specifies the name of the
xa- dat asour ce- pr oper t y that contains the list of JDBC URLSs to use.

Example configurations for many third-party JDBC drivers are included in the
JBOSS_DI ST/ docs/ exanpl es/ j ca directory. Current example configurations include:

» asapxcess-jb3.2-ds.xml
 cicsr9s-service.xml

e db2-ds.xml

e db2-xa-ds.xml

» facets-ds.xml

- fast-objects-jboss32-ds.xml
« firebird-ds.xml

« firstsql-ds.xml

« firstsql-xa-ds.xml

e generic-ds.xml

* hsqgldb-ds.xml

* informix-ds.xml

* informix-xa-ds.xml

* jdatastore-ds.xml

e jms-ds.xml

* jsql-ds.xml

« lido-versant-service.xml
¢ mimer-ds.xml

e mimer-xa-ds.xmi

e msaccess-ds.xml

e mssql-ds.xml

* mssql-xa-ds.xml

e mysql-ds.xml

« oracle-ds.xml
 oracle-xa-ds.xml

197

Chapter 6. Connectors on JBoss

e postgres-ds.xml
« sapdb-ds.xml

e sapr3-ds.xml

* solid-ds.xml

» sybase-ds.xml

4. Configuring Generic JCA Adaptors

The XSLSubDeployer also supports the deployment of arbitrary non-JDBC JCA resource
adaptors. The schema for the top-level connection factory elements of the *-ds. xm
configuration deployment file is shown in Figure 6.11, “The simplified JCA adaptor connection
factory configuration descriptor top-level schema elements”.

+ mheanE

+ connection-factoriesg * x-connection-factoryz

* no-tX-connection-factory

Figure 6.11. The simplified JCA adaptor connection factory configuration
descriptor top-level schema elements

Multiple connection factory configurations may be specified in a configuration deployment file.
The child elements of the connecti on-f act ori es root are:

« mbean: Any number mbean elements may be specified to define MBean services that should
be included in the j boss- servi ce. xm descriptor that results from the transformation. This
may be used to configure additional services used by the adaptor.

e no-tx-connection-factory: this element is used to specify the
(org.j boss. resource. connecti onmanager) NoTxConnect i onManager service configuration.
NoTxConnect i onManager is a JCA connection manager with no transaction support. The
no-t x- connect i on-f act ory child element schema is given in Figure 6.12, “The
no-tx-connection-factory element schema”.

* tx-connection-factory: this element is used to specify the
(org.j boss. resource. connecti onmanager) TxConnect i onManager service configuration.
The t x- connecti on-fact ory child element schema is given in Figure 6.13, “The
tx-connection-factory element schema”.

198

Configuring Generic JCA Adaptors

+* jndi—name%

@) * rar-name%

7| * mnnecﬁnn-deﬁniﬂnn%

@ * mnﬁg—pmpem%

+ application-managed-security;
@ + semrﬂv—dnmain%
+ no-tx-connection-factory | + securitr—dnmain-and-applil:atinn%

o ep——
(7| * min-pool mze%

+ e
(7| * max-pool 5|zea

@* hlm:king-timenut—millis%

7 * idle-timenut—minms%

+ %
@ depends

LG * WE-mapninga

Figure 6.12. The no-tx-connection-factory element schema

199

Chapter 6. Connectors on JBoss

* jndi-name%

+ In[al-u'ansau]'nnE
< + xa-transactionp

* track-connection-by-tx

~
o)

)

)

- rar-name%

gy
k)

* mnnemnn-deﬁniﬂnn#

=

LY

~R tnnﬁg-pmpemr%

+ application-managed-security

*+ x-connection-factory

© + securit',r-dnmain#

+ ser_urit',r-dnmain-and-appli[atinn%

| * min-pnul—size%

Py - o
(7 * max pool 5|ze%

| * hlntking-ﬁmenut—millis#

@* idle-timenut-minutes%

(7| * no-tx-separate-pools

) * depends#

L&) * type-mapping%

Figure 6.13. The tx-connection-factory element schema

The majority of the elements are the same as those of the datasources configuration. The
element unique to the connection factory configuration include:

« adaptor-display-name: A human readable display name to assign to the connection
manager MBean.

200

Configuring Generic JCA Adaptors

local-transaction: This element specifies that the t x- connect i on-f act ory supports local
transactions.

xa-transaction: This element specifies that the t x- connect i on- f act ory supports XA
transactions.

track-connection-by-tx: This element specifies that a connection should be used only on a
single transaction and that a transaction should only be associated with one connection.

rar-name: This is the name of the RAR file that contains the definition for the resource we
want to provide. For nested RAR files, the name would look like
myappl i cati on. ear#my. rar.

connection-definition: This is the connection factory interface class. It should match the
connectionfactory-interfaceinthera.xm file.

config-property: Any number of properties to supply to the ManagedConnect i onFact ory
(MCF) MBean service configuration. Each confi g- property element specifies the value of a
MCF property. The confi g- property element has two required attributes:

* name: The name of the property
» type: The fully qualified type of the property

The content of the confi g- pr operty element provides the string representation of the
property value. This will be converted to the true property type using the associated type
PropertyEditor.

201

202

Chapter 7.

Transactions on JBoss

The JTA Transaction Service

This chapter discusses transaction management in JBoss and the JBossTX architecture. The
JBossTX architecture allows for any Java Transaction API (JTA) transaction manager
implementation to be used. JBossTX includes a fast in-VM implementation of a JTA compatible
transaction manager that is used as the default transaction manager. We will first provide an
overview of the key transaction concepts and notions in the JTA to provide sufficient
background for the JBossTX architecture discussion. We will then discuss the interfaces that
make up the JBossTX architecture and conclude with a discussion of the MBeans available for
integration of alternate transaction managers.

1. Transaction/JTA Overview

For the purpose of this discussion, we can define a transaction as a unit of work containing one
or more operations involving one or more shared resources having ACID properties. ACID is an
acronym for atomicity, consistency, isolation and durability, the four important properties of
transactions. The meanings of these terms is:

« Atomicity: A transaction must be atomic. This means that either all the work done in the
transaction must be performed, or none of it must be performed. Doing part of a transaction is
not allowed.

« Consistency: When a transaction is completed, the system must be in a stable and
consistent condition.

« Isolation: Different transactions must be isolated from each other. This means that the partial
work done in one transaction is not visible to other transactions until the transaction is
committed, and that each process in a multi-user system can be programmed as if it was the
only process accessing the system.

» Durability: The changes made during a transaction are made persistent when it is committed.
When a transaction is committed, its changes will not be lost, even if the server crashes
afterwards.

To illustrate these concepts, consider a simple banking account application. The banking
application has a database with a number of accounts. The sum of the amounts of all accounts
must always be 0. An amount of money M is moved from account A to account B by subtracting
M from account A and adding M to account B. This operation must be done in a transaction,
and all four ACID properties are important.

The atomicity property means that both the withdrawal and deposit is performed as an
indivisible unit. If, for some reason, both cannot be done nothing will be done.

The consistency property means that after the transaction, the sum of the amounts of all

203

Chapter 7. Transactions on JBoss

accounts must still be 0.

The isolation property is important when more than one bank clerk uses the system at the same
time. A withdrawal or deposit could be implemented as a three-step process: First the amount of
the account is read from the database; then something is subtracted from or added to the
amount read from the database; and at last the new amount is written to the database. Without
transaction isolation several bad things could happen. For example, if two processes read the
amount of account A at the same time, and each independently added or subtracted something
before writing the new amount to the database, the first change would be incorrectly overwritten
by the last.

The durability property is also important. If a money transfer transaction is committed, the bank
must trust that some subsequent failure cannot undo the money transfer.

1.1. Pessimistic and optimistic locking

Transactional isolation is usually implemented by locking whatever is accessed in a transaction.
There are two different approaches to transactional locking: Pessimistic locking and optimistic
locking.

The disadvantage of pessimistic locking is that a resource is locked from the time it is first
accessed in a transaction until the transaction is finished, making it inaccessible to other
transactions during that time. If most transactions simply look at the resource and never change
it, an exclusive lock may be overkill as it may cause lock contention, and optimistic locking may
be a better approach. With pessimistic locking, locks are applied in a fail-safe way. In the
banking application example, an account is locked as soon as it is accessed in a transaction.
Attempts to use the account in other transactions while it is locked will either result in the other
process being delayed until the account lock is released, or that the process transaction will be
rolled back. The lock exists until the transaction has either been committed or rolled back.

With optimistic locking, a resource is not actually locked when it is first is accessed by a
transaction. Instead, the state of the resource at the time when it would have been locked with
the pessimistic locking approach is saved. Other transactions are able to concurrently access to
the resource and the possibility of conflicting changes is possible. At commit time, when the
resource is about to be updated in persistent storage, the state of the resource is read from
storage again and compared to the state that was saved when the resource was first accessed
in the transaction. If the two states differ, a conflicting update was made, and the transaction will
be rolled back.

In the banking application example, the amount of an account is saved when the account is first
accessed in a transaction. If the transaction changes the account amount, the amount is read
from the store again just before the amount is about to be updated. If the amount has changed
since the transaction began, the transaction will fail itself, otherwise the new amount is written to
persistent storage.

1.2. The components of a distributed transaction

There are a number of participants in a distributed transaction. These include:

204

The two-phase XA protocol

e Transaction Manager: This component is distributed across the transactional system. It
manages and coordinates the work involved in the transaction. The transaction manager is
exposed by the j avax. t ransacti on. Transacti onManager interface in JTA.

e Transaction Context: A transaction context identifies a particular transaction. In JTA the
corresponding interface is j avax. t ransacti on. Tr ansacti on.

« Transactional Client: A transactional client can invoke operations on one or more
transactional objects in a single transaction. The transactional client that started the
transaction is called the transaction originator. A transaction client is either an explicit or
implicit user of JTA interfaces and has no interface representation in the JTA.

« Transactional Object: A transactional object is an object whose behavior is affected by
operations performed on it within a transactional context. A transactional object can also be a
transactional client. Most Enterprise Java Beans are transactional objects.

* Recoverable Resource: A recoverable resource is a transactional object whose state is
saved to stable storage if the transaction is committed, and whose state can be reset to what
it was at the beginning of the transaction if the transaction is rolled back. At commit time, the
transaction manager uses the two-phase XA protocol when communicating with the
recoverable resource to ensure transactional integrity when more than one recoverable
resource is involved in the transaction being committed. Transactional databases and
message brokers like JBossMQ are examples of recoverable resources. A recoverable
resource is represented using the j avax. t ransacti on. xa. XAResour ce interface in JTA.

1.3. The two-phase XA protocol

When a transaction is about to be committed, it is the responsibility of the transaction manager

to ensure that either all of it is committed, or that all of is rolled back. If only a single recoverable
resource is involved in the transaction, the task of the transaction manager is simple: It just has
to tell the resource to commit the changes to stable storage.

When more than one recoverable resource is involved in the transaction, management of the
commit gets more complicated. Simply asking each of the recoverable resources to commit
changes to stable storage is hot enough to maintain the atomic property of the transaction. The
reason for this is that if one recoverable resource has committed and another fails to commit,
part of the transaction would be committed and the other part rolled back.

To get around this problem, the two-phase XA protocol is used. The XA protocol involves an
extra prepare phase before the actual commit phase. Before asking any of the recoverable
resources to commit the changes, the transaction manager asks all the recoverable resources
to prepare to commit. When a recoverable resource indicates it is prepared to commit the
transaction, it has ensured that it can commit the transaction. The resource is still able to
rollback the transaction if necessary as well.

So the first phase consists of the transaction manager asking all the recoverable resources to
prepare to commit. If any of the recoverable resources fails to prepare, the transaction will be

205

Chapter 7. Transactions on JBoss

rolled back. But if all recoverable resources indicate they were able to prepare to commit, the
second phase of the XA protocol begins. This consists of the transaction manager asking all the
recoverable resources to commit the transaction. Because all the recoverable resources have
indicated they are prepared, this step cannot fail.

1.4. Heuristic exceptions

In a distributed environment communications failures can happen. If communication between
the transaction manager and a recoverable resource is not possible for an extended period of
time, the recoverable resource may decide to unilaterally commit or rollback changes done in
the context of a transaction. Such a decision is called a heuristic decision. It is one of the worst
errors that may happen in a transaction system, as it can lead to parts of the transaction being
committed while other parts are rolled back, thus violating the atomicity property of transaction
and possibly leading to data integrity corruption.

Because of the dangers of heuristic exceptions, a recoverable resource that makes a heuristic
decision is required to maintain all information about the decision in stable storage until the
transaction manager tells it to forget about the heuristic decision. The actual data about the
heuristic decision that is saved in stable storage depends on the type of recoverable resource
and is not standardized. The idea is that a system manager can look at the data, and possibly
edit the resource to correct any data integrity problems.

There are several different kinds of heuristic exceptions defined by the JTA. The
javax.transaction. Heuri sti cConmi t Excepti on is thrown when a recoverable resource is
asked to rollback to report that a heuristic decision was made and that all relevant updates have
been committed. On the opposite end is the

javax. transaction. Heuri sti cRol | backExcepti on, which is thrown by a recoverable
resource when it is asked to commit to indicate that a heuristic decision was made and that all
relevant updates have been rolled back.

The j avax. transacti on. Heuri sti cM xedExcept i on is the worst heuristic exception. It is
thrown to indicate that parts of the transaction were committed, while other parts were rolled
back. The transaction manager throws this exception when some recoverable resources did a
heuristic commit, while other recoverable resources did a heuristic rollback.

1.5. Transaction IDs and branches

In JTA, the identity of transactions is encapsulated in objects implementing the
j avax. transaction. xa. Xi d interface. The transaction ID is an aggregate of three parts:

« The format identifier indicates the transaction family and tells how the other two parts should
be interpreted.
« The global transaction id identified the global transaction within the transaction family.

« The branch qualifier denotes a particular branch of the global transaction.

206

JTS support

Transaction branches are used to identify different parts of the same global transaction.
Whenever the transaction manager involves a new recoverable resource in a transaction it
creates a new transaction branch.

2. JTS support

JBoss Transactions is a 100% Java implementation of a distributed transaction management
system based on the Sun Microsystems J2EE Java Transaction Service (JTS) standard. Our
implementation of the JTS utilizes the Object Management Group's (OMG) Object Transaction
Service (OTS) model for transaction interoperability as recommended in the J2EE and EJB
standards and leads the market in providing many advanced features such as fully distributed
transactions and ORB portability with POA support.

3. Web Services Transactions

In traditional ACID transaction systems, transactions are short lived, resources (such as
databases) are locked for the duration of the transaction and participants have a high degree of
trust with each other. With the advent of the Internet and Web services, the scenario that is now
emerging requires involvement of participants unknown to each other in distributed transactions.
These transactions have the following characteristics:

» Transactions may be of a long duration, sometimes lasting hours, days, or more.
 Participants may not allow their resources to be locked for long durations.
« The communication infrastructure between participants may not be reliable.

« Some of the ACID properties of traditional transactions are not mandatory.

» A transaction may succeed even if only some of the participants choose to confirm and others
cancel.

« All participants may choose to have their own coordinator (Transaction Manager), because of
lack of trust.

 All activities are logged.

» Transactions that have to be rolled back have the concept of compensation.

JBoss Transactions adds native support for Web services transactions by providing all of the
components necessary to build interoperable, reliable, multi-party, Web services-based
applications with the minimum of effort. The programming interfaces are based on the Java API
for XML Transactioning (JAXTX) and the product includes protocol support for the
WS-AtomicTransaction and WS-BusinessActivity specifications. JBossTS 4.2 is designed to
support multiple coordination protocols and therefore helps to future-proof transactional
applications.

207

Chapter 7. Transactions on JBoss

4. Configuring JBoss Transactions

JBossTS is configured through the jbossjts-properties.xml property file. You should consult the
JBossTS documentation for all of the configurable options it supports.

5. Local versus distributed transactions

Local Transactions.

A Local Transaction allows resource enlistment at only one JVM and does not span across
multiple process instances (i.e., VMs). However a separate client JVM may still manage
transaction boundaries (begin/commit/rollback) for the JTA. Databases and message queues
running as separate processes may still be enlisted as XAResources provided they have drivers
that support this.

Distributed Transactions.

A transaction is considered to be distributed if it spans multiple process instances, i.e., VMs.
Typically a distributed transaction will contain participants (e.g., XAResources) that are located
within multiple VMs but the transaction is coordinated in a separate VM (or co-located with one
of the participants).

JBossTS provides both local and distributed transactions. If your architecture requires
distributed transactions then you should consider using either the JTS implementation from
JBossTS, which uses CORBA for communication, or the Web Services transactions component,
which uses SOAP/HTTP. Although the JTS/XTS component can be used with JBoss Enterprise
Application Platform, it is not a supported part of the platform.

Note

JTS and XTS components are not supported for JBoss Enterprise Application
Platform 4.x

208

Chapter 8.

Messaging on JBoss

The JMS API stands for Java Message Service Application Programming Interface, and it is
used by applications to send asynchronous business-quality messages to other applications. In
the messaging world, messages are not sent directly to other applications. Instead, messages
are sent to destinations, known as queues or topics. Applications sending messages do not
need to worry if the receiving applications are up and running, and conversely, receiving
applications do not need to worry about the sending application's status. Both senders, and
receivers only interact with the destinations.

The JMS API is the standardized interface to a JMS provider, sometimes called a Message
Oriented Middleware (MOM) system. JBoss comes with a JMS 1.1 compliant JMS provider
called JBoss Messaging. When you use the JMS API with JBoss, you are using the JBoss
Messaging engine transparently. JBoss Messaging fully implements the JMS specification;
therefore, the best JBoss Messaging user guide is the JMS specification. For more information
about the JMS API please visit the JMS Tutorial or IMS Downloads & Specifications.

1. JBoss Messaging Overview

JBoss Messaging is the new state-of-the-art enterprise messaging system from JBoss,
providing superior performance, reliability and scalability with high throughput and low latency.
JBoss Messaging has replaced JBossMQ as the default IMS provider in JBoss Enterprise
Application Platform 4.3. Since JBoss Messaging is JMS 1.1 and JMS 1.0.2b compatible, the
JMS code written against JBossMQ will run with JBoss Messaging without any changes.

For more details on configurations and examples, refer to the JBoss Messaging User Guide.

209

210

Chapter 9.

Security on JBoss

J2EE Security Configuration and Architecture

Security is a fundamental part of any enterprise application. You need to be able to restrict who
is allowed to access your applications and control what operations application users may
perform. The J2EE specifications define a simple role-based security model for EJBs and web
components. The JBoss component framework that handles security is the JBossSX extension
framework. The JBossSX security extension provides support for both the role-based
declarative J2EE security model and integration of custom security via a security proxy layer.
The default implementation of the declarative security model is based on Java Authentication
and Authorization Service (JAAS) login modules and subjects. The security proxy layer allows
custom security that cannot be described using the declarative model to be added to an EJB in
a way that is independent of the EJB business object. Before getting into the JBoss security
implementation details, we will review EJB and servlet specification security models, as well as
JAAS to establish the foundation for these details.

1. J2EE Declarative Security Overview

The J2EE security model declarative in that you describe the security roles and permissions in a
standard XML descriptor rather than embedding security into your business component. This
isolates security from business-level code because security tends to be more a function of
where the component is deployed than an inherent aspect of the component's business logic.
For example, consider an ATM component that is to be used to access a bank account. The
security requirements, roles and permissions will vary independently of how you access the
bank account, based on what bank is managing the account, where the ATM is located, and so
on.

Securing a J2EE application is based on the specification of the application security
requirements via the standard J2EE deployment descriptors. You secure access to EJBs and
web components in an enterprise application by using the ej b-j ar. xnl and web. xni
deployment descriptors. The following sections look at the purpose and usage of the various
security elements.

1.1. Security References

Both EJBs and servlets can declare one or more security-rol e-ref elements as shown in
Figure 9.1, “The security-role-ref element”. This element declares that a component is using the
rol e- nane value as an argument to the i sCal | er I nRol e(St ri ng) method. By using the

i sCal | er I nRol e method, a component can verify whether the caller is in a role that has been
declared with a security-rol e-ref/rol e- nane element. The r ol e- nane element value must
link to a security-rol e element through the r ol e- 1 i nk element. The typical use of

i sCal | erl nRol e is to perform a security check that cannot be defined by using the role-based
met hod- per i ssi ons elements.

211

Chapter 9. Security on JBoss

r .

@) * =

A, -

@) * desmpﬁun%

B descriptionType
* security-role-ref_ * mle-name%
security-role-refType role-nameType

| . =i
L) role-link
role-nameType

Figure 9.1. The security-role-ref element

Example 9.1, “An ejb-jar.xml descriptor fragment that illustrates the security-role-ref element
usage.” shows the use of security-role-ref inanejb-jar.xmn.

<!-- A sanple ejb-jar.xm fragnment -->
<ej b-jar>
<ent er pri se- beans>
<sessi on>

<ej b- name>ASessi onBean</ ej b- nane>

<security-rol e-ref>
<r ol e- nane>TheRol el Check</r ol e- nane>
<rol e-1i nk>TheAppl i cati onRol e</rol e-1i nk>
</security-rol e-ref>
</ sessi on>
</ enterprise-beans>

</ ej b-j ar>

Example 9.1. An ejb-jar.xml descriptor fragment that illustrates the
security-role-ref element usage.

Example 9.2, “An example web.xml descriptor fragment that illustrates the security-role-ref
element usage.” shows the use of security-rol e-ref inaweb. xn .

<web- app>
<servl et >
<ser vl et - name>ASer vl et </ ser vl et - nane>

<security-rol e-ref>
<rol e- name>TheSer vl et Rol e</r ol e- nane>
<rol e-1i nk>TheAppl i cati onRol e</rol e-1i nk>

212

Security Identity

</security-rol e-ref>
</ servl et>

</ web- app>

Example 9.2. An example web.xml descriptor fragment that illustrates the
security-role-ref element usage.

1.2. Security ldentity

An EJB has the capability to specify what identity an EJB should use when it invokes methods
on other components using the securi ty-identity element, shown in Figure 9.2, “The
security-identity element”

= . id 11

7 =

il

=) * desmpﬁnn%
descriptionType

* security-identityz S
security-identityType o * USE'G“Er'ldEI'me
T emptyType

.| * run-as]
run-asType

Figure 9.2. The security-identity element

The invocation identity can be that of the current caller, or it can be a specific role. The
application assembler uses the security-identity element with ause-caller-identity
child element to indicate that the current caller's identity should be propagated as the security
identity for method invocations made by the EJB. Propagation of the caller's identity is the
default used in the absence of an explicit securi ty-identity element declaration.

Alternatively, the application assembler can use the r un- as/ r ol e- nane child element to specify
that a specific security role given by the r ol e- nane value should be used as the security identity
for method invocations made by the EJB. Note that this does not change the caller's identity as
seen by the EJBCont ext . get Cal | er Pri nci pal () method. Rather, the caller's security roles
are set to the single role specified by the r un- as/ r ol e- nane element value. One use case for
the run- as element is to prevent external clients from accessing internal EJBs. You accomplish
this by assigning the internal EJB net hod- per ni ssi on elements that restrict access to a role
never assigned to an external client. EJBs that need to use internal EJB are then configured
with a run- as/ r ol e- name equal to the restricted role. The following descriptor fragment that

213

Chapter 9. Security on JBoss

illustrates security-identity element usage.

<!-- A sanple ejb-jar.xm fragnment -->
<ej b-jar>
<ent er pri se- beans>
<sessi on>
<ej b- nane>ASessi onBean</ ej b- nane>
<l-- ... -->

<security-identity>
<use-cal l er-identity/>
</security-identity>
</ sessi on>
<sessi on>
<ej b- name>RunAsBean</ ej b- nane>
<l-- ... -->
<security-identity>
<run- as>
<descri pti on>A private internal role</description>
<r ol e- nanme>| nt er nal Rol e</r ol e- name>
</run-as>
</security-identity>
</ sessi on>
</ enterprise-beans>
<l-- ... -->
</ejb-jar>

When you use r un- as to assign a specific role to outgoing calls, JBoss associates a principal
named anonynous. If you want another principal to be associated with the call, you need to
associate a r un- as- pri nci pal with the bean in the j boss. xn file. The following fragment
associates a principal named i nt er nal with RunAsBean from the prior example.

<sessi on>
<ej b- name>RunAsBean</ ej b- nane>
<security-identity>
<run-as- princi pal >i nt ernal </ run-as-princi pal >
</security-identity>
</ sessi on>

The run- as element is also available in servlet definitions in a web. xn file. The following
example shows how to assign the role I nt er nal Rol e to a servlet:

<servl et >
<ser vl et - name>ASer vl et </ servl et - nane>
<l-- ... -->
<run- as>
<r ol e- nane>| nt er nal Rol e</ r ol e- nane>
</ run-as>
</servlet>

Calls from this servlet will be associated with the anonymous pri nci pal . The
run-as- princi pal elementis available in the j boss-web. xn file to assign a specific principal

214

Security roles

to go along with the r un- as role. The following fragment shows how to associate a principal
named i nt er nal to the servlet in the prior example.

<servl et >
<servl et - name>ASer vl et </ servl et - nane>
<run-as-princi pal >i nt ernal </run-as-princi pal >
</servl et>

1.3. Security roles

The security role name referenced by either the security-rol e-ref orsecurity-identity
element needs to map to one of the application's declared roles. An application assembler
defines logical security roles by declaring securi ty-rol e elements. The r ol e- nare value is a
logical application role name like Administrator, Architect, SalesManager, etc.

The J2EE specifications note that it is important to keep in mind that the security roles in the
deployment descriptor are used to define the logical security view of an application. Roles
defined in the J2EE deployment descriptors should not be confused with the user groups, users,
principals, and other concepts that exist in the target enterprise's operational environment. The
deployment descriptor roles are application constructs with application domain-specific names.
For example, a banking application might use role names such as BankManager, Teller, or
Customer.

— @} * g
D J

) * desmpﬁnn%
descriptionType

*+ security-rolez_ ; .

sECUrity-roleType i)
+ = =

. [#* role name%ﬁ C{;IDId=

role-nameType |]

L= -

Figure 9.3. The security-role element

In JBoss, a security-rol e elementis only used to map security-rol e-ref/rol e-name
values to the logical role that the component role references. The user's assigned roles are a
dynamic function of the application's security manager, as you will see when we discuss the
JBossSX implementation details. JBoss does not require the definition of security-rol e
elements in order to declare method permissions. However, the specification of security-rol e
elements is still a recommended practice to ensure portability across application servers and for
deployment descriptor maintenance. Example 9.3, “An ejb-jar.xml descriptor fragment that
illustrates the security-role element usage.” shows the usage of the security-rol e in an

ej b-jar.xnl file.

215

Chapter 9. Security on JBoss

<!-- A sanple ejb-jar.xm fragnment -->
<ej b-jar>
<l-- ... -->
<assenbl y- descri pt or >
<security-rol e>
<descri pti on>The singl e application rol e</description>
<r ol e- name>TheAppl i cat i onRol e</r ol e- nane>
</security-rol e>
</ assenbl y- descri pt or >
</ejb-jar>

Example 9.3. An ejb-jar.xml descriptor fragment that illustrates the
security-role element usage.

Example 9.4, “An example web.xml descriptor fragment that illustrates the security-role element
usage.” shows the usage of the security-rol e in an web. xni file.

<l-- A sanple web.xnm fragnent -->
<web- app>
<l-- ... -->
<security-rol e>
<descri pti on>The singl e application rol e</description>
<r ol e- name>TheAppl i cat i onRol e</r ol e- nanme>
</security-rol e>
</ web- app>

Example 9.4. An example web.xml descriptor fragment that illustrates the
security-role element usage.

1.4. EJB method permissions

An application assembler can set the roles that are allowed to invoke an EJB's home and
remote interface methods through method-permission element declarations.

216

EJB method permissions

-

b

5| ® idm {
‘“;}JD =

-

’ desmpﬁnn%

descriptionType

®

+ method-permission z_
method-permissionType

+

mle-name%

role-nameType

Figure 9.4. The method-permissions element

+

emptyType

und'leﬂu!dE

+ mel:hndE
methodType

Each et hod- per nmi ssi on element contains one or more role-name child elements that define
the logical roles that are allowed to access the EJB methods as identified by method child
elements. You can also specify an unchecked element instead of the r ol e- nane element to
declare that any authenticated user can access the methods identified by method child
elements. In addition, you can declare that no one should have access to a method that has the
excl ude- | i st element. If an EJB has methods that have not been declared as accessible by a
role using a met hod- per mi ssi on element, the EJB methods default to being excluded from use.
This is equivalent to defaulting the methods into the excl ude- | i st.

+ meﬂlndE

-

: Hr‘ = B '.
— @ °1dg

-

WD J

b, o

o
‘_:.."

+ descripu'nn%
descriptionType

+ Ejh-namea

eib-nameType

+ method-intf
method-intfType

methodType

+ mel:hnd-name%

method-nameType

*+ method-params_

method-paramsType

[= |

If r'_ &1
— @5l
I.ID -

= * method-param

' |java-typeType

217

Chapter 9. Security on JBoss

Figure 9.5. The method element

There are three supported styles of method element declarations.

The first is used for referring to all the home and component interface methods of the named
enterprise bean:

<met hod>
<ej b- nane>EJBNAME</ ej b- nane>
<net hod- name>* </ net hod- nane>
</ met hod>

The second style is used for referring to a specified method of the home or component interface
of the named enterprise bean:

<met hod>
<ej b- name>EJBNAME</ e] b- nane>
<net hod- nanme>METHOD</ net hod- nanme>
</ met hod>

If there are multiple methods with the same overloaded name, this style refers to all of the
overloaded methods.

The third style is used to refer to a specified method within a set of methods with an overloaded
name:

<met hod>
<ej b- name>EJBNAME</ ej b- nane>
<met hod- name>NMETHOD</ met hod- nanme>
<met hod- par anms>
<met hod- par an>PARAMETER_1</ net hod- par an>
<l-- ... -->
<met hod- par anPPARAMETER_N</ net hod- par an>
</ met hod- par ans>
</ met hod>

The method must be defined in the specified enterprise bean's home or remote interface. The
method-param element values are the fully qualified name of the corresponding method
parameter type. If there are multiple methods with the same overloaded signature, the
permission applies to all of the matching overloaded methods.

The optional net hod- i ntf element can be used to differentiate methods with the same name
and signature that are defined in both the home and remote interfaces of an enterprise bean.

Example 9.5, “An ejb-jar.xml descriptor fragment that illustrates the method-permission element
usage.” provides complete examples of the met hod- per ni ssi on element usage.

218

EJB method permissions

<ej b-jar>
<assenbl y- descri pt or >
<net hod- per m ssi on>
<descri pti on>The enpl oyee and tenp-enpl oyee rol es nmay access any
nmet hod of the Enpl oyeeService bean </description>
<r ol e- name>enpl oyee</r ol e- name>
<r ol e- name>t enp- enpl oyee</r ol e- nane>
<met hod>
<ej b- name>Enpl oyeeSer vi ce</ ej b- nane>
<nmet hod- nane>* </ net hod- nane>
</ met hod>
</ met hod- per ni ssi on>
<met hod- per m ssi on>
<descri pti on>The enpl oyee rol e may access the findByPri nmaryKey,
get Enpl oyeel nfo, and the updat eEnpl oyeel nfo(String) nethod

of
t he AardvarkPayrol|l bean </description>
<r ol e- nanme>enpl oyee</r ol e- name>
<met hod>
<ej b- name>Aar dvar kPayr ol | </ ej b- nane>
<met hod- name>f i ndByPri mar yKey</ net hod- nanme>
</ met hod>
<met hod>
<ej b- name>Aar dvar kPayr ol | </ ej b- nane>
<nmet hod- name>get Enpl oyeel nf o</ net hod- nane>
</ met hod>
<met hod>
<ej b- name>Aar dvar kPayr ol | </ ej b- nane>
<nmet hod- name>updat eEnpl oyeel nf o</ net hod- nanme>
<net hod- par ans>
<met hod- par anPj ava. | ang. St ri ng</ nmet hod- par an>
</ net hod- par ans>
</ met hod>
</ met hod- per ni ssi on>
<nmet hod- per m ssi on>
<descri pti on>The admi n role may access any mnethod of the
Enpl oyeeSer vi ceAdni n bean </description>
<r ol e- nanme>adni n</r ol e- nane>
<met hod>
<ej b- name>Enpl oyeeSer vi ceAdm n</ ej b- name>
<nmet hod- nane>* </ net hod- nane>
</ met hod>
</ met hod- per ni ssi on>
<met hod- per m ssi on>
<descri pti on>Any aut henti cated user may access any nethod of the
Enpl oyeeSer vi ceHel p bean</ descri pti on>
<unchecked/ >
<met hod>
<ej b- name>Enpl oyeeSer vi ceHel p</ ej b- name>
<nmet hod- nane>* </ net hod- nane>
</ met hod>
</ met hod- per ni ssi on>
<excl ude-1ist>
<descri ption>No fireTheCTO net hods of the Enpl oyeeFiring bean
may be

used in this depl oynent </ descripti on>

219

Chapter 9. Security on JBoss

<net hod>
<ej b- name>Enpl oyeeFi ri ng</ ej b- name>
<met hod- name>f i r eTheCTO</ net hod- nane>
</ met hod>
</ excl ude-1li st >
</ assenbl y- descri pt or >
</ejb-jar>

Example 9.5. An ejb-jar.xml descriptor fragment that illustrates the
method-permission element usage.

1.5. Web Content Security Constraints

In a web application, security is defined by the roles that are allowed access to content by a
URL pattern that identifies the protected content. This set of information is declared by using the
web. xm security-constraint element.

- .

— @) e

Up
L. A
3 display—name%
display-nameType
s Bl
= e ida |
— @, 1dg
D J |
[= .
+ weh-resnurte-name%
string
@ * descriplinn%
(3| * web-resource-collection | descriptionType
“¥|web-resource-collectionType @ + url-pautern
url-patternType
L% * hup-method
+ security-constraintz_ http-methodType
security-constraintType r

: =
)
@ id=
LD)
|- -

+* descriptinn%
@ * aum-l’.ﬂl‘lﬂ]’iil‘ltlz_[: descriptionType

auth-constraintType +* m|g-namg%
=y
role-nameType

i 1

7| @ idg
Up_3
A

)
\/

D)

L,

+ description

=)
| e
7| * user-data-constraintg descriptionType
user-data-constraintType s mnspﬂl’t—guaﬁlﬂlea
transport-quaranteeType

220

Web Content Security Constraints

Figure 9.6. The security-constraint element

The content to be secured is declared using one or more web- r esour ce-col | ecti on elements.
Each web- r esour ce- col | ecti on element contains an optional series of url - pattern
elements followed by an optional series of ht t p- net hod elements. The url - pat t er n element
value specifies a URL pattern against which a request URL must match for the request to
correspond to an attempt to access secured content. The ht t p- met hod element value specifies
a type of HTTP request to allow.

The optional user - dat a- const r ai nt element specifies the requirements for the transport layer
of the client to server connection. The requirement may be for content integrity (preventing data
tampering in the communication process) or for confidentiality (preventing reading while in
transit). The transport-guarantee element value specifies the degree to which communication
between the client and server should be protected. Its values are NONE, | NTEGRAL, and

CONFI DENTI AL. A value of NONE means that the application does not require any transport
guarantees. A value of | NTEGRAL means that the application requires the data sent between the
client and server to be sent in such a way that it can't be changed in transit. A value of

CONFI DENTI AL means that the application requires the data to be transmitted in a fashion that
prevents other entities from observing the contents of the transmission. In most cases, the
presence of the | NTEGRAL or CONFI DENTI AL flag indicates that the use of SSL is required.

The optional | ogi n- confi g element is used to configure the authentication method that should
be used, the realm name that should be used for rhw application, and the attributes that are
needed by the form login mechanism.

3/ *idg
i

L. r

/7 * auth-method
auth-methodType

@ * malm-name%
Etring

- .1
a1

+ login-config_ ~[®id
login-configType — (7} i =

L -

* fnrm-lngin-page%
7/ * form-login-config_ war-pathType

BT : '
form-login-configType & fnrm-errnr-page#
war-pathType

Figure 9.7. The login-config element

The aut h- net hod child element specifies the authentication mechanism for the web application.
As a prerequisite to gaining access to any web resources that are protected by an authorization

221

Chapter 9. Security on JBoss

constraint, a user must have authenticated using the configured mechanism. Legal

aut h- net hod values are BASI C, DI GEST, FORM and CLI ENT- CERT. The r eal m nane child
element specifies the realm name to use in HTTP basic and digest authorization. The

form | ogi n- confi g child element specifies the log in as well as error pages that should be
used in form-based login. If the aut h- met hod value is not FORM then f or m | ogi n- confi g and
its child elements are ignored.

As an example, the web. xnl descriptor fragment given in Example 9.6, “ A web.xml descriptor
fragment which illustrates the use of the security-constraint and related elements.” indicates that
any URL lying under the web application's / r est ri ct ed path requires an Aut hori zedUser role.
There is no required transport guarantee and the authentication method used for obtaining the
user identity is BASIC HTTP authentication.

<web- app>
<l-- ... -->
<security-constraint>
<web-resour ce-col | ecti on>
<web- r esour ce- nane>Secur e Cont ent </ web-r esour ce- nane>
<url-pattern>/restricted/ *</url -pattern>
</ web-resour ce-col | ecti on>
<aut h- constrai nt >
<r ol e- nane>Aut hori zedUser </ r ol e- nane>
</ aut h-constrai nt >
<user - dat a- const r ai nt >
<transport - guar ant ee>NONE</ t r anspor t - guar ant ee>
</ user - dat a- constrai nt >
</ security-constraint>
<l-- ... -->
<l ogi n- confi g>
<aut h- met hod>BASI C</ aut h- net hod>
<r eal m nane>The Restricted Zone</real m nane>
</l ogi n- confi g>
<l-- ... -->
<security-rol e>
<descri ption>The role required to access restricted content
</ descri pti on>
<rol e- nane>Aut hori zedUser </ r ol e- nane>
</security-rol e>
</ web- app>

Example 9.6. A web.xml descriptor fragment which illustrates the use of
the security-constraint and related elements.

1.6. Enabling Declarative Security in JBoss

The J2EE security elements that have been covered so far describe the security requirements
only from the application's perspective. Because J2EE security elements declare logical roles,
the application deployer maps the roles from the application domain onto the deployment

environment. The J2EE specifications omit these application server-specific details. In JBoss,

222

An Introduction to JAAS

mapping the application roles onto the deployment environment entails specifying a security
manager that implements the J2EE security model using JBoss server specific deployment
descriptors. The details behind the security configuration are discussed in Section 3, “The
JBoss Security Model”.

2. An Introduction to JAAS

The JBossSX framework is based on the JAAS API. It is important that you understand the
basic elements of the JAAS API to understand the implementation details of JBossSX. The
following sections provide an introduction to JAAS to prepare you for the JBossSX architecture
discussion later in this chapter.

2.1. What is JAAS?

The JAAS 1.0 API consists of a set of Java packages designed for user authentication and
authorization. It implements a Java version of the standard Pluggable Authentication Module
(PAM) framework and compatibly extends the Java 2 Platform's access control architecture to
support user-based authorization. JAAS was first released as an extension package for JDK 1.3
and is bundled with JDK 1.4+. Because the JBossSX framework uses only the authentication
capabilities of JAAS to implement the declarative role-based J2EE security model, this
introduction focuses on only that topic.

JAAS authentication is performed in a pluggable fashion. This permits Java applications to
remain independent from underlying authentication technologies and allows the JBossSX
security manager to work in different security infrastructures. Integration with a security
infrastructure can be achieved without changing the JBossSX security manager implementation.
All that needs to change is the configuration of the authentication stack that JAAS uses.

2.1.1. The JAAS Core Classes

The JAAS core classes can be broken down into three categories: common, authentication, and
authorization. The following list presents only the common and authentication classes because
these are the specific classes used to implement the functionality of JBossSX covered in this
chapter.

The are the common classes:

e Subj ect (j avax. security. aut h. Subj ect)
e Principal (java.security.Principal)

These are the authentication classes:

e Cal |l back (j avax. security. auth. cal | back. Cal | back)

e Cal | backHandl er (j avax. security. aut h. cal | back. Cal | backHand! er)
e Configuration (javax. security. auth. | ogi n. Confi guration)

e Logi nContext (j avax.security. auth. | ogin. Logi nCont ext)

e Logi nModul e (j avax. securi ty. aut h. spi . Logi nMbdul e)

223

Chapter 9. Security on JBoss

2.1.1.1. The Subject and Principal Classes

To authorize access to resources, applications first need to authenticate the request's source.
The JAAS framework defines the term subject to represent a request's source. The Subj ect
class is the central class in JAAS. A Subj ect represents information for a single entity, such as
a person or service. It encompasses the entity's principals, public credentials, and private
credentials. The JAAS APIs use the existing Java 2 j ava. security. Princi pal interface to
represent a principal, which is essentially just a typed name.

During the authentication process, a subject is populated with associated identities, or
principals. A subject may have many principals. For example, a person may have a name
principal (John Doe), a social security number principal (123-45-6789), and a username
principal (johnd), all of which help distinguish the subject from other subjects. To retrieve the
principals associated with a subject, two methods are available:

public Set getPrincipals() {...}
public Set getPrincipals(Cass c) {...}

The first method returns all principals contained in the subject. The second method returns only
those principals that are instances of class ¢ or one of its subclasses. An empty set is returned if
the subject has no matching principals. Note that the j ava. security. acl . G oup interface is a
subinterface of j ava. security. Pri nci pal , so an instance in the principals set may represent
a logical grouping of other principals or groups of principals.

2.1.1.2. Authentication of a Subject

Authentication of a subject requires a JAAS login. The login procedure consists of the following
steps:

1. An application instantiates a Logi nCont ext and passes in the name of the login configuration
and a Cal | backHandl er to populate the Cal | back objects, as required by the configuration
Logi nMbdul es.

2. The Logi nCont ext consults a Confi gur ati on to load all the Logi nModul es included in the
named login configuration. If no such named configuration exists the ot her configuration is
used as a default.

3. The application invokes the Logi nCont ext . | ogi n method.

4. The login method invokes all the loaded Logi nModul es. As each Logi nModul e attempts to
authenticate the subject, it invokes the handle method on the associated Cal | backHandl er
to obtain the information required for the authentication process. The required information is
passed to the handle method in the form of an array of Cal | back objects. Upon success, the
Logi nModul es associate relevant principals and credentials with the subject.

5. The Logi nCont ext returns the authentication status to the application. Success is
represented by a return from the login method. Failure is represented through a

224

What is JAAS?

LoginException being thrown by the login method.

6. If authentication succeeds, the application retrieves the authenticated subject using the
Logi nCont ext . get Subj ect method.

7. After the scope of the subject authentication is complete, all principals and related
information associated with the subject by the login method can be removed by invoking the
Logi nCont ext . | ogout method.

The Logi nCont ext class provides the basic methods for authenticating subjects and offers a
way to develop an application that is independent of the underlying authentication technology.
The Logi nCont ext consults a Confi gur ati on to determine the authentication services
configured for a particular application. Logi nMbdul e classes represent the authentication
services. Therefore, you can plug different login modules into an application without changing
the application itself. The following code shows the steps required by an application to
authenticate a subject.

Cal | backHandl er handl er = new MyHandl er () ;
Logi nCont ext | c = new Logi nCont ext ("some-config", handl er)

try {
I c.login();
Subj ect subject = |c.getSubject();
} catch(Logi nException e) ({
System out . println("authentication failed");
e.printStackTrace();

}
[/ Performwork as authenticated Subject
I/
/1l Scope of work conplete, |ogout to renpve authentication info
try {
I c.logout();

} catch(Logi nException e) {
System out. println("l ogout failed");
e.printStackTrace();

}

/'l A sanpl e MyHandl er cl ass
cl ass MyHandl er
i mpl ement s Cal | backHandl er
{
public void handl e(Cal | back[] cal | backs) throws
| OExcepti on, UnsupportedCal | backException
{
for (int i = 0; i < callbacks.length; i++) {
if (callbacks[i] instanceof NaneCall back) {
NameCal | back nc = (NaneCal | back) cal | backs[i];
nc. set Nane(user nane)
} else if (callbacks[i] instanceof PasswordCall back) {
Passwor dCal | back pc = (PasswordCal | back) cal | backs[i];
pc. set Passwor d(passwor d) ;

225

Chapter 9. Security on JBoss

} else {
t hr ow new Unsupport edCal | backExcepti on(cal | backs[i],
"Unr ecogni zed
Cal | back");

}
}

Developers integrate with an authentication technology by creating an implementation of the
Logi nMbdul e interface. This allows an administrator to plug different authentication
technologies into an application. You can chain together multiple Logi nMbdul es to allow for
more than one authentication technology to participate in the authentication process. For
example, one Logi nModul e may perform username/password-based authentication, while
another may interface to hardware devices such as smart card readers or biometric
authenticators.

The life cycle of a Logi nMbdul e is driven by the Logi nCont ext object against which the client
creates and issues the login method. The process consists of two phases. The steps of the
process are as follows:

« The Logi nCont ext creates each configured Logi nMbdul e using its public no-arg constructor.

« Each Logi nModul e is initialized with a call to its initialize method. The Subj ect argument is
guaranteed to be non-null. The signature of the initialize method is: publ i ¢ void
initialize(Subject subject, CallbackHandl er call backHandl er, Map
sharedState, Map options).

e The | ogi n method is called to start the authentication process. For example, a method
implementation might prompt the user for a username and password and then verify the
information against data stored in a naming service such as NIS or LDAP. Alternative
implementations might interface to smart cards and biometric devices, or simply extract user
information from the underlying operating system. The validation of user identity by each
Logi nModul e is considered phase 1 of JAAS authentication. The signature of the | ogi n
method is bool ean | ogi n() throws Logi nException. A Logi nExcepti on indicates failure.
A return value of true indicates that the method succeeded, whereas a return valueof false
indicates that the login module should be ignored.

« If the Logi nCont ext 's overall authentication succeeds, conmi t is invoked on each
Logi nMbdul e. If phase 1 succeeds for a Logi nMbdul e, then the commit method continues
with phase 2 and associates the relevant principals, public credentials, and/or private
credentials with the subject. If phase 1 fails for a Logi nMbdul e, then conmi t removes any
previously stored authentication state, such as usernames or passwords. The signature of the
comi t method is: bool ean conmit () throws Logi nExcepti on. Failure to complete the
commit phase is indicated by throwing a Logi nExcept i on. A return of true indicates that the
method succeeded, whereas a return of false indicates that the login module should be
ignored.

226

The JBoss Security Model

« If the Logi nCont ext 's overall authentication fails, then the abort method is invoked on each
Logi nModul e. The abort method removes or destroys any authentication state created by
the login or initialize methods. The signature of the abort method is bool ean abort ()

t hrows Logi nExcepti on. Failure to complete the abort phase is indicated by throwing a
Logi nExcept i on. A return of true indicates that the method succeeded, whereas a return of
false indicates that the login module should be ignored.

« To remove the authentication state after a successful login, the application invokes | ogout on
the Logi nCont ext . This in turn results in a | ogout method invocation on each Logi nhbdul e.
The | ogout method removes the principals and credentials originally associated with the
subject during the commi t operation. Credentials should be destroyed upon removal. The
signature of the | ogout method is: bool ean | ogout () throws Logi nExcepti on. Failure to
complete the logout process is indicated by throwing a Logi nExcept i on. A return of true
indicates that the method succeeded, whereas a return of false indicates that the login
module should be ignored.

When a Logi nModul e must communicate with the user to obtain authentication information, it
uses a Cal | backHandl er object. Applications implement the Cal | backHandl er interface and
pass it to the LoginContext, which forwards it directly to the underlying login modules. Login
modules use the Cal | backHandl er both to gather input from users, such as a password or
smart card PIN, and to supply information to users, such as status information. By allowing the
application to specify the Cal | backHandl er , underlying Logi nMbdul es remain independent
from the different ways applications interact with users. For example, a Cal | backHandl er's
implementation for a GUI application might display a window to solicit user input. On the other
hand, a cal | backhandl er 's implementation for a non-GUI environment, such as an application
server, might simply obtain credential information by using an application server API. The

cal | backhandl er interface has one method to implement:

voi d handl e(Cal | back[] cal | backs)
throws java.io. | OException,
Unsupport edCal | backExcepti on;

The Cal | back interface is the last authentication class we will look at. This is a tagging interface
for which several default implementations are provided, including the NarmeCal | back and
Passwor dCal | back used in an earlier example. A Logi nMbdul e uses a Cal | back to request
information required by the authentication mechanism. Logi nModul es pass an array of

Cal | backs directly to the Cal | backHandl er . handl e method during the authentication's login
phase. If a cal | backhandl er does not understand how to use a Cal | back object passed into
the handle method, it throws an Unsupport edCal | backExcept i on to abort the login call.

3. The JBoss Security Model

Similar to the rest of the JBoss architecture, security at the lowest level is defined as a set of
interfaces for which alternate implementations may be provided. Three basic interfaces define
the JBoss server security layer: or g. j boss. securi ty. Aut henti cati onManager,

org.j boss. security. Real mvappi ng, and or g. j boss. security. SecurityProxy. Figure 9.8,

227

Chapter 9. Security on JBoss

“The key security model interfaces and their relationship to the JBoss server EJB container
elements.” shows a class diagram of the security interfaces and their relationship to the EJB
container architecture.

org.jhoss. ejb. Container Securityinterceptor
. #container : org.jboss.ejb.Container
+getMethodPermissions{m : Method, iface :int) : Set AR T
+getRealmMapping() : RealmMapping LG CE TG
+getSecurityManager() : AuthenticationManager L D VR L
+getSecurityProxy() : Object -checkSecurityAssociation(mi : Invacation) : void
+geiTransactionManager(: TransactionManager +getContainer() : org jhoss.ejb.Container
+getWehClassLoader() : ClassLoader 1 01 +invoke(mi : Invocation) : Object
+invoke(mi: Invocation) - Object +invokeHome(mi : Invocation) : Object
+invokeHome{ mi: Invacation) : Object +resetStatistic() : void
+setRealmMapping(rm : RealmMapping) : void +retrieveStatistic() : Map
+setSecurityManager(sm : AuthenticationManager) : void +Securityinterceptor()
+setSecurityProxy(proxy : Object) : void +setContainer(container : org jboss ejb.Container) : void

+start() : void

1 1.x 1

0.1 -Role Mapping

221 01 _authentication
g R RealmMapping C
SecurityProxyinterceptor AuthenticationManager c
- - - —— - - - . +doestsert (principal : Principal, roles : Set) : boolean
#container : org jooss.ejb.Container +isValiof prineipal : Principal, credential : Object) : boolean +getPrincipall princigal - Principal) - Principal
#securityManager : AuthenticationManager +getlserRoles(principal: Principal) : Set
#securityProxy : SecurityProxy -
+getContainer(: org jboss.ejb.Container
+invoke(mi: Invocation) : Object
+invokeHome(mi: Invocation) : Object 5 =
+SecurityProxyinterceptorg SubjectSecurityManager d
+setContainer(container : org jboss.ejb.Container) : void +getActiveSubjecty) - Subject
+start() : void +getSecurityDomain() : Sting
] +isValid(Principal, - Object, ac ject: Subject) : boolean
1 -Custom Security T
SecurityProxy C : SecurityDomain C
+geti actory() | K actory
+init{ beanHome : Class, beanRemote . Claasf securityMar : Object) . void ! +geiKeySmreﬂ - KeyStore
+init{ beanHome : Class, beanRemote : Class, be._iril_a;a'.‘Homs :Class, beanLocal : Class, securityMgr : Object) : void geiTs actory() - Ti actory
+invokef m : Method, args . Objectf], bean : Object) : void +getTrustStore() - KeyStore
+invokeHome(m . Method, args : Objectl]) . void _
+selE JBConlextf ctx . EJBContext) : void

Figure 9.8. The key security model interfaces and their relationship to the
JBoss server EJB container elements.

The light blue classes represent the security interfaces while the yellow classes represent the
EJB container layer. The two interfaces required for the implementation of the J2EE security
model are or g. j boss. security. Aut henti cati onManager and

org.j boss. security. Real mvappi ng. The roles of the security interfaces presented in
Figure 9.8, “The key security model interfaces and their relationship to the JBoss server EJB
container elements.” are summarized in the following list.

« AuthenticationManager: This interface is responsible for validating credentials associated
with principals. Principals are identities, such as usernames, employee numbers, and social
security numbers. Credentials are proof of the identity, such as passwords, session keys, and
digital signatures. The i sVal i d method is invoked to determine whether a user identity and
associated credentials as known in the operational environment are valid proof of the user's
identity.

* RealmMapping: This interface is responsible for principal mapping and role mapping. The
get Pri nci pal method takes a user identity as known in the operational environment and
returns the application domain identity. The doesUser HaveRol e method validates that the
user identity in the operation environment has been assigned the indicated role from the

228

The JBoss Security Model

application domain.

» SecurityProxy: This interface describes the requirements for a custom
SecurityProxyl nterceptor plugin. A Securi t yProxy allows for the externalization of
custom security checks on a per-method basis for both the EJB home and remote interface
methods.

» SubjectSecurityManager: This is a subinterface of Aut henti cati onManager that adds
accessor methods for obtaining the security domain name of the security manager and the
current thread's authenticated Subj ect .

e SecurityDomain: This is an extension of the Aut henti cat i onManager, Real mvappi ng, and
Subj ect Securi t yManager interfaces. It is a move to a comprehensive security interface
based on the JAAS Subject, a j ava. security. KeySt or e, and the JSSE
com sun. net . ssl . KeyManager Fact ory and com sun. net . ssl . Tr ust Manager Fact ory
interfaces. This interface is a work in progress that will be the basis of a multi-domain security
architecture that will better support ASP style deployments of applications and resources.

Note that the Aut hent i cati onManager , Real mivappi ng and Secur i t yPr oxy interfaces have no
association to JAAS related classes. Although the JBossSX framework is heavily dependent on
JAAS, the basic security interfaces required for implementation of the J2EE security model are
not. The JBossSX framework is simply an implementation of the basic security plug-in interfaces
that are based on JAAS. The component diagram presented in Figure 9.9, “The relationship
between the JBossSX framework implementation classes and the JBoss server EJB container
layer.” illustrates this fact. The implication of this plug-in architecture is that you are free to
replace the JAAS-based JBossSX implementation classes with your own custom security
manager implementation that does not make use of JAAS, if you so desire. You'll see how to do
this when you look at the JBossSX MBeans available for the configuration of JBossSX in

Figure 9.9, “The relationship between the JBossSX framework implementation classes and the
JBoss server EJB container layer.”.

229

Chapter 9. Security on JBoss

JEozz EJE Core

Container
--------- . O
securicy plug-in

/ :cew\

Securitylnterceptor SecurityProxyInterceptor
I i |
| | I
| [I
{ | |
| [I
| | I
\,!flﬂth.!hl:.ic&tiﬂh *-.!,r!d:nb:i.ty napping '-i.tustom gecurity
AuthenticationManager RealuMapping SecurityProxy

JEoSaSx

JaasiecurityManager SubjecciecurityProxy

Figure 9.9. The relationship between the JBossSX framework
implementation classes and the JBoss server EJB container layer.

3.1. Enabling Declarative Security in JBoss Revisited

Earlier in this chapter, the discussion of the J2EE standard security model ended with a
requirement for the use of JBoss server-specific deployment descriptor to enable security. The
details of this configuration are presented here. Figure 9.10, “The security element subsets of
the JBoss server jboss.xml and jboss-web.xml deployment descriptors.” shows the
JBoss-specific EJB and web application deployment descriptor's security-related elements.

230

Enabling Declarative Security in JBoss

.+ securmty-domain
+ jboss| ¥

3| * unauthenticated-principal

|+ enterprise-beans o

-7

|| * session

[+ entity,) 5. * Secunity-proxy

L * massage-dnven

.4 * gontainer-configurations o

= * containerconfiguration,

| ® cantainer-nams

5. * security-domain

jhess

+ jboss-weby, o * security-domain

Figure 9.10. The security element subsets of the JBoss server jboss.xml
and jboss-web.xml deployment descriptors.

The value of a securi t y- domai n element specifies the JNDI name of the security manager
interface implementation that JBoss uses for the EJB and web containers. This is an object that
implements both of the Aut hent i cat i onManager and Real mvappi ng interfaces. When specified
as a top-level element it defines what security domain in effect for all EJBs in the deployment
unit. This is the typical usage because mixing security managers within a deployment unit
complicates inter-component operation and administration.

To specify the security domain for an individual EJB, you specify the securi t y- donai n at the
container configuration level. This will override any top-level security-domain element.

The unaut hent i cat ed- pri nci pal element specifies the name to use for the Pri nci pal object

231

Chapter 9. Security on JBoss

returned by the EJBCont ext . get User Pri nci pal method when an unauthenticated user
invokes an EJB. Note that this conveys no special permissions to an unauthenticated caller. Its
primary purpose is to allow unsecured servlets and JSP pages to invoke unsecured EJBs and
allow the target EJB to obtain a non-null Pri nci pal for the caller using the get User Pri nci pal
method. This is a J2EE specification requirement.

The securi ty- proxy element identifies a custom security proxy implementation that allows
per-request security checks outside the scope of the EJB declarative security model without
embedding security logic into the EJB implementation. This may be an implementation of the
org.jboss.security. SecurityProxy interface, or just an object that implements methods in
the home, remote, local home or local interfaces of the EJB to secure without implementing any
common interface. If the given class does not implement the Securi t yPr oxy interface, the
instance must be wrapped in a Securi t yPr oxy implementation that delegates the method
invocations to the object. The org. j boss. security. Subj ect Securit yProxy is an example
Secur i t yProxy implementation used by the default JBossSX installation.

Take a look at a simple example of a custom Securi t yPr oxy in the context of a trivial stateless
session bean. The custom Securi t yPr oxy validates that no one invokes the bean's echo
method with a four-letter word as its argument. This is a check that is not possible with
role-based security; you cannot define a Four Let t er Echol nvoker role because the security
context is the method argument, not a property of the caller. The code for the custom

Securi t yProxy is given in Example 9.7, “The example 1 custom EchoSecurityProxy
implementation that enforces the echo argument-based security constraint.”, and the full source
code is available in the src/ mai n/ or g/ j boss/ book/ securi ty/ ex1 directory of the book
examples.

package org.j boss. book. security. exl;

i mport java.lang.reflect. Met hod;
i nport javax. ejb. EJBCont ext ;

i mport org.apache. | og4j. Cat egory;
i mport org.jboss.security. SecurityProxy;

/** A sinmple exanple of a custom SecurityProxy inplenmentation
* that denonstrates nmethod argunment based security checks.
* @ut hor Scott. Stark@ boss. org
* @ersion $Revision: 1.4 $
*/
public class EchoSecurityProxy inplenents SecurityProxy
{
Category | og = Category. getlnstance(EchoSecurityProxy. cl ass);
Met hod echo;

public void init(d ass beanHonme, Cl ass beanRenote,
Obj ect securityMr)
throws Instantiati onException

| og. debug("init, beanHome="+beanHone
+ ", beanRenpot e="+beanRenot e
+ ", securityMr="+securityMr);

232

Revisited

/'l Get the echo nethod for equality testing in invoke
try {
Class[] parans = {String.cl ass};
echo = beanRenot e. get Decl ar edMet hod(" echo", parans);
} catch(Exception e) {
String meg = "Failed to finde an echo(String) method";
| og. error(nsg, €);
throw new I nstanti ati onExcepti on(nsg);

}
}
publ i c voi d set EJBCont ext (EJBCont ext ct x)
{

| og. debug(" set EJBCont ext, ctx="+ctx);
}

public void i nvokeHone(Method m Object[] args)
throws SecurityException

{
}

// We don't validate access to hone nethods

public void i nvoke(Method m Object[] args, Ohject bean)
throws SecurityException

{
| og. debug("i nvoke, m="+m);
[/ Check for the echo nethod
if (mequal s(echo)) {
[/l Validate that the nmsg arg is not 4 letter word
String arg = (String) args[O0];
if (arg == null || arg.length() == 4)
t hrow new SecurityException("No 4 |letter words");
}
/1 W are not responsible for doing the invoke
}

Example 9.7. The example 1 custom EchoSecurityProxy implementation
that enforces the echo argument-based security constraint.

The EchoSecuri t yPr oxy checks that the method to be invoked on the bean instance
corresponds to the echo(St ri ng) method loaded the init method. If there is a match, the
method argument is obtained and its length compared against 4 or null. Either case results in a
Securit yExcepti on being thrown. Certainly this is a contrived example, but only in its
application. It is a common requirement that applications must perform security checks based
on the value of method arguments. The point of the example is to demonstrate how custom
security beyond the scope of the standard declarative security model can be introduced
independent of the bean implementation. This allows the specification and coding of the security
requirements to be delegated to security experts. Since the security proxy layer can be done

233

Chapter 9. Security on JBoss

independent of the bean implementation, security can be changed to match the deployment
environment requirements.

The associated j boss. xm descriptor that installs the EchoSecuri t yPr oxy as the custom proxy
for the EchoBean is given in Example 9.8, “The jboss.xml descriptor, which configures the
EchoSecurityProxy as the custom security proxy for the EchoBean.”.

<j boss>
<security-domai n> ava: /j aas/ ot her </ securi t y- donai n>

<ent er pri se- beans>
<sessi on>
<ej b- nanme>EchoBean</ ej b- nane>
<security-proxy>org.jboss. book. security.exl. EchoSecurityProxy</security-proxy>
</ sessi on>
</ enterprise-beans>
</j boss>

Example 9.8. The jboss.xml descriptor, which configures the
EchoSecurityProxy as the custom security proxy for the EchoBean.

Now test the custom proxy by running a client that attempts to invoke the EchoBean. echo
method with the arguments Hel | o and Four as illustrated in this fragment:

public class ExCient
{

public static void main(String args[])
t hrows Exception

{
Logger | og = Logger. getLogger("ExCient");
| 0g. i nfo("Looking up EchoBean");

Initial Context iniCtx = new Initial Context();
oj ect ref = iniCtx.lookup("EchoBean");
EchoHone home = (EchoHone) ref;

Echo echo = hone. create();

| og.i nfo("Created Echo");

| og. i nfo("Echo.echo('Hello') = "+echo.echo("Hello"));
| og. i nfo("Echo.echo('Four') = "+echo. echo("Four"));

The first call should succeed, while the second should fail due to the fact that Four is a
four-letter word. Run the client as follows using Ant from the examples directory:

[exanpl es] $ ant -Dchap=security -Dex=1 run-exanple
run- exanpl el:

[echo] Waiting for 5 seconds for deploy...

234

The JBoss Security Extension Architecture

[java]l [INFO ExClient] Looking up EchoBean

[java] [INFO ExClient] Created Echo

[java]l [INFO ExClient] Echo.echo('Hello') = Hello

[java] Exception in thread "main" java.rm .AccessException:
SecurityException; nested exception is:

[javal java. |l ang. SecurityException: No 4 |etter words

[java] Caused by: java.lang. SecurityException: No 4 |etter words

The result is that the echo(' Hel | o') method call succeeds as expected and the echo("' Four")
method call results in a rather messy looking exception, which is also expected. The above
output has been truncated to fit in the book. The key part to the exception is that the
SecurityException("No 4 letter words") generated by the EchoSecuri t yProxy was
thrown to abort the attempted method invocation as desired.

4. The JBoss Security Extension Architecture

The preceding discussion of the general JBoss security layer has stated that the JBossSX
security extension framework is an implementation of the security layer interfaces. This is the
primary purpose of the JBossSX framework. The details of the implementation are interesting in
that it offers a great deal of customization for integration into existing security infrastructures. A
security infrastructure can be anything from a database or LDAP server to a sophisticated
security software suite. The integration flexibility is achieved using the pluggable authentication
model available in the JAAS framework.

The heart of the JBossSX framework is

org.j boss. security. plugins. JaasSecurityMnager. This is the default implementation of
the Aut hent i cati onManager and Real mvappi ng interfaces. Figure 9.11, “The relationship
between the security-domain component deployment descriptor value, the component container
and the JaasSecurityManager.” shows how the JaasSecuri t yManager integrates into the EJB
and web container layers based on the securi t y- domai n element of the corresponding
component deployment descriptor.

235

Chapter 9. Security on JBoss

wahb . xm]

jhoss .l } security-domai n=jwdomain

{ gjb-jar.xml }Meth::-d and URL Roles
jboss-wab , xoml

JBoss Serwver

A j
a e
= 8
i o
‘Eﬁgcur'ltﬂ nterceptor |
- g
0 o
= 5[]
5 ok -
it
B
=8 P 10 1
& e
ﬂ =]
" ™ o
? E-l Securitylmtercepior |
i =
o
: | —
1
= wi- L
3 _ /
=

jwdomain {
LoginModuleal

ﬂﬂﬂl_
LoginModulen

JActivesubject

Principalsset

@ Roles
E callerPrincipal
gt 1

Figure 9.11. The relationship between the security-domain component
deployment descriptor value, the component container and the
JaasSecurityManager.

236

How the JaasSecurityManager Uses JAAS

Figure 9.11, “The relationship between the security-domain component deployment descriptor
value, the component container and the JaasSecurityManager.” depicts an enterprise
application that contains both EJBs and web content secured under the security domain

j wdomai n. The EJB and web containers have a request interceptor architecture that includes a
security interceptor, which enforces the container security model. At deployment time, the
security-domai n element value in the j boss. xnml and j boss-web. xm descriptors is used to
obtain the security manager instance associated with the container. The security interceptor
then uses the security manager to perform its role. When a secured component is requested,
the security interceptor delegates security checks to the security manager instance associated
with the container.

The JBossSX JaasSecuri t yManager implementation performs security checks based on the
information associated with the Subj ect instance that results from executing the JAAS login
modules configured under the name matching the securi t y- domai n element value. We will drill
into the JaasSecuri t yManager implementation and its use of JAAS in the following section.

4.1. How the JaasSecurityManager Uses JAAS

The JaasSecuri t yManager uses the JAAS packages to implement the

Aut hent i cati onManager and Real mvappi ng interface behavior. In particular, its behavior
derives from the execution of the login module instances that are configured under the name
that matches the security domain to which the JaasSecuri t yManager has been assigned. The
login modules implement the security domain's principal authentication and role-mapping
behavior. Thus, you can use the JaasSecuri t yManager across different security domains
simply by plugging in different login module configurations for the domains.

To illustrate the details of the JaasSecuri t yManager 's usage of the JAAS authentication
process, you will walk through a client invocation of an EJB home method invocation. The
prerequisite setting is that the EJB has been deployed in the JBoss server and its home
interface methods have been secured using net hod- per i ssi on elements in the ej b-j ar. xn
descriptor, and it has been assigned a security domain named j wdomai n using the j boss. xni
descriptor securi t y- domai n element.

237

Chapter 9. Security on JBoss

Client
1 LoginContext lc("other®, ._.);
' lc.loging);]
mr"lier{
Bean ClientLoginModule
Home required;
2.)

marshal method info,
principal and credentials

JBoss Server
isValid()
.

Jaas
Security
Manager

Security

Interceptor) duesUserHawEHﬂlei]h

LoginContext ke(jwdomain”, ...);
lc.logind);
Subject s = lc.getSubject{)

jwdomain {
serverLoginModule
required;

e ———

Figure 9.12. An illustration of the steps involved in the authentication and
authorization of a secured EJB home method invocation.

Figure 9.12, “An illustration of the steps involved in the authentication and authorization of a
secured EJB home method invocation.” provides a view of the client to server communication

238

How the JaasSecurityManager Uses JAAS

we will discuss. The numbered steps shown are:

1. The client first has to perform a JAAS login to establish the principal and credentials for
authentication, and this is labeled Client Side Login in the figure. This is how clients establish
their login identities in JBoss. Support for presenting the login information via JNDI
I ni tial Context properties is provided via an alternate configuration. A JAAS login entails
creating a Logi nCont ext instance and passing the name of the configuration to use. The
configuration name is ot her . This one-time login associates the login principal and
credentials with all subsequent EJB method invocations. Note that the process might not
authenticate the user. The nature of the client-side login depends on the login module
configuration that the client uses. In this example, the ot her client-side login configuration
entry is set up to use the C i ent Logi nMbdul e module (an
org.j boss. security. dientLogi nMdul e). This is the default client side module that
simply binds the username and password to the JBoss EJB invocation layer for later
authentication on the server. The identity of the client is not authenticated on the client.

2. Later, the client obtains the EJB home interface and attempts to create a bean. This event is
labeled as Home Method Invocation. This results in a home interface method invocation
being sent to the JBoss server. The invocation includes the method arguments passed by the
client along with the user identity and credentials from the client-side JAAS login performed in
step 1.

3. On the server side, the security interceptor first requires authentication of the user invoking
the call, which, as on the client side, involves a JAAS login.

4. The security domain under which the EJB is secured determines the choice of login modules.
The security domain name is used as the login configuration entry name passed to the
Logi nCont ext constructor. The EJB security domain is j wdonai n. If the JAAS login
authenticates the user, a JAAS Subj ect is created that contains the following in its
Princi pal sSet :

 Ajava.security. Principal that corresponds to the client identity as known in the
deployment security environment.

e Ajava.security.acl.G oup named Rol es that contains the role names from the
application domain to which the user has been assigned.
org.j boss. security. Sinpl ePrinci pal objects are used to represent the role names;
Si mpl ePri nci pal is a simple string-based implementation of Pri nci pal . These roles are
used to validate the roles assigned to methods in ej b-j ar. xm and the
EJBCont ext . i sCal | er I nRol e(String) method implementation.

e An optional j ava. security. acl . G oup named Cal | er Pri nci pal , which contains a single
org.j boss.security. SinplePrincipal thatcorresponds to the identity of the application
domain's caller. The Cal | er Pri nci pal sole group member will be the value returned by
the EJBCont ext . get Cal | er Pri nci pal () method. The purpose of this mapping is to allow
a Princi pal as known in the operational security environment to map to a Pri nci pal with
a name known to the application. In the absence of a Cal | er Pri nci pal mapping the
deployment security environment principal is used as the get Cal | er Pri nci pal method

239

Chapter 9. Security on JBoss

value. That is, the operational principal is the same as the application domain principal.

5. The final step of the security interceptor check is to verify that the authenticated user has
permission to invoke the requested method This is labeled as Server Side Authorization in
Figure 9.12, “An illustration of the steps involved in the authentication and authorization of a
secured EJB home method invocation.”. Performing the authorization this entails the
following steps:

« Obtain the names of the roles allowed to access the EJB method from the EJB container.
The role names are determined by ej b-j ar. xm descriptor role-name elements of all
net hod- per ni ssi on elements containing the invoked method.

« If no roles have been assigned, or the method is specified in an excl ude- i st element,
then access to the method is denied. Otherwise, the doesUser HaveRol e method is invoked
on the security manager by the security interceptor to see if the caller has one of the
assigned role names. This method iterates through the role names and checks if the
authenticated user's Subject Rol es group contains a Si npl ePri nci pal with the assigned
role name. Access is allowed if any role name is a member of the Rol es group. Access is
denied if none of the role names are members.

« If the EJB was configured with a custom security proxy, the method invocation is delegated
to it. If the security proxy wants to deny access to the caller, it will throw a
java.l ang. Securit yExcepti on. If no Securi t yExcept i on is thrown, access to the EJB
method is allowed and the method invocation passes to the next container interceptor.
Note that the Securi t yProxyl nt er cept or handles this check and this interceptor is not
shown.

Every secured EJB method invocation, or secured web content access, requires the
authentication and authorization of the caller because security information is handled as a
stateless attribute of the request that must be presented and validated on each request. This
can be an expensive operation if the JAAS login involves client-to-server communication.
Because of this, the JaasSecuri t yManager supports the notion of an authentication cache that
is used to store principal and credential information from previous successful logins. You can
specify the authentication cache instance to use as part of the JaasSecuri t yManager
configuration as you will see when the associated MBean service is discussed in following
section. In the absence of any user-defined cache, a default cache that maintains credential
information for a configurable period of time is used.

4.2. The JaasSecurityManagerService MBean

The JaasSecurit yManager Ser vi ce MBean service manages security managers. Although its
name begins with Jaas, the security managers it handles need not use JAAS in their
implementation. The name arose from the fact that the default security manager implementation
is the JaasSecuri t yManager . The primary role of the JaasSecuri t yManager Ser vi ce is to
externalize the security manager implementation. You can change the security manager
implementation by providing an alternate implementation of the Aut hent i cati onManager and

240

The JaasSecurityManagerService MBean

Real m\vappi ng interfaces.

The second fundamental role of the JaasSecuri t yManager Ser vi ce is to provide a JNDI

j avax. nami ng. spi . Obj ect Fact ory implementation to allow for simple code-free management
of the JNDI name to security manager implementation mapping. It has been mentioned that
security is enabled by specifying the JNDI name of the security manager implementation via the
security-domai n deployment descriptor element. When you specify a JNDI name, there has to
be an object-binding there to use. To simplify the setup of the JNDI name to security manager
bindings, the JaasSecurit yManager Ser vi ce manages the association of security manager
instances to names by binding a next naming system reference with itself as the JNDI
ObjectFactory under the name j ava: / j aas. This allows one to use a naming convention of the
formj ava: / j aas/ XYZ as the value for the securi t y- domai n element, and the security
manager instance for the XYz security domain will be created as needed for you. The security
manager for the domain XYZ is created on the first lookup against the j ava: / j aas/ XYZ binding
by creating an instance of the class specified by the Securi t yManager d assNane attribute
using a constructor that takes the name of the security domain. For example, consider the
following container security configuration snippet:

<j boss>

<I-- Configure all containers to be secured under the "hades" security
domain -->

<security-donai n>j ava: /j aas/ hades</ security- domai n>

<l-- ... -->
</ j boss>

Any lookup of the name j ava: / j aas/ hades will return a security manager instance that has
been associated with the security domain named hades. This security manager will implement
the AuthenticationManager and RealmMapping security interfaces and will be of the type
specified by the JaasSecuri t yManager Ser vi ceSecuri t yManager Cl assName attribute.

The JaasSecurit yManager Ser vi ce MBean is configured by default for use in the standard
JBoss distribution, and you can often use the default configuration as is. The configurable
attributes of the JaasSecuri t yManager Ser vi ce include:

« SecurityManagerClassName: The name of the class that provides the security manager
implementation. The implementation must support both the
org.j boss. security. Authenticati onManager and or g. j boss. securi ty. Real mvappi ng
interfaces. If not specified this defaults to the JAAS-based
org.j boss. security. plugins. JaasSecurityManager.

» CallbackHandlerClassName: The name of the class that provides the
j avax. security. aut h. cal | back. Cal | backHandl er implementation used by the
JaasSecuri t yManager . You can override the handler used by the JaasSecuri t yManager if
the default implementation
(org.jboss.security. auth. cal | back. SecurityAssoci ati onHandl er) does not meet your
needs. This is a rather deep configuration that generally should not be set unless you know
what you are doing.

241

Chapter 9. Security on JBoss

« SecurityProxyFactoryClassName: The name of the class that provides the
org.j boss. security. SecurityProxyFactory implementation. If not specified this defaults
to org. j boss. security. Subj ect SecurityProxyFactory.

« AuthenticationCacheJndiName: Specifies the location of the security credential cache
policy. This is first treated as an Qoj ect Fact or y location capable of returning CachePol i cy
instances on a per-security-domain basis. This is done by appending the name of the security
domain to this name when looking up the CachePol i cy for a domain. If this fails, the location
is treated as a single CachePol i cy for all security domains. As a default, a timed cache policy
is used.

« DefaultCacheTimeout: Specifies the default timed cache policy timeout in seconds. The
default value is 1800 seconds (30 minutes). The value you use for the timeout is a tradeoff
between frequent authentication operations and how long credential information may be out
of sync with respect to the security information store. If you want to disable caching of security
credentials, set this to 0 to force authentication to occur every time. This has no affect if the
Aut hent i cat i onCacheJndi Nane has been changed from the default value.

« DefaultCacheResolution: Specifies the default timed cache policy resolution in seconds.
This controls the interval at which the cache current timestamp is updated and should be less
than the Def aul t CacheTi nmeout in order for the timeout to be meaningful. The default
resolution is 60 seconds(1 minute). This has no affect if the Aut hent i cat i onCacheJndi Nane
has been changed from the default value.

« DefaultUnauthenticatedPrincipal: Specifies the principal to use for unauthenticated users.
This setting makes it possible to set default permissions for users who have not been
authenticated.

The JaasSecurit yManager Ser vi ce also supports a number of useful operations. These
include flushing any security domain authentication cache at runtime, getting the list of active
users in a security domain authentication cache, and any of the security manager interface
methods.

Flushing a security domain authentication cache can be used to drop all cached credentials
when the underlying store has been updated and you want the store state to be used
immediately. The MBean operation signature is: publ i ¢ void

fl ushAut henti cati onCache(String securityDonain).

This can be invoked programmatically using the following code snippet:

MBeanServer server = ...;

String jaasMgr Nane = "j boss. security: service=JaasSecurityManager";

Obj ect Nane j aasMgr = new Obj ect Nane(j aasMgr Nane) ;

oj ect[] parans = {domai nNane};

String[] signature = {"java.lang.String"};

server.invoke(jaasMyr, "flushAuthenticati onCache", parans, signature);

Getting the list of active users provides a snapshot of the Pri nci pal s keys in a security domain

242

The JaasSecurityDomain MBean

authentication cache that are not expired. The MBean operation signature is: publ i ¢ Li st
get Aut henti cati onCachePri nci pal s(String securityDonain).

This can be invoked programmatically using the following code snippet:

MBeanSer ver server L
String jaasMgr Nane "j boss. security: servi ce=JaasSecurityManager";
oj ect Nanme j aasMgr = new Obj ect Nanme(j aasMgr Nane) ;
Obj ect[] parans = {domai nNane};
String[] signature = {"java.lang. String"};
Li st users = (List) server.invoke(jaasMr,
"get Aut henti cati onCachePri nci pal s",
par ans, signature);

The security manager has a few additional access methods.

publ i c bool ean isValid(String securityDomain, Principal principal, Object

credential);

public Principal getPrincipal (String securityDonmain, Principal principal);

publ i ¢ bool ean doesUser HaveRol e(String securityDomain, Principal principal,
Ohj ect credential, Set roles);

public Set getUserRol es(String securityDomain, Principal principal, Object

credential);

They provide access to the corresponding Aut hent i cat i onManager and Real mvappi ng
interface method of the associated security domain named by the securi t yDomai n argument.

4.3. The JaasSecurityDomain MBean

The org. j boss. security. pl ugi ns. JaasSecurit yDomai n is an extension of

JaasSecurit yManager that adds the notion of a KeySt or e, a JSSE KeyManager Fact ory and a
Tr ust Manager Fact ory for supporting SSL and other cryptographic use cases. The additional
configurable attributes of the JaasSecuri t yDomai n include:

« KeyStoreType: The type of the Key St or e implementation. This is the type argument passed
tothe java. security. KeyStore. getlnstance(String type) factory method. The default
is JKS.

» KeyStoreURL: A URL to the location of the KeySt or e database. This is used to obtain an
I nput St r eamto initialize the KeySt or e. If the string is not a value URL, it is treated as a file.

» KeyStorePass: The password associated with the KeySt or e database contents. The
KeySt or ePass is also used in combination with the Salt and I t er ati onCount attributes to
create a PBE secret key used with the encode/decode operations. The KeySt or ePass
attribute value format is one of the following:

» The plaintext password for the KeySt or e The t oChar Array() value of the string is used
without any manipulation.

243

Chapter 9. Security on JBoss

» A command to execute to obtain the plaintext password. The format is { EXT}. .. where the
. is the exact command line that will be passed to the Runt i ne. exec(St ri ng) method
to execute a platform-specific command. The first line of the command output is used as
the password.

» A class to create to obtain the plaintext password. The format is
{CLASS} cl assnane][: ct orar g] where the [: ct orarg] is an optional string that will be
passed to the constructor when instantiating the cl assnane. The password is obtained
from classname by invoking a t oChar Array() method if found, otherwise, the t oSt ri ng()
method is used.

e Salt: The PBEPar aret er Spec salt value.
 lterationCount: The PBEPar anet er Spec iteration count value.

» TrustStoreType: The type of the Trust St or e implementation. This is the type argument
passed to the j ava. security. KeyStore. getl nstance(String type) factory method. The
default is JKS.

* TrustStoreURL: A URL to the location of the Tr ust St or e database. This is used to obtain an
I nput St r eamto initialize the KeySt or e. If the string is not a value URL, it is treated as a file.

« TrustStorePass: The password associated with the trust store database contents. The
Tr ust St or ePass is a simple password and doesn't have the same configuration options as
the KeySt or ePass.

« ManagerServiceName: Sets the JMX object name string of the security manager service
MBean. This is used to register the defaults to register the JaasSecuri t yDomai n as a the
security manager under j ava: / j aas/ <domai n> where <donsi n> is the name passed to the
MBean constructor. The name defaults to
j boss. security: servi ce=JaasSecurityManager.

5. Defining Security Domains

The standard way of configuring security domains for authentication and authorization in JBoss
is to use the XML login configuration file. The login configuration policy defines a set of named
security domains that each define a stack of login modules that will be called upon to
authenticate and authorize users.

The XML configuration file conforms to the DTD given by Figure 9.13, “The XMLLoginConfig
DTD”. This DTD can be found in docs/ dt d/ security_config. dtd.

r .

D nameé
string J
+ policy o + application-policy_ + authentication M + login-module g

244

Defining Security Domains

flag = # codeg

(*fenumeration | \.5tring ;
* login-module z_ 3 + mndule-npu‘nn% # nameg
= _string]

Figure 9.13. The XMLLoginConfig DTD

The following example shows a simple configuration named jmx-console that is backed by a
single login module. The login module is configured by a simple set of name/value configuration
pairs that have meaning to the login module in question. We'll see what these options mean
later, for now we'll just be concerned with the structure of the configuration file.

<appl i cati on-policy nanme="j nx-consol e">
<aut henti cati on>
<l ogi n- nodul e
code="org.j boss. security. auth. spi . User sRol esLogi nMbdul e" flag="required">
<nmodul e- opti on
nanme="user sProperties">props/j mx-consol e-users. properties</nmodul e- opti on>
<nodul e- opti on
nanme="r ol esProperties">props/jnk-consol e-rol es. properti es</nodul e-opti on>
</ | ogi n- modul e>
</ aut henti cati on>
</ appl i cati on-policy>

The nane attribute of the appl i cati on- pol i cy is the login configuration name. Applications
policy elements will be bound by that name in JINDI under the the j ava: / j aas context.
Applications will link to security domains through this JNDI name in their deployment
descriptors. (See the securi ty- domai n elements in j boss. xni , j boss-web. xm and

j boss-service. xnl files for examples)

The code attribute of the | ogi n- nodul e element specifies the class name of the login module
implementation. The r equi r ed flag attribute controls the overall behavior of the authentication
stack. The allowed values and meanings are:

» required: The login module is required to succeed for the authentication to be successful. If
any required module fails, the authentication will fail. The remaining login modules in the
stack will be called regardless of the outcome of the authentication.

* requisite: The login module is required to succeed. If it succeeds, authentication continues
down the login stack. If it fails, control immediately returns to the application.

« sufficient: The login module is not required to succeed. If it does succeed, control
immediately returns to the application. If it fails, authentication continues down the login stack.

« optional: The login module is not required to succeed. Authentication still continues to

245

Chapter 9. Security on JBoss

proceed down the login stack regardless of whether the login module succeeds or fails.

The following example shows the definition of a security domain that uses multiple login
modules. Since both modules are marked as sufficient, only one of them need to succeed for
login to proceed.

<application-policy name="todo">
<aut henti cati on>
<l ogi n- nodul e code="org.jboss. security. auth. spi.LdapLogi nModul e"
flag="sufficient">
<l-- LDAP configuration -->
</ | ogi n- modul e>
<l ogi n- modul e
code="org. j boss. security. auth. spi . Dat abaseSer ver Logi nModul e"
flag="sufficient">
<!-- database configuration -->
</ | ogi n- modul e>
</ aut henti cati on>
</ application-policy>

Each login module has its own set of configuration options. These are set as name/value pairs
using the nodul e- opt i on elements. We'll cover module options in more depth when we look at
the individual login modules available in JBoss AS.

5.1. Loading Security Domains

Authentication security domains are configured statically in the conf /| ogi n- confi g. xn file.
The XM_Logi nConfi g MBean is responsible for loading security configurations from this
configurations from a local configuration file. The MBean is defined as shown below.

<mbean code="org.jboss. security.auth.| ogi n. XM_Logi nConfi g"
nane="j boss. security: servi ce=XM_Logi nConfi g">
<attri bute nanme="Confi gResource">l ogi n-confi g. xml </ attri bute>
</ mbean>

The MBean supports the following attributes:

» ConfigURL: specifies the URL of the XML login configuration file that should be loaded by
this MBean on startup. This must be a valid URL string representation.

« ConfigResource: specifies the resource name of the XML login configuration file that should
be loaded by this MBean on startup. The name is treated as a classpath resource for which a
URL is located using the thread context class loader.

» ValidateDTD: a flag indicating if the XML configuration should be validated against its DTD.
This defaults to true.

246

Loading Security Domains

The MBean also supports the following operations that allow one to dynamically extend the
login configurations at runtime. Note that any operation that attempts to alter login configuration
requires a j avax. security. aut h. Aut hPer m ssi on("refreshLogi nConfi guration") when
running with a security manager. The or g. j boss. book. security. service. SecurityConfig
service demonstrates how this can be used to add/remove a deployment specific security
configuration dynamically.

e void addAppConfi g(String appNane, AppConfigurationEntry[] entries):this adds
the given login module configuration stack to the current configuration under the given
appNane. This replaces any existing entry under that name.

» void renoveAppConfig(String appNane): this removes the login module configuration
registered under the given appNane.

e String[] loadConfig(URL configURL) throws Excepti on: thisloads one or more login
configurations from a URL representing either an XML or legacy Sun login configuration file.
Note that all login configurations must be added or none will be added. It returns the names of
the login configurations that were added.

e void renoveConfigs(String[] appNanes): this removes the login configurations specified
appNanes array.

e String displayAppConfig(String appNane) : this operation displays a simple string format
of the named configuration if it exists.

The SecurityConfi g MBean is responsible for selecting the
javax. security. auth. | ogi n. Confi gurati on to be used. The default configuration simply
references the XM_Logi nConfi g MBean.

<mbean code="org. | boss. security.plugins. SecurityConfig"
nanme="j boss. security: servi ce=SecurityConfig">
<attribute
name="Logi nConfi g" >j boss. security: servi ce=XM_Logi nConfi g</attribute>
</ mbean>

There is one configurable attribute:

* LoginConfig: Specifies the JIMX Obj ect Nane string of the MBean that provides the default
JAAS login configuration. When the Securi t yConfi g is started, this MBean is queried for its
javax. security. aut h. | ogi n. Confi gurati on by calling its
get Confi gur ati on(Confi guration current Config) operation. If the Logi nConfi g
attribute is not specified then the default Sun Confi gur ati on implementation described in the
Confi gur ati on class JavaDocs is used.

In addition to allowing for a custom JAAS login configuration implementation, this service allows
configurations to be chained together in a stack at runtime. This allows one to push a login

247

Chapter 9. Security on JBoss

configuration onto the stack and latter pop it. This is a feature used by the security unit tests to

install custom login configurations into a default JBoss installation. Pushing a new configuration

is done using:

public void pushLogi nConfig(String objectName) throws
JMExcept i on, Mal f or nedCbj ect NaneExcepti on;

The obj ect Name parameters specifies an MBean similar to the Logi nConf i g attribute. The
current login configuration may be removed using:

public void popLogi nConfig() throws JMExcepti on;

5.2. The DynamicLoginConfig service

Security domains defined in the | ogi n-confi g. xnl file are essentially static. They are read
when JBoss starts up, but there is no easy way to add a new security domain or change the
definition for an existing one. The Dynani cLogi nConf i g service allows you to dynamically
deploy security domains. This allows you to specify JAAS login configuration as part of a
deployment (or just as a standalone service) rather than having to edit the static

| ogi n-config. xnl file.

The service supports the following attributes:
* AuthConfig: The resource path to the JAAS login configuration file to use. This defaults to
| ogi n-config. xm

« LoginConfigService: the XM_Logi nConf i g service name to use for loading. This service
must support a St ri ng | oadConfi g(URL) operation to load the configurations.

» SecurityManagerService: The Securit yManager Ser vi ce name used to flush the registered

security domains. This service must support a f | ushAut henti cati onCache(Stri ng)

operation to flush the case for the argument security domain. Setting this triggers the flush of

the authentication caches when the service is stopped.

Here is an example MBean definition using the Dynamni cLogi nConf i g service.

<server>
<nmbean code="org.jboss. security.auth. | ogin. Dynam cLogi nConfi g"
name="...">
<attribute nane="Aut hConfi g">l ogi n-confi g.xm </attri bute>

<l-- The service which supports dynam c processi ng of
| ogi n-config. xm
configurati ons.
e
<depends optional -attri bute-nane="Logi nConfi gService">
j boss. security:servi ce=XM.Logi nConfi g </ depends>

248

Using JBoss Login Modules

<I-- Optionally specify the security ngr service to use when
this service is stopped to flush the auth caches of the donains
regi stered by this service.
—e
<depends optional -attri bute-nane="SecurityManager Servi ce">
j boss. security: servi ce=JaasSecurityManager </depends>
</ nbean>
</ server>

This will load the specified Aut hConf i g resource using the specified Logi nConf i gSer vi ce
MBean by invoking | oadConf i g with the appropriate resource URL. When the service is
stopped the configurations are removed. The resource specified may be either an XML file, or a
Sun JAAS login configuration.

5.3. Using JBoss Login Modules

JBoss includes several bundled login modules suitable for most user management needs.
JBoss can read user information from a relational database, an LDAP server or flat files. In
addition to these core login modules, JBoss provides several other login modules that provide
user information for very customized needs in JBoss. Before we explore the individual login
modules, let's take a look at a few login module configuration options that are common to
multiple modules.

5.3.1. Password Stacking

Multiple login modules can be chained together in a stack, with each login module providing
both the authentication and authorization components. This works for many use cases, but
sometimes authentication and authorization are split across multiple user management stores.
A previous example showed how to combine LDAP and a relational database, allowing a user
to be authenticated by either system. However, consider the case where users are managed in
a central LDAP server but application-specific roles are stored in the application's relational
database. The password-stacking module option captures this relationship.

e password-stacking: When passwor d- st acki ng option is set to useFi r st Pass, this module
first looks for a shared username and password under the property names
javax.security.auth.login.name andj avax. security. aut h. | ogi n. password
respectively in the login module shared state map. If found these are used as the principal
name and password. If not found the principal name and password are set by this login
module and stored under the property names j avax. securi ty. aut h. | ogi n. name and
j avax. security. aut h. | ogi n. passwor d respectively.

To use password stacking, each login module should set passwor d- st acki ng to

useFi r st Pass. If a previous module configured for password stacking has authenticated the
user, all the other stacking modules will consider the user authenticated and only attempt to
provide a set of roles for the authorization step.

249

Chapter 9. Security on JBoss

The following listing shows how password stacking could be used:

<appl i cation-policy name="todo">
<aut henti cati on>
<l ogi n- nodul e code="org. j boss. security. auth. spi . LdapLogi nModul e"
flag="required">
<!-- LDAP configuration -->
<nodul e- opti on
nanme="passwor d- st acki ng" >useFi r st Pass</ nodul e- opti on>
</ | ogi n- modul e>
<l ogi n- modul e
code="org. j boss. security. auth. spi . Dat abaseSer ver Logi nModul e"
flag="required">
<!-- database configuration -->
<modul e- opti on
nanme="passwor d- st acki ng" >useFi r st Pass</ nodul e- opti on>
</ | ogi n- modul e>
</ aut henti cati on>
</ appl i cati on-policy>

When using password stacking, it is usually appropriate to set all modules to be required to
make sure that all modules are considered and have chance to contribute roles to the
authorization process.

5.3.2. Password Hashing

Most of the login modules need to compare a client-supplied password to a password stored in
a user management system. These modules generally work with plain text passwords, but can
also be configured to support hashed passwords to prevent plain text passwords from being
stored on the server side.

* hashAlgorithm: The name of the j ava. security. MessageDi gest algorithm to use to hash
the password. There is no default so this option must be specified to enable hashing. Typical
values are MD5 and SHA.

* hashEncoding: The string format for the hashed pass and must be either base64, hex or
rfc2617. The default is base64.

« hashCharset: The encoding used to convert the clear text password to a byte array. The
platform default encoding is the default.

« hashUserPassword: This indicates that the hashing algorithm should be applied to the
password the user submits. The hashed user password will be compared against the value in
the login module, which is expected to be a hash of the password. The default is true.

« hashStorePassword: This indicates that the hashing algorithm should be applied to the
password stored on the server side. This is used for digest authentication where the user
submits a hash of the user password along with a request-specific tokens from the server to
be comare. JBoss uses the hash algorithm (for digest, this would be r f c2617) to compute a

250

Using JBoss Login Modules

server-side hash that should match the hashed value sent from the client.

The following is an login module configuration that assigns unauthenticated users the principal
name nobody and contains based64-encoded, MD5 hashes of the passwords in a
usersh64. properti es file.

<pol i cy>
<appl i cati on-pol i cy name="t est User sRol es" >
<aut henti cati on>
<l ogi n- modul e
code="org. j boss. security. auth. spi . User sRol esLogi nModul e"
flag="required">
<nmodul e- opti on name="hashAl gori t hni' >MD5</ nodul e- opt i on>
<nmodul e- opti on name="hashEncodi ng" >base64</ nodul e- opti on>
</ | ogi n- nodul e>
</ aut henti cati on>
</ appl i cati on-policy>
</ policy>

If you need to generate passwords in code, t he org. j boss. security. Util class provides a
static helper method that will hash a password using a given encoding.

String hashedPassword = Util . creat ePasswor dHash(" MD5",
Util.BASE64_ENCODI NG
nul |,
nul I,

"password");

OpenSSL provides an alternative way to quickly generate hashed passwords.

echo -n password | openssl dgst -md5 -binary | openssl base64

In both cases, the text password should hash to "X03MO1gnZdYdgyfeulLPmQ==". This is the
value that would need to be stored in the user store.

5.3.3. Unauthenticated ldentity

Not all requests come in authenticated. The unauthenticated identity is a login module
configuration option that assigns a specific identity (guest, for example) to requests that are
made with no associated authentication information. This can be used to allow unprotected
servlets to invoke methods on EJBs that do not require a specific role. Such a principal has no
associated roles and so can only access either unsecured EJBs or EJB methods that are
associated with the unchecked permission constraint.

« unauthenticatedldentity: This defines the principal name that should be assigned to
requests that contain no authentication information.

251

Chapter 9. Security on JBoss

5.3.4. UsersRolesLoginModule

The User sRol esLogi nModul e is a simple login module that supports multiple users and user
roles loaded from Java properties files. The username-to-password mapping file is called
users. properties and the username-to-roles mapping file is called r ol es. properties. The
properties files are loaded during initialization using the initialize method thread context class
loader. This means that these files can be placed into the J2EE deployment JAR, the JBoss
configuration directory, or any directory on the JBoss server or system classpath. The primary
purpose of this login module is to easily test the security settings of multiple users and roles
using properties files deployed with the application.

The users. properti es file uses a user nane=passwor d format with each user entry on a
separate line as show here:

user nanel=passwor dl
user nane2=passwor d2

The rol es. properti es file uses as user nane=rol e1, rol €2, ... format with an optional group
name value. For example:

usernanel=rol el,rol ez, ...
user nanel. Rol eGroupl=rol e3,rol e4, ...
user nane2=rol el, rol e3, . ..

The user nane. XXX form of property name is used to assign the username roles to a particular
named group of roles where the XXX portion of the property name is the group name. The

user nanme=. .. form is an abbreviation for user nane. Rol es=. . . , where the Rol es group name
is the standard name the JaasSecuri t yManager expects to contain the roles which define the
users permissions.

The following would be equivalent definitions for the j duke username:

j duke=TheDuke, Ani nat edChar act er
j duke. Rol es=TheDuke, Ani mat edChar act er

The supported login module configuration options include the following:

« usersProperties: The name of the properties resource containing the username to password
mappings. This defaults to users. properti es.
» rolesProperties: The name of the properties resource containing the username to roles

mappings. This defaults to r ol es. properti es.

This login module supports password stacking, password hashing and unauthenticated identity.

252

Using JBoss Login Modules

5.3.5. LdapLoginModule

The LdapLogi nMbdul e is a Logi nMbdul e implementation that authenticates against an LDAP
server. You would use the LdapLogi nMbdul e if your username and credentials are stored in an
LDAP server that is accessible using a JNDI LDAP provider.

The LDAP connectivity information is provided as configuration options that are passed through
to the environment object used to create JNDI initial context. The standard LDAP JNDI
properties used include the following:

e java.naming.factory.initial: The classname of the I ni ti al Cont ext Fact ory implementation.
This defaults to the Sun LDAP provider implementation
com sun. j ndi .| dap. LdapCt xFactory.

e java.naming.provider.url: The LDAP URL for the LDAP server
e java.naming.security.authentication: The security level to use. This defaults to si npl e.

e java.naming.security.protocol: The transport protocol to use for secure access, such as,
SSL.

e java.naming.security.principal: The principal for authenticating the caller to the service.
This is built from other properties as described below.

e java.naming.security.credentials: The value of the property depends on the authentication
scheme. For example, it could be a hashed password, clear-text password, key, certificate,
and so on.

The supported login module configuration options include the following:

e principalDNPrefix: A prefix to add to the username to form the user distinguished name. See
pri nci pal DNSuf f i x for more info.

* principalDNSuffix: A suffix to add to the username when forming the user distinguished
name. This is useful if you prompt a user for a username and you don't want the user to have
to enter the fully distinguished name. Using this property and pri nci pal DNSuf f i x the user DN
will be formed as pri nci pal DNPrefi x + username + princi pal DNSuf fi x

» useObjectCredential: A true/false value that indicates that the credential should be obtained
as an opaque Obj ect using the org. j boss. security. auth. cal | back. Qbj ect Cal | back
type of Cal | back rather than as a char[] password using a JAAS Passwor dCal | back. This
allows for passing non-char[] credential information to the LDAP server.

« rolesCtxDN: The fixed distinguished name to the context to search for user roles.

» userRolesCtxDNAttributeName: The name of an attribute in the user object that contains
the distinguished name to the context to search for user roles. This differs from r ol esCt xDN
in that the context to search for a user's roles can be unique for each user.

253

Chapter 9. Security on JBoss

« roleAttributelD: The name of the attribute that contains the user roles. If not specified this
defaults to r ol es.

» roleAttributelsDN: A flag indicating whether the r ol eAt t ri but el D contains the fully
distinguished name of a role object, or the role name. If false, the role name is taken from the
value of rol eAt t ri but el D. If true, the role attribute represents the distinguished name of a
role object. The role name is taken from the value of the r ol eNaneAt t ri but el d attribute of
the context name by the distinguished name. In certain directory schemas (e.g., MS
ActiveDirectory), role attributes in the user object are stored as DNs to role objects instead of
as simple names, in which case, this property should be set to true. The default is false.

« roleNameAttributelD: The name of the attribute of the context pointed to by the r ol eCt xDN
distinguished name value which contains the role name. If the r ol eAt t ri but el sDN property
is set to true, this property is used to find the role object's name attribute. The default is

gr oup.

« uidAttributelD: The name of the attribute in the object containing the user roles that
corresponds to the userid. This is used to locate the user roles. If not specified this defaults to
ui d.

« matchOnUserDN: A true/false flag indicating if the search for user roles should match on the
user's fully distinguished name. If false, just the username is used as the match value against
the ui dAt t ri but eNane attribute. If true, the full user DN is used as the match value.

« unauthenticatedldentity: The principal name that should be assigned to requests that
contain no authentication information. This behavior is inherited from the
User nanePasswor dLogi nMbdul e superclass.

« allowEmptyPasswords: A flag indicating if empty (length 0) passwords should be passed to
the LDAP server. An empty password is treated as an anonymous login by some LDAP
servers and this may not be a desirable feature. Set this to false to reject empty passwords or
true to have the LDAP server validate the empty password. The default is true.

The authentication of a user is performed by connecting to the LDAP server based on the login
module configuration options. Connecting to the LDAP server is done by creating an

I nitial LdapCont ext with an environment composed of the LDAP JNDI properties described
previously in this section. The Cont ext . SECURI TY_PRI NCI PAL is set to the distinguished name
of the user as obtained by the callback handler in combination with the pri nci pal DNPr ef i x
and pri nci pal DNSuf f i x option values, and the Cont ext . SECURI TY_CREDENTI ALS property is
either set to the St ri ng password or the Obj ect credential depending on the

useCbj ect Credenti al option.

Once authentication has succeeded by virtue of being able to create an | ni ti al LdapCont ext
instance, the user's roles are queried by performing a search on the r ol esCt xDN location with
search attributes set to the r ol eAt t ri but eNane and ui dAt t ri but eNane option values. The
roles names are obtaining by invoking the t oSt ri ng method on the role attributes in the search
result set.

254

Using JBoss Login Modules

The following is a sample | ogi n-confi g. xml entry.

<appl i cati on-policy nane="t est LDAP">
<aut henti cati on>
<l ogi n- rodul e code="org.j boss. security. auth. spi . LdapLogi nModul e"

</ modul e- opti on>
</ | ogi n- nodul e>

</ aut henti cati on>

</ appli cati on-policy>

flag="required">
<nmodul e- opti on name="j ava. nani ng.factory.initial">
com sun. j ndi . | dap. LdapCt xFact ory
</ modul e- opti on>
<nodul e- opti on name="j ava. nam ng. provi der.url">
| dap: / /| daphost . j boss. org: 1389/
</ nodul e- opti on>
<nmodul e- opti on name="j ava. nam ng. security. aut henticati on">
si npl e
</ modul e- opti on>
<nmodul e- opti on name="pri nci pal DNPr ef i x" >ui d=</ nodul e- opti on>
<nodul e- opti on name="pri nci pal DNSuf fi x" >
, ou=Peopl e, dc=j boss, dc=org
</ modul e- opti on>

<nmodul e- opti on name="r ol esCt xDN' >
ou=Rol es, dc=j boss, dc=org
</ modul e- opti on>
<nodul e- opti on name="ui dAttri but el D' >menber </ nodul e- opti on>
<nmodul e- opti on name="mat chOnUser DN' >t r ue</ nodul e- opt i on>

<nodul e- opti on name="rol eAttri butel D'>cn</ nodul e- opti on>
<nmodul e- opti on name="rol eAttri but el sSDN'>f al se

An LDIF file representing the structure of the directory this data operates against is shown

below.

dn

dc:

dc=j boss, dc=org
obj ect cl ass:
obj ect cl ass:
obj ect cl ass:

j boss

o: JBoss

dn:

ou:

dn:

ui d:
cn:

t op

dcObj ect

org

ani zati on

ou=Peopl e, dc=j boss, dc=org
obj ect cl ass:
obj ect cl ass:

Peopl e

t op
org

ani zat i onal Uni t

ui d=j duke, ou=Peopl e, dc=j boss, dc=or g
obj ect cl ass:
obj ect cl ass:
obj ect cl ass:

j duke
Java Duke

top
uid
per

hj ect
son

255

Chapter 9. Security on JBoss

sn: Duke
user Password: theduke

dn: ou=Rol es, dc=j boss, dc=org
obj ectcl ass: top

obj ectcl ass: organi zati onal Uni t
ou: Rol es

dn: cn=JBossAdmni n, ou=Rol es, dc=j boss, dc=org
obj ectcl ass: top

obj ectcl ass: groupO Nanes

cn: JBossAdmin

menber: ui d=j duke, ou=Peopl e, dc=j boss, dc=or g
description: the JBossAdm n group

Looking back at the t est LDAP login module configuration, the j ava. nami ng. factory.initial,
java. naming.factory.url andjava. nani ng. security options indicate the Sun LDAP JNDI
provider implementation will be used, the LDAP server is located on host | daphost . j boss. org
on port 1389, and that the LDAP simple authentication method will be use to connect to the
LDAP server.

The login module attempts to connect to the LDAP server using a DN representing the user it is
trying to authenticate. This DN is constructed from the pri nci pal DNPr ef i x, passed in, the
username of the user and the pri nci pal DNSuf f i x as described above. In this example, the
username j duke would map to ui d=j duke, ou=Peopl e, dc=j boss, dc=or g. We've assumed the
LDAP server authenticates users using the user Passwor d attribute of the user's entry (t heduke
in this example). This is the way most LDAP servers work, however, if your LDAP server
handles authentication differently you will need to set the authentication credentials in a way
that makes sense for your server.

Once authentication succeeds, the roles on which authorization will be based are retrieved by
performing a subtree search of the r ol esCt xDN for entries whose ui dAt t ri but el D match the
user. If mat chOnUser DN is true the search will be based on the full DN of the user. Otherwise the
search will be based on the actual user name entered. In this example, the search is under
ou=Rol es, dc=j boss, dc=or g for any entries that have a nenber attribute equal to

ui d=j duke, ou=Peopl e, dc=j boss, dc=or g. The search would locate cn=JBossAdni n under the
roles entry.

The search returns the attribute specified in the r ol eAt t ri but el D option. In this example, the
attribute is cn. The value returned would be JBossAdni n, so the jduke user is assigned to the
JBossAdmi n role.

It's often the case that a local LDAP server provides identity and authentication services but is
unable to use the authorization services. This is because application roles don't always map
well onto LDAP groups, and LDAP administrators are often hesitant to allow external
application-specific data in central LDAP servers. For this reason, the LDAP authentication
module is often paired with another login module, such as the database login module, that can
provide roles more suitable to the application being developed.

256

Using JBoss Login Modules

This login module also supports unauthenticated identity and password stacking.
5.3.6. DatabaseServerLoginModule

The Dat abaseSer ver Logi nModul e is a JDBC based login module that supports authentication
and role mapping. You would use this login module if you have your username, password and
role information relational database. The Dat abaseSer ver Logi nMbdul e is based on two logical
tables:

Tabl e Principal s(PrincipallD text, Password text)
Tabl e Rol es(Principall D text, Role text, Rol eGoup text)

The Pri nci pal s table associates the user Pri nci pal | Dwith the valid password and the Rol es
table associates the user Pri nci pal | Dwith its role sets. The roles used for user permissions
must be contained in rows with a Rol eG oup column value of Rol es. The tables are logical in
that you can specify the SQL query that the login module uses. All that is required is that the
java. sql . Resul t Set has the same logical structure as the Pri nci pal s and Rol es tables
described previously. The actual names of the tables and columns are not relevant as the
results are accessed based on the column index. To clarify this notion, consider a database with
two tables, Pri nci pal s and Rol es, as already declared. The following statements build the
tables to contain a Pri nci pal | O ava with a Passwor d of echoman in the Pri nci pal s table, a
Pri nci pal | Dj ava with a role named Echo in the Rol esRol eGr oup in the Rol es table, and a
Pri nci pal | Oj ava with a role named cal | er _j ava in the Cal | er Pri nci pal Rol eG oup in the
Rol es table:

I NSERT | NTO Princi pals VALUES('java', 'echoman')
| NSERT | NTO Rol es VALUES('java', 'Echo', 'Roles')
| NSERT | NTO Rol es VALUES('java', 'caller_java', 'CallerPrincipal')

The supported login module configuration options include the following:

« dsJndiName: The JNDI name for the Dat aSour ce of the database containing the logical
Princi pal s and Rol es tables. If not specified this defaults to j ava: / Def aul t DS.

e principalsQuery: The prepared statement query equivalent to: sel ect Password from
Princi pal s where Principal | D=2. If not specified this is the exact prepared statement that
will be used.

» rolesQuery: The prepared statement query equivalent to: sel ect Role, Rol eGoup from
Rol es where Principal | D=2. If not specified this is the exact prepared statement that will
be used.

* ignorePasswordCase: A boolean flag indicating if the password comparison should ignore
case. This can be useful for hashed password encoding where the case of the hashed
password is not significant.

257

Chapter 9. Security on JBoss

« principalClass: An option that specifies a Pri nci pal implementation class. This must
support a constructor taking a string argument for the principal name.

As an example Dat abaseSer ver Logi nMbdul e configuration, consider a custom table schema
like the following:

CREATE TABLE User s(user name VARCHAR(64) PRI MARY KEY, passwd VARCHAR(64))
CREATE TABLE User Rol es(user name VARCHAR(64), userRol es VARCHAR(32))

A corresponding | ogi n- confi g. xnl entry would be:

<pol i cy>
<appl i cati on-pol i cy nanme="t est DB" >
<aut henti cati on>
<l ogi n- mrodul e
code="org. j boss. security. auth. spi . Dat abaseSer ver Logi nModul e"
flag="required">
<nmodul e- opti on
nanme="dsJndi Nane" >j ava: / MyDat abaseDS</ nodul e- opti on>
<nmodul e- opti on name="pri nci pal sQuery" >
sel ect passwd from Users username where
user nane=?</ nodul e- opti on>
<modul e- opti on name="r ol esQuery" >
sel ect userRoles, 'Roles' from UserRol es where
user nane=2?</ nodul e- opti on>
</l ogi n- nodul e>
</ aut henti cati on>
</ appl i cati on-policy>
</ policy>

This module supports password stacking, password hashing and unathenticated identity.

5.3.7. BaseCertLoginModule

This is a login module which authenticates users based on X509 certificates. A typical use case
for this login module is CLI ENT- CERT authentication in the web tier. This login module only
performs authentication. You need to combine it with another login module capable of acquiring
the authorization roles to completely define access to a secured web or EJB component. Two
subclasses of this login module, Cer t Rol esLogi nModul e and Dat abaseCert Logi nModul e
extend the behavior to obtain the authorization roles from either a properties file or database.

The BaseCert Logi nMbdul e needs a KeySt or e to perform user validation. This is obtained
through a or g. j boss. security. SecurityDomai n implementation. Typically, the

Securi t yDonai n implementation is configured using the

org.jboss.security. plugins. JaasSecurit yDomai n MBean as shown in this

j boss-servi ce. xnl configuration fragment:

<nmbean code="org.jboss. security. plugins. JaasSecurityDomai n"
nane="j boss. ch8: servi ce=Securi t yDomai n" >

258

Using JBoss Login Modules

<construct or >
<arg type="java.lang. String" val ue="j nx-consol e"/>
</ constructor>
<attribute nanme="KeySt oreURL" >r esour ce: | ocal host . keystore</attri but e>
<attribute name="KeySt orePass">unit-tests-server</attribute>
</ mbean>

This creates a security domain with the name j nx- consol e whose Securi t yDonai n
implementation is available via JNDI under the name j ava: / j aas/ j nx- consol e following the
JB0ossSX security domain naming pattern. To secure a web application such as the

j mx- consol e. war using client certs and role based authorization, one would first modify the
web. xm to declare the resources to be secured, along with the allowed roles and security
domain to be used for authentication and authorization.

<?xm version="1.0"?>

<! DOCTYPE web- app PUBLI C
"-//Sun M crosystens, Inc.//DTD Wb Application 2.3//EN'
"http://java. sun. com dt d/ web-app_2_3.dtd">

<web- app>

<security-constraint>
<web-r esour ce-col | ecti on>
<web- r esour ce- nane>Ht m Adapt or </ web- r esour ce- nane>
<descri pti on>An exanpl e security config that only allows users

the role JBossAdmin to access the HTM. JMX consol e web
appl i cation </description>
<url -pattern>/*</url -pattern>
<ht t p- met hod>GET</ ht t p- met hod>
<ht t p- met hod>POST</ ht t p- met hod>
</ web-resour ce-col | ecti on>
<aut h- const r ai nt >
<r ol e- nane>JBossAdm n</r ol e- nane>
</ aut h- constrai nt >
</ security-constraint>
<l ogi n- confi g>
<aut h- met hod>CL| ENT- CERT</ aut h- met hod>
<r eal m nane>JBoss JMX Consol e</real m nane>
</l ogi n- confi g>
<security-rol e>
<r ol e- nane>JBossAdmi n</r ol e- nane>
</security-rol e>
</ web- app>

Next we, need to specify the JBoss security domain in j boss-web. xni ;

<j boss- web>
<security-donai n>j ava: /j aas/j mx- consol e</ security-donmai n>
</ j boss- web>

259

Chapter 9. Security on JBoss

Finally, you need to define the login module configuration for the jmx-console security domain
you just specified. This is done in the conf /| ogi n- confi g. xm file.

<appl i cation-policy name="j nx-consol e">
<aut henti cati on>
<l ogi n- nodul e code="org.j boss. security. auth. spi.BaseCert Logi nMdul e"
flag="required">
<nmodul e- opti on
name="passwor d- st acki ng" >useFi r st Pass</ nodul e- opti on>
<modul e- opti on
nanme="securityDomai n">j ava: / j aas/ j nx- consol e</ nodul e- opti on>
</ | ogi n- modul e>
<l ogi n- modul e
code="org. j boss. security. auth. spi . User sRol esLogi nModul e"
flag="required">
<nodul e- opti on
nane="passwor d- st acki ng" >useFi r st Pass</ nodul e- opti on>
<modul e- opti on
name="user sProperties">j nx-consol e-users. properti es</ nodul e- opti on>
<nmodul e- opti on
nane="r ol esProperti es">j nx-consol e-rol es. properti es</ nodul e- opti on>
</l ogi n- nodul e>
</ aut henti cati on>
</ appl i cati on-policy>

Here the BaseCert Logi nModul e is used for authentication of the client cert, and the

User sRol esLogi nMbdul e is only used for authorization due to the

passwor d- st acki ng=useFi r st Pass option. Both the | ocal host . keyst or e and the

j mx- consol e-rol es. properties need an entry that maps to the principal associated with the
client cert. By default, the principal is created using the client certificate distinguished name.
Consider the following certificate:

[st ar ksm@anshee9100 conf]$ keytool -printcert -file
unit-tests-client.export
Onner: CN=unit-tests-client, OU=JBoss Inc., O=JBoss Inc., ST=Washi ngton
C=USs
| ssuer: CN=j boss.com C=US, ST=Washi ngton, L=Snoqual m e Pass,
EMAI LADDRESS=admi n
@ boss. com OUFEQA, O=JBoss Inc.
Serial nunber: 100103
Valid from Wed May 26 07:34:34 PDT 2004 until: Thu May 26 07:34:34 PDT 2005
Certificate fingerprints:
MD5: 4A: 9C: 2B: CD: 1B: 50: AA: 85: DD: 89: F6: 1D: F5: AF: 9E: AB
SHALl: DE: DE: 86: 59: 05: 6C: 00: E8: CC. C0: 16: D3: C2: 68: BF: 95: B8: 83: E9: 58

The | ocal host . keyst or e would need this cert stored with an alias of CN=uni t -t est s-cl i ent,
QU=JBoss Inc., O=JBoss Inc., ST=Washington, C=US and the

j mx-consol e-rol es. properties would also need an entry for the same entry. Since the DN
contains many characters that are normally treated as delimiters, you will need to escape the
problem characters using a backslash (\) as shown here:

260

Using JBoss Login Modules

A sanple roles.properties file for use with the UsersRol esLogi nMbdul e
CN\=unit-tests-client,\ OAN=JBoss\ Inc.,\ O=JBoss\ Inc.,\ ST\=Washi ngton,\
Q\ =US=JBossAdmi n

adm n=JBossAdni n

5.3.8. IdentityLoginModule

The I denti t yLogi nMbdul e is a simple login module that associates a hard-coded user name a
to any subject authenticated against the module. It creates a Si npl ePri nci pal instance using
the name specified by the pri nci pal option. This login module is useful when you need to
provide a fixed identity to a service and in development environments when you want to test the
security associated with a given principal and associated roles.

The supported login module configuration options include:

» principal: This is the name to use for the Si npl ePri nci pal all users are authenticated as.
The principal name defaults to guest if no principal option is specified.

« roles: This is a comma-delimited list of roles that will be assigned to the user.

A sample XMLLoginConfig configuration entry that would authenticate all users as the principal
named j duke and assign role names of TheDuke, and Ani nat edChar act er is:

<pol i cy>
<appl i cation-policy name="testldentity">
<aut henti cati on>
<l ogi n- nodul e
code="org.j boss. security. auth. spi.ldentityLogi nModul e"
flag="required">
<nmodul e- opti on name="pri nci pal " >j duke</ nodul e- opti on>
<nodul e- opti on
name="r ol es" >TheDuke, Ani mat edChar at er </ nodul e- opti on>
</ | ogi n- modul e>
</ aut henti cati on>
</ appl i cati on-policy>
</ pol i cy>

This module supports password stacking.

5.3.9. RunAsLoginModule

JBoss has a helper login module called RunAsLogi nMbdul e that pushes a run as role for the
duration of the login phase of authentication, and pops the run as role in either the commit or
abort phase. The purpose of this login module is to provide a role for other login modules that
need to access secured resources in order to perform their authentication. An example would
be a login module that accesses an secured EJB. This login module must be configured ahead
of the login module(s) that need a run as role established.

261

Chapter 9. Security on JBoss

The only login module configuration option is:

« roleName: the name of the role to use as the run as role during login phase. If not specified a
default of nobody is used.

5.3.10. ClientLoginModule

The d i ent Logi nModul e is an implementation of Logi nMbdul e for use by JBoss clients for the
establishment of the caller identity and credentials. This simply sets the

org.jboss.security. SecurityAssoci ation. princi pal to the value of the NaneCal | back
filled in by the cal | backhandl er, and the

org.jboss.security. SecurityAssoci ation. credential to the value of the

Passwor dCal | back filled in by the cal | backhandl er . This is the only supported mechanism for
a client to establish the current thread's caller. Both stand-alone client applications and server
environments, acting as JBoss EJB clients where the security environment has not been
configured to use JBossSX transparently, need to use the C i ent Logi nModul e. Of course, you
could always set the or g. j boss. security. SecurityAssoci ati on information directly, but this
is considered an internal API that is subject to change without notice.

Note that this login module does not perform any authentication. It merely copies the login
information provided to it into the JBoss server EJB invocation layer for subsequent
authentication on the server. If you need to perform client-side authentication of users you
would need to configure another login module in addition to the O i ent Logi nvbdul e.

The supported login module configuration options include the following:

* multi-threaded: When the multi-threaded option is set to true, each login thread has its own
principal and credential storage. This is useful in client environments where multiple user
identities are active in separate threads. When true, each separate thread must perform its
own login. When set to false the login identity and credentials are global variables that apply
to all threads in the VM. The default for this option is false.

» password-stacking: When passwor d- st acki ng option is set to useFi r st Pass, this module
first looks for a shared username and password using j avax. securi ty. aut h. | ogi n. name
and j avax. security. aut h. | ogi n. passwor d respectively in the login module shared state
map. This allows a module configured prior to this one to establish a valid username and
password that should be passed to JBoss. You would use this option if you want to perform
client-side authentication of clients using some other login module such as the
LdapLogi nhvbdul e.

» restore-login-identity: When rest or e- | ogi n-i denti ty is true, the Securi t yAssoci ati on
principal and credential seen on entry to the | ogi n() method are saved and restored on
either abort or logout. When false (the default), the abort and logout simply clear the
SecurityAssoci ation. Arestore-1ogin-identity of true is needed if one need to change
identities and then restore the original caller identity.

262

Writing Custom Login Modules

A sample login configuration for d i ent Logi nModul e is the default configuration entry found in
the JBoss distribution cl i ent / aut h. conf file. The configuration is:

ot her {
[/ Put your |ogin nodules that work w thout jBoss here

/1 jBoss Logi nMbdul e
org.j boss. security. dientlLogi nMbdul e required;

// Put your |ogin npbdul es that need jBoss here

b

5.4. Writing Custom Login Modules

If the login modules bundled with the JBossSX framework do not work with your security
environment, you can write your own custom login module implementation that does. Recall
from the section on the JaasSecuri t yManager architecture that the JaasSecurit yManager
expected a particular usage pattern of the Subj ect principals set. You need to understand the
JAAS Subject class's information storage features and the expected usage of these features to
be able to write a login module that works with the JaasSecuri t yManager . This section
examines this requirement and introduces two abstract base Logi nMbdul e implementations that
can help you implement your own custom login modules.

You can obtain security information associated with a Subj ect in six ways in JBoss using the
following methods:

java. util.Set getPrincipals()

java.util.Set getPrincipal s(java.lang.d ass c¢)

java. util.Set getPrivateCredential s()

java. util.Set getPrivateCredential s(java.lang.C ass c)
java. util.Set getPublicCredential s()

java.util.Set getPublicCredential s(java.lang.d ass c)

For Subj ect identities and roles, JBossSX has selected the most natural choice: the principals
sets obtained via get Pri nci pal s() and get Pri nci pal s(j ava. | ang. C ass) . The usage
pattern is as follows:

« User identities (username, social security number, employee ID, and so on) are stored as
java. security. Principal objectsinthe Subj ect Pri nci pal s set. The Pri nci pal
implementation that represents the user identity must base comparisons and equality on the
name of the principal. A suitable implementation is available as the
org.j boss. security. Sinpl ePrincipal class. Other Pri nci pal instances may be added to
the Subj ect Pri nci pal s set as needed.

» The assigned user roles are also stored in the Pri nci pal s set, but they are grouped in
named role sets using j ava. security. acl . G oup instances. The G oup interface defines a
collection of Pri nci pal s and/or Gr oups, and is a subinterface of j ava. security. Pri nci pal .

263

Chapter 9. Security on JBoss

Any number of role sets can be assigned to a Subj ect . Currently, the JBossSX framework
uses two well-known role sets with the names Rol es and Cal | er Pri nci pal . The Rol es
Group is the collection of Pri nci pal s for the named roles as known in the application domain
under which the Subj ect has been authenticated. This role set is used by methods like the
EJBCont ext . i sCal | er I nRol e(String), which EJBs can use to see if the current caller
belongs to the named application domain role. The security interceptor logic that performs
method permission checks also uses this role set. The Cal | er Pri nci pal G oup consists of
the single Pri nci pal identity assigned to the user in the application domain. The

EJBCont ext . get Cal | er Pri nci pal () method uses the Cal | er Pri nci pal to allow the
application domain to map from the operation environment identity to a user identity suitable
for the application. If a Subj ect does not have a Cal | er Pri nci pal G oup, the application
identity is the same as operational environment identity.

5.4.1. Support for the Subject Usage Pattern

To simplify correct implementation of the Subj ect usage patterns described in the preceding
section, JBossSX includes two abstract login modules that handle the population of the
authenticated Subj ect with a template pattern that enforces correct Subj ect usage. The most
generic of the two is the or g. j boss. securi ty. aut h. spi . Abst ract Ser ver Logi nMbdul e class.
It provides a concrete implementation of the j avax. security. aut h. spi . Logi nMbdul e
interface and offers abstract methods for the key tasks specific to an operation environment
security infrastructure. The key details of the class are highlighted in the following class
fragment. The JavaDoc comments detail the responsibilities of subclasses.

package org.j boss. security. auth. spi;

/**
* This class inplenents the common functionality required for a JAAS
* server-side Logi nMbdul e and i npl emrents the JBossSX standard
* Subj ect usage pattern of storing identities and rol es. Subcl ass
* this nodule to create your own custom Logi nMbdul e and override the
* login(), getRoleSets(), and getldentity() nethods.

public abstract class Abstract ServerLogi nMbdul e
i npl ements j avax. security. auth. spi . Logi nModul e

prot ected Subj ect subject;

prot ected Cal | backHandl er cal | backHandl er;
protected Map sharedSt at e;

protected Map opti ons;

prot ected Logger | og;

/** Flag indicating if the shared credential should be used */
prot ect ed bool ean useFi rst Pass;

/**

* Flag indicating if the |ogin phase succeeded. Subcl asses that
* override the login nmethod nmust set this to true on successful
* conpl etion of login

*/

prot ect ed bool ean | ogi nCk;

/1

264

Writing Custom Login Modules

* |nitialize the login nodule. This stores the subject,

* cal | backHandl er and sharedState and options for the |ogin

* session. Subcl asses should override if they need to process
* their own options. A call to super.initialize(...) nust be
* made in the case of an override.

* <p>
* The options are checked for the <enppassword-stacking</enr
par anet er .
* |f this is set to "useFirstPass", the login identity will be taken
fromthe
* <code>j avax. security. auth.| ogi n. name</ code> val ue of the sharedState
map,
* and the proof of identity fromthe
* <code>j avax. security. auth.| ogi n. passwor d</ code> val ue of the
sharedSt at e map.
*
* @param subj ect the Subject to update after a successful | ogin.
* @©par am cal | backHandl er the Cal | backHandl er that will be used to
obtain the
* the user identity and credenti al s.
* @aram sharedState a Map shared between all configured | ogin nodul e
i nst ances
* @©@aram options the paraneters passed to the | ogin nodul e.
*/
public void initialize(Subject subject,
Cal | backHandl er cal | backHandl er,
Map shar edSt at e,
Map options)

Il

* Looks for javax.security.auth.login.nane and

* javax.security.auth.login. password values in the sharedState
* map if the useFirstPass option was true and returns true if
* they exist. If they do not or are null this method returns

* fal se.

* Note that subclasses that override the | ogin nethod

* nust set the loginGCk var to true if the |login succeeds in

* order for the conmt phase to popul ate the Subject. This

* inplenentation sets logink to true if the |ogin() nethod

* returns true, otherwise, it sets loginCk to fal se.

publ i ¢ bool ean | ogi n()
t hrows Logi nExcepti on

/1

/**
* Overridden by subclasses to return the Principal that

* corresponds to the user primary identity.
*/

265

Chapter 9. Security on JBoss

abstract protected Principal getldentity();

* Overridden by subclasses to return the G oups that correspond
* tothe role sets assigned to the user. Subcl asses shoul d

* create at |least a Group naned "Rol es" that contains the roles
* assigned to the user. A second conmpn group is

* "CallerPrincipal," which provides the application identity of
* the user rather than the security domain identity.

* @eturn Goup[] containing the sets of roles
*/
abstract protected G oup[] getRol eSets() throws Logi nException

You'll need to pay attention to the | ogi nCk instance variable. This must be set to true if the login
succeeds, false otherwise by any subclasses that override the login method. Failure to set this
variable correctly will result in the commit method either not updating the subject when it should,
or updating the subject when it should not. Tracking the outcome of the login phase was added
to allow login modules to be chained together with control flags that do not require that the login
module succeed in order for the overall login to succeed.

The second abstract base login module suitable for custom login modules is the

org.j boss. security. auth. spi . User namePasswor dLogi nMobdul e. This login module further
simplifies custom login module implementation by enforcing a string-based username as the
user identity and a char [] password as the authentication credentials. It also supports the
mapping of anonymous users (indicated by a null username and password) to a principal with
no roles. The key details of the class are highlighted in the following class fragment. The
JavaDoc comments detail the responsibilities of subclasses.

package org.j boss. security. auth. spi;

/**

* An abstract subclass of Abstract ServerLogi nMbdul e that inposes a
* an identity == String usernanme, credentials == String password
* view on the | ogin process. Subclasses override the
* get UsersPassword() and getUsersRol es() nmethods to return the
* expected password and roles for the user.
*/
publi ¢ abstract class User nanePasswor dLogi nMbdul e
ext ends Abstract Server Logi nMbdul e

[** The login identity */

private Principal identity;

[** The proof of login identity */

private char[] credential;

[** The principal to use when a null usernanme and password are seen */
private Principal unauthenticatedl dentity;

/**

* The message di gest algorithmused to hash passwords. If null then
* plain passwords will be used. */

266

Writing Custom Login Modules

private String hashAl gorithm = null;

/**

*

The name of the charset/encoding to use when converting the

* password String to a byte array. Default is the platforms
* default encoding.

=
pri

/**

vate String hashCharset = null;

The string encoding fornat to use. Defaults to base64. */

private String hashEncoding = null;

I

publ

*/

Override the superclass nethod to | ook for an
unaut henti catedl dentity property. This nethod first invokes
t he super version.

@ar am opt i ons,

@ption unaut henticatedldentity: the nane of the principal to
assi gn and aut henticate when a null usernane and password are
seen.

ic void initialize(Subject subject,
Cal | backHandl er cal | backHandl er,
Map sharedSt at e,
Map options)

super.initialize(subject, callbackHandl er, sharedState,
options);
I/ Check for unauthenticatedl dentity option.
hj ect option = options. get("unauthenticatedldentity");
String name = (String) option;
if (nanme !'= null) {
unaut henti cat edl dentity = new Si npl ePri nci pal (nane) ;

}

A hook that allows subcl asses to change the validati on of the
i nput password agai nst the expected password. This version
checks that neither inputPassword or expectedPassword are null
and that inputPassword. equal s(expect edPassword) is true;

@eturn true if the inputPassword is valid, fal se otherw se.

prot ected bool ean val i dat ePassword(String i nput Passwor d,

{

String expect edPasswor d)

i f (inputPassword == null || expectedPassword == null) {
return fal se;

}

return inputPassword. equal s(expect edPasswor d) ;

267

Chapter 9. Security on JBoss

/**

* Get the expected password for the current usernanme avail abl e
* via the getUsernane() method. This is called fromw thin the
* login() nethod after the Call backHandl er has returned the

* usernane and candi date password.

*

* @eturn the valid password String
*/
abstract protected String getUsersPassword()
t hrows Logi nExcepti on;

The choice of subclassing the Abst r act Ser ver Logi nModul e versus

User nanePasswor dLogi nMbdul e is simply based on whether a string-based username and
credentials are usable for the authentication technology you are writing the login module for. If
the string-based semantic is valid, then subclass User namePasswor dLogi nMbdul e, otherwise
subclass Abst r act Ser ver Logi nMbdul e.

The steps you are required to perform when writing a custom login module are summarized in
the following depending on which base login module class you choose. When writing a custom
login module that integrates with your security infrastructure, you should start by subclassing
Abst r act Ser ver Logi nMbdul e or User namePasswor dLogi nMbdul e to ensure that your login
module provides the authenticated Pri nci pal information in the form expected by the JBossSX
security manager.

When subclassing the Abst r act Ser ver Logi nMbdul e, you need to override the following:
e void initialize(Subject, CallbackHandl er, Map, Map):if you have custom options to
parse.

* bool ean | ogi n(): to perform the authentication activity. Be sure to set the | ogi nCk instance
variable to true if login succeeds, false if it fails.

e Principal getldentity():toreturnthe Principal objectforthe user authenticated by the
I og() step.

e Goup[] getRol eSets(): toreturn at least one G oup hamed Rol es that contains the roles
assigned to the Pri nci pal authenticated during | ogi n() . A second common G oup is hamed
Cal | er Pri nci pal and provides the user's application identity rather than the security domain
identity.

When subclassing the User namePasswor dLogi nMbdul e, you need to override the following:

e void initialize(Subject, CallbackHandl er, Mp, Map):ifyou have custom options to
parse.

e Goup[] getRol eSets(): toreturn at least one G oup hamed Rol es that contains the roles

268

Writing Custom Login Modules

assigned to the Pri nci pal authenticated during | ogi n() . A second common G oup is hamed
Cal | er Pri nci pal and provides the user's application identity rather than the security domain
identity.

e String get UsersPassword(): to return the expected password for the current username
available via the get User nanme() method. The get User sPasswor d() method is called from
within | ogi n() after the cal | backhandl er returns the username and candidate password.

5.4.2. A Custom LoginModule Example

In this section we will develop a custom login module example. It will extend the

User nanePasswor dLogi nMbdul e and obtains a user's password and role names from a JNDI
lookup. The idea is that there is a INDI context that will return a user's password if you perform
a lookup on the context using a name of the form passwor d/ <user nane> where <user nane> is
the current user being authenticated. Similarly, a lookup of the form r ol es/ <user name> returns
the requested user's roles.

The source code for the example is located in the src/ mai n/ or g/ j boss/ book/ security/ ex2
directory of the book examples. Example 9.9, “ A JndiUserAndPass custom login module”
shows the source code for the Jndi User AndPass custom login module. Note that because this
extends the JBoss User nanePasswor dLogi nModul e, all the Jndi User AndPass does is obtain
the user's password and roles from the JNDI store. The Jndi User AndPass does not concern
itself with the JAAS Logi nModul e operations.

package org.j boss. book. security. ex2;

i mport java.security.acl.G oup;

i nport java.util.Mp;

i mport javax.nam ng. | nitial Context;

i mport javax. nam ng. Nam ngExcepti on;

i mport javax.security.auth. Subject;

i mport javax.security.auth. cal |l back. Cal | backHandl er;
i nport javax.security.auth. | ogin.Logi nExcepti on;

i mport org.jboss.security. Sinpl eG oup;
i mport org.jboss.security. SinplePrincipal;
i mport org.jboss.security.auth. spi.UsernanePasswor dLogi nMbdul e;

/**

* An exanpl e custom | ogin nobdul e that obtains passwords and rol es
* for a user froma JND | ookup.
*
* (@ut hor Scott.Stark@ boss. org
* @ersion $Revision: 1.4 $
*/
public class Jndi User AndPass
ext ends User namePasswor dLogi nvbdul e
{
[** The JNDI nane to the context that handl es the password/ usernane
| ookup */
private String userPat hPrefi x;

269

Chapter 9. Security on JBoss

*/

/** The JNDI name to the context that handl es the rol es/ usernanme | ookup

private String rol esPat hPrefi x;

/**
* Override to obtain the userPathPrefix and rol esPat hPrefi x options.
*/
public void initialize(Subject subject, CallbackHandl er call backHandl er,
Map sharedState, Map options)

{
super.initialize(subject, callbackHandl er, sharedState, options);
user Pat hPrefix = (String) options.get("userPathPrefix");
rol esPat hPrefix = (String) options.get("rol esPathPrefix");

}

/**

* Get the roles the current user belongs to by querying the
* rol esPat hPrefix + '/' + super.getUsernane() JNDI | ocation.
*/

protected G oup[] getRol eSets() throws Logi nException

{

try {
Initial Context ctx = new Initial Context();

String rolesPath = rol esPathPrefix + '/' + super.getUsernane();

String[] roles = (String[]) ctx.I|ookup(rol esPath);
G oup[] groups = {new Sinpl eG oup("Rol es")};
|l og.info("Getting roles for user="+super. getUsername());
for(int r = 0; r <roles.length; r ++) {
Si npl ePrinci pal role = new Sinpl ePrincipal (roles[r]);
| 0og.info("Found rol e="+roles[r]);
groups[0] . addMenber (rol e);

}
return groups;
} catch(Nam ngException e) {
|l og.error("Failed to obtain groups for
user =" +super . get User name(), e);
t hrow new Logi nException(e.toString(true));

}

/**

* Cet the password of the current user by querying the
* userPathPrefix + '/' + super.getUsernane() JNDI |ocation.
*/
protected String getUsersPassword()
throws Logi nException
{

try {
Initial Context ctx = new Initial Context();

String userPath = userPathPrefix + '/' + super.get Usernane();
| og.info("Getting password for user="+super. get User nane());
String passwd = (String) ctx.lookup(userPath);
| 0og. i nfo("Found passwor d="+passwd) ;
return passwd;

} catch(Nam ngException e) {

270

Writing Custom Login Modules

|l og.error("Failed to obtain password for
user =" +super . get User name(), e);
t hrow new Logi nException(e.toString(true));

Example 9.9. A JndiUserAndPass custom login module

The details of the JNDI store are found in the

org.j boss. book. security. ex2. service. Jndi St ore MBean. This service binds an

bj ect Fact ory that returns a j avax. nam ng. Cont ext proxy into JNDI. The proxy handles
lookup operations done against it by checking the prefix of the lookup hame against passwor d
and r ol es. When the name begins with passwor d, a user's password is being requested. When
the name begins with r ol es the user's roles are being requested. The example implementation
always returns a password of t heduke and an array of roles names equal to { " TheDuke",
"Echo"} regardless of what the username is. You can experiment with other implementations
as you wish.

The example code includes a simple session bean for testing the custom login module. To build,
deploy and run the example, execute the following command in the examples directory.

[exanpl es] $ ant -Dchap=security -Dex=2 run-exanple

run- exanpl e2:
[echo] Waiting for 5 seconds for deploy...
[java] [INFO ExCient] Login wth usernanme=j duke, password=t heduke
[java]l [INFO ExClient] Looking up EchoBean2
[java]l [INFO ExClient] Created Echo
[java] [INFO ExCient] Echo.echo('Hello') = Hello

The choice of using the Jndi User AndPass custom login module for the server side
authentication of the user is determined by the login configuration for the example security
domain. The EJB JAR META- | NF/ j boss. xm descriptor sets the security domain

<?xm version="1.0"?>
<j boss>

<security-donai n>j ava: /j aas/ security-ex2</security-domai n>
</ j boss>

The SAR META- I NF/ | ogi n-confi g. xnl descriptor defines the login module configuration.

<appl i cation-policy name = "security-ex2">
<aut henti cati on>
<l ogi n- nodul e code="org. j boss. book. security. ex2. Jndi User AndPass"
flag="required">

271

Chapter 9. Security on JBoss

<nmodul e- opti on nanme =
"user Pat hPrefi x">/security/store/ passwor d</ nodul e- opti on>
<nmodul e- opti on nanme =
"rol esPat hPrefix">/security/store/rol es</ nodul e- opti on>
</l ogi n- nodul e>
</ aut henti cati on>
</ appl i cati on-policy>

6. The Secure Remote Password (SRP) Protocol

The SRP protocol is an implementation of a public key exchange handshake described in the
Internet standards working group request for comments 2945(RFC2945). The RFC2945
abstract states:

This document describes a cryptographically strong network authentication mechanism known
as the Secure Remote Password (SRP) protocol. This mechanism is suitable for negotiating
secure connections using a user-supplied password, while eliminating the security problems
traditionally associated with reusable passwords. This system also performs a secure key
exchange in the process of authentication, allowing security layers (privacy and/or integrity
protection) to be enabled during the session. Trusted key servers and certificate infrastructures
are not required, and clients are not required to store or manage any long-term keys. SRP offers
both security and deployment advantages over existing challenge-response techniques, making
it an ideal drop-in replacement where secure password authentication is needed.

Note: The complete RFC2945 specification can be obtained from
http://www.rfc-editor.org/rfc.html. Additional information on the SRP algorithm and its history can
be found at http://www-cs-students.stanford.edu/~tjw/srp/.

SRP is similar in concept and security to other public key exchange algorithms, such as
Diffie-Hellman and RSA. SRP is based on simple string passwords in a way that does not
require a clear text password to exist on the server. This is in contrast to other public key-based
algorithms that require client certificates and the corresponding certificate management
infrastructure.

Algorithms like Diffie-Hellman and RSA are known as public key exchange algorithms. The
concept of public key algorithms is that you have two keys, one public that is available to
everyone, and one that is private and known only to you. When someone wants to send
encrypted information to you, then encrpyt the information using your public key. Only you are
able to decrypt the information using your private key. Contrast this with the more traditional
shared password based encryption schemes that require the sender and receiver to know the
shared password. Public key algorithms eliminate the need to share passwords.

The JBossSX framework includes an implementation of SRP that consists of the following

elements:

< An implementation of the SRP handshake protocol that is independent of any particular
client/server protocol

272

http://www.rfc-editor.org/rfc.html
http://www-cs-students.stanford.edu/~tjw/srp/

The Secure Remote Password (SRP)

« An RMI implementation of the handshake protocol as the default client/server SRP
implementation

» A client side JAAS Logi nMdul e implementation that uses the RMI implementation for use in
authenticating clients in a secure fashion

« A JMX MBean for managing the RMI server implementation. The MBean allows the RMI
server implementation to be plugged into a JMX framework and externalizes the configuration
of the verification information store. It also establishes an authentication cache that is bound
into the JBoss server JNDI namespace.

« A server side JAAS Logi nMbdul e implementation that uses the authentication cache
managed by the SRP JMX MBean.

Figure 9.14, “The JBossSX components of the SRP client-server framework.” gives a diagram
of the key components involved in the JBossSX implementation of the SRP client/server
framework.

BACRRERINGL |

Clienc

FRPClientfe=sion

%m Loginfodule

3 e

FRPServerlntertace SRPVerifisrStoceServicaMBean
IBoss Server
SEPYerifierStoreService
S SAp R o BN %—
Pt
,.” SRFVerifierStore
SRFRenctederver |
e — — e -
authentication s
- ; T SHPSetvi
. verifier srwice
auth d‘ne&d: gt manages O
| “m R S R
o mimesnd > SRPServicedBaan
SEZTLON WYL I@M!
| SRPServerlistensr |
lauth session \L
SRPServeriession - TimedCache
aezsion caches [rresie—r—— O
CachsPolicy

Figure 9.14. The JBossSX components of the SRP client-server
framework.

273

Chapter 9. Security on JBoss

On the client side, SRP shows up as a custom JAAS Logi nMbdul e implementation that
communicates to the authentication server through an

org.j boss.security.srp. SRPServer | nt er f ace proxy. A client enables authentication using
SRP by creating a login configuration entry that includes the

org.j boss. security.srp.jaas. SRPLogi nModul e. This module supports the following
configuration options:

« principalClassName: This option is no longer supported. The principal class is now always
org.j boss. security.srp.jaas. SRPPrincipal .

« srpServerJndiName: The JNDI name of the SRPSer ver | nt er f ace object to use for
communicating with the SRP authentication server. If both sr pSer ver Jndi Narre and
srpServer R Url options are specified, the sr pSer ver Jndi Nane is tried before
srpServerRm Url .

» srpServerRmiUrl: The RMI protocol URL string for the location of the SRPSer ver I nt er f ace
proxy to use for communicating with the SRP authentication server.

« externalRandomA: A true/false flag indicating if the random component of the client public
key A should come from the user callback. This can be used to input a strong cryptographic
random number coming from a hardware token for example.

* hasAuxChallenge: A true/false flag indicating that a string will be sent to the server as an
additional challenge for the server to validate. If the client session supports an encryption
cipher then a temporary cipher will be created using the session private key and the challenge
object sent as aj avax. crypt o. Seal edOj ect .

* multipleSessions: a true/false flag indicating if a given client may have multiple SRP login
sessions active simultaneously.

Any other options passed in that do not match one of the previous hamed options is treated as
a JNDI property to use for the environment passed to the | ni ti al Cont ext constructor. This is
useful if the SRP server interface is not available from the default I ni ti al Cont ext .

The SRPLogi nMbdul e needs to be configured along with the standard O i ent Logi nMbdul e to
allow the SRP authentication credentials to be used for validation of access to security J2EE
components. An example login configuration entry that demonstrates such a setup is:

srp {
org. j boss. security.srp.jaas. SRPLogi nMbdul e required

srpSer ver Jndi Nane="SRPSer ver | nt er f ace"

org.j boss. security. dientlLogi nMbdul e required
passwor d- st acki ng="useFi r st Pass"

274

Protocol

On the JBoss server side, there are two MBeans that manage the objects that collectively make
up the SRP server. The primary service is the or g. j boss. securi ty. srp. SRPSer vi ce MBean,
and it is responsible for exposing an RMI accessible version of the SRPServerinterface as well
as updating the SRP authentication session cache. The configurable SRPService MBean
attributes include the following:

JndiName: The JNDI name from which the SRPServerinterface proxy should be available.
This is the location where the SRPSer vi ce binds the serializable dynamic proxy to the
SRPSer ver | nt er f ace. If not specified it defaults to sr p/ SRPSer ver I nt er f ace.

VerifierSourceJndiName: The JNDI name of the SRPVeri f i er Sour ce implementation that
should be used by the SRPSer vi ce. If not set it defaults to sr p/ Def aul t Veri fi er Sour ce.

AuthenticationCacheJdndiName: The JNDI name under which the authentication
org.jboss. util.CachePol i cy implementation to be used for caching authentication
information is bound. The SRP session cache is made available for use through this binding.
If not specified it defaults to sr p/ Aut hent i cat i onCache.

ServerPort: RMI port for the SRPRenot eSer ver | nt er f ace. If not specified it defaults to
10099.

ClientSocketFactory: An optional custom j ava. rmi . server. RM O i ent Socket Fact ory
implementation class name used during the export of the SRPSer ver I nt er f ace. If not
specified the default RM O i ent Socket Fact ory is used.

ServerSocketFactory: An optional custom j ava. rmi . server. RM Ser ver Socket Fact ory
implementation class name used during the export of the SRPSer ver I nt er f ace. If not
specified the default RM Ser ver Socket Fact ory is used.

AuthenticationCacheTimeout: Specifies the timed cache policy timeout in seconds. If not
specified this defaults to 1800 seconds(30 minutes).

AuthenticationCacheResolution: Specifies the timed cache policy resolution in seconds.
This controls the interval between checks for timeouts. If not specified this defaults to 60
seconds(1 minute).

RequireAuxChallenge: Set if the client must supply an auxiliary challenge as part of the
verify phase. This gives control over whether the SRPLogi nMbdul e configuration used by the
client must have the useAuxChal | enge option enabled.

OverwriteSessions: A flag indicating if a successful user auth for an existing session should
overwrite the current session. This controls the behavior of the server SRP session cache
when clients have not enabled the multiple session per user mode. The default is false
meaning that the second attempt by a user to authentication will succeed, but the resulting
SRP session will not overwrite the previous SRP session state.

The one input setting is the Veri fi er Sour ceJndi Nane attribute. This is the location of the SRP

password information store implementation that must be provided and made available through

275

Chapter 9. Security on JBoss

JNDI. The org. j boss. security.srp SRPVerifierStoreService is an example MBean
service that binds an implementation of the SRPVeri fi er St or e interface that uses a file of
serialized objects as the persistent store. Although not realistic for a production environment, it
does allow for testing of the SRP protocol and provides an example of the requirements for an
SRPVeri fi er St or e service. The configurable SRPVeri fi er St or eSer vi ce MBean attributes
include the following:

e JndiName: The JNDI name from which the SRPVeri fi er St or e implementation should be
available. If not specified it defaults to sr p/ Def aul t Veri fi er Sour ce.

» StoreFile: The location of the user password verifier serialized object store file. This can be
either a URL or a resource name to be found in the classpath. If not specified it defaults to
SRPVerifierStore. ser.

The SRPVeri fi er St oreSer vi ce MBean also supports addUser and del User operations for
addition and deletion of users. The signatures are:

public void addUser (String usernanme, String password) throws | OException;
public void del User(String usernane) throws |OException;

An example configuration of these services is presented in Example 9.10, “The
SRPVerifierStore interface”.

6.1. Providing Password Information for SRP

The default implementation of the SRPVeri fi er St or e interface is not likely to be suitable for
your production security environment as it requires all password hash information to be
available as a file of serialized objects. You need to provide an MBean service that provides an
implementation of the SRPVer i fi er St or e interface that integrates with your existing security
information stores. The SRPVeri fi er St or e interface is shown in.

package org.jboss. security. srp;

i mport java.io.| CException;
i mport java.io.Serializable;
i mport java.security. KeyExcepti on;

public interface SRPVerifierStore
{
public static class Verifierlnfo inplenments Serializable
{
/**
* The username the informati on applies to. Perhaps redundant
* but it makes the object self contained.
*/
public String usernang;

[** The SRP password verifier hash */
public byte[] verifier;

276

Providing Password Information for SRP

[** The random password salt originally used to verify the password
*/

public byte[] salt;

/** The SRP algorithmprimtive generator */

public byte[] g;

/** The al gorithm safe-prime nmodul us */

public byte[] N

/**
Get the indicated user's password verifier infornation.
*/
public Verifierlnfo getUserVerifier(String usernane)
t hrows KeyException, | OException;

/**

* Set the indicated users' password verifier information. This
* s equivalent to changing a user's password and shoul d
* generally invalidate any existing SRP sessions and caches.
*/
public void setUserVerifier(String usernanme, Verifierlnfo info)
throws | CExcepti on;

/**

* Verify an optional auxiliary challenge sent fromthe client to

* the server. The auxChallenge object will have been decrypted

* if it was sent encrypted fromthe client. An exanple of a

* auxiliary challenge would be the validation of a hardware token

* (Saf ewrd, SecurelD, iButton) that the server validates to

* further strengthen the SRP password exchange.

*/

public void verifyUserChal | enge(String usernane, Object auxChal | enge)
throws SecurityException;

The primary function of a SRPVeri fi er St or e implementation is to provide access to the
SRPVerifierStore. Verifierlnfo object for a given username. The

get User Veri fier (String) method is called by the SRPSer vi ce at that start of a user SRP
session to obtain the parameters needed by the SRP algorithm. The elements of the

Veri fierl nf o objects are:

* username: The user's name or id used to login.

« verifier: This is the one-way hash of the password or PIN the user enters as proof of their
identity. The org. j boss. security. Uil class has acal cul ateVerifi er method that
performs that password hashing algorithm. The output password H(salt | H(username |
":' | password)) as defined by RFC2945. Here His the SHA secure hash function. The
username is converted from a string to a byt e[] using the UTF-8 encoding.

« salt: This is a random number used to increase the difficulty of a brute force dictionary attack
on the verifier password database in the event that the database is compromised. It is a value

277

Chapter 9. Security on JBoss

that should be generated from a cryptographically strong random number algorithm when the
user's existing clear-text password is hashed.

* g: The SRP algorithm primitive generator. In general this can be a well known fixed parameter
rather than a per-user setting. The or g. j boss. security. srp. SRPConf utility class provides
several settings for g including a good default which can obtained via
SRPConf . get Def aul t Params(). g() .

* N: The SRP algorithm safe-prime modulus. In general this can be a well known fixed
parameter rather than a per-user setting. The or g. j boss. securi ty. srp. SRPConf utility
class provides several settings for N including a good default which can obtained via
SRPConf . get Def aul t Parans(). N() .

So, step 1 of integrating your existing password store is the creation of a hashed version of the
password information. If your passwords are already store in an irreversible hashed form, then
this can only be done on a per-user basis as part of an upgrade procedure for example. Note
that the set User Verifier(String, Verifierlnfo) method is not used by the current
SRPSerivce and may be implemented as no-op method, or even one that throws an exception
stating that the store is read-only.

Step 2 is the creation of the custom SRPVer i f i er St or e interface implementation that knows
how to obtain the Veri fi er | nf o from the store you created in step 1. The

veri fyUser Chal | enge(String, Object) method of the interface is only called if the client
SRPLogi nMbdul e configuration specifies the hasAuxChal | enge option. This can be used to
integrate existing hardware token based schemes like SafeWord or Radius into the SRP
algorithm.

Step 3 is the creation of an MBean that makes the step 2 implementation of the

SRPVeri fi er St or e interface available via JNDI, and exposes any configurable parameters you
need. In addition to the default or g. j boss. security. srp. SRPVerifierStoreService
example, the SRP example presented later in this chapter provides a Java properties file based
SRPVeri fi er St or e implementation. Between the two examples you should have enough to
integrate your security store.

Example 9.10. The SRPVerifierStore interface

6.2. Inside of the SRP algorithm

The appeal of the SRP algorithm is that is allows for mutual authentication of client and server
using simple text passwords without a secure communication channel. You might be wondering
how this is done. If you want the complete details and theory behind the algorithm, refer to the
SRP references mentioned in a note earlier. There are six steps that are performed to complete
authentication:

1. The client side SRPLogi nMbdul e retrieves the SRPServerinterface instance for the remote

278

Inside of the SRP algorithm

authentication server from the naming service.

2. The client side SRPLogi nMbdul e next requests the SRP parameters associated with the
username attempting the login. There are a number of parameters involved in the SRP
algorithm that must be chosen when the user password is first transformed into the verifier
form used by the SRP algorithm. Rather than hard-coding the parameters (which could be
done with minimal security risk), the JBossSX implementation allows a user to retrieve this
information as part of the exchange protocol. The get SRPPar anet er s(user name) call
retrieves the SRP parameters for the given username.

3. The client side SRPLogi nMbdul e begins an SRP session by creating an SRPA i ent Sessi on
object using the login username, clear-text password, and SRP parameters obtained from
step 2. The client then creates a random number A that will be used to build the private SRP
session key. The client then initializes the server side of the SRP session by invoking the
SRPSer ver | nterface.init method and passes in the username and client generated
random number A. The server returns its own random number B. This step corresponds to the
exchange of public keys.

4. The client side SRPLogi nModul e obtains the private SRP session key that has been
generated as a result of the previous messages exchanges. This is saved as a private
credential in the login Subj ect . The server challenge response M from step 4 is verified by
invoking the SRPA i ent Sessi on. veri fy method. If this succeeds, mutual authentication of
the client to server, and server to client have been completed. The client side
SRPLogi nMbdul e next creates a challenge ML to the server by invoking
SRPCl i ent Sessi on. r esponse method passing the server random number B as an argument.
This challenge is sent to the server via the SRPSer ver I nt er f ace. veri fy method and
server's response is saved as M. This step corresponds to an exchange of challenges. At
this point the server has verified that the user is who they say they are.

5. The client side SRPLogi nMbdul e saves the login username and ML challenge into the
Logi nModul e sharedState map. This is used as the Principal name and credentials by the
standard JBoss Cl i ent Logi nModul e. The ML challenge is used in place of the password as
proof of identity on any method invocations on J2EE components. The ML challenge is a
cryptographically strong hash associated with the SRP session. Its interception via a third
partly cannot be used to obtain the user's password.

6. At the end of this authentication protocol, the SRPServerSession has been placed into the
SRPService authentication cache for subsequent use by the SRPCachelLogi nhbdul e.

Although SRP has many interesting properties, it is still an evolving component in the JBossSX
framework and has some limitations of which you should be aware. Issues of note include the
following:

» Because of how JBoss detaches the method transport protocol from the component container
where authentication is performed, an unauthorized user could snoop the SRP ML challenge
and effectively use the challenge to make requests as the associated username. Custom
interceptors that encrypt the challenge using the SRP session key can be used to prevent this

279

Chapter 9. Security on JBoss

issue.

» The SRPService maintains a cache of SRP sessions that time out after a configurable period.
Once they time out, any subsequent J2EE component access will fail because there is
currently no mechanism for transparently renegotiating the SRP authentication credentials.
You must either set the authentication cache timeout very long (up to 2,147,483,647 seconds,
or approximately 68 years), or handle re-authentication in your code on failure.

» By default there can only be one SRP session for a given username. Because the negotiated
SRP session produces a private session key that can be used for encryption/decryption
between the client and server, the session is effectively a stateful one. JBoss supports for
multiple SRP sessions per user, but you cannot encrypt data with one session key and then
decrypt it with another.

To use end-to-end SRP authentication for J2EE component calls, you need to configure the
security domain under which the components are secured to use the

org.j boss.security.srp.jaas. SRPCacheLogi nModul e. The SRPCacheLogi nMbdul e has a
single configuration option named cacheJndi Nane that sets the JNDI location of the SRP
authentication CachePol i cy instance. This must correspond to the

Aut hent i cati onCacheJndi Nane attribute value of the SRPSer vi ce MBean. The
SRPCachelLogi nMbdul e authenticates user credentials by obtaining the client challenge from the
SRPSer ver Sessi on object in the authentication cache and comparing this to the challenge
passed as the user credentials. Figure 9.15, “A sequence diagram illustrating the interaction of
the SRPCacheLoginModule with the SRP session cache.” illustrates the operation of the
SRPCacheLoginModule.login method implementation.

LouinModul & AuthCache cacheCredential
SRPCacheloginModule CachePolicy SRP3erveriession

dJaasSecurityManager

[
isWValid:=login():boole l
= I
I
= FerPrincipal, clientChalleﬁge:=get.UserInf0|:j:void
i3 |

JHNDI lookupicachedndiMName

cacheCredential: =get(u5err ipal):0bject

isValid: =validateCache |cachfCredential):boolean

challenge: =getClientResp0ns% [1:bytel]

isValid = Arrays.ecuals(chlallenge, clientChallenge);
|

280

Inside of the SRP algorithm

Figure 9.15. A sequence diagram illustrating the interaction of the
SRPCacheLoginModule with the SRP session cache.

6.2.1. An SRP example

We have covered quite a bit of material on SRP and now its time to demonstrate SRP in
practice with an example. The example demonstrates client side authentication of the user via
SRP as well as subsequent secured access to a simple EJB using the SRP session challenge
as the user credential. The test code deploys an EJB JAR that includes a SAR for the
configuration of the server side login module configuration and SRP services. As in the previous
examples we will dynamically install the server side login module configuration using the

Securi tyConfi g MBean. In this example we also use a custom implementation of the

SRPVeri fi er St or e interface that uses an in memory store that is seeded from a Java
properties file rather than a serialized object store as used by the SRPVeri fi er St or eSer vi ce.
This custom service is or g. j boss. book. security. ex3. service. PropertiesVerifierStore.
The following shows the contents of the JAR that contains the example EJB and SRP services.

[exanpl es]$ jar tf output/security/security-ex3.jar
META- | NF/ MANI FEST. MF

META- | NF/ ej b-j ar . xm

META- | NF/ j boss. xmi

or g/ j boss/ book/ security/ ex3/ Echo. cl ass

or g/ j boss/ book/ security/ ex3/ EchoBean. cl ass

or g/ j boss/ book/ securi ty/ ex3/ EchoHone. cl ass

rol es. properties

users. properties

security-ex3. sar

The key SRP related items in this example are the SRP MBean services configuration, and the
SRP login module configurations. The j boss- ser vi ce. xm descriptor of the

security-ex3. sar is given in Example 9.11, “The security-ex3.sar jboss-service.xml descriptor
for the SRP services”, while Example 9.12, “The client side standard JAAS configuration” and
Example 9.13, “The server side XMLLoginConfig configuration” give the example client side and
server side login module configurations.

<server>
<I-- The custom JAAS | ogin configuration that installs
a Configuration capabl e of dynam cally updating the
config settings -->

<nmbean code="org.j boss. book. security. service. SecurityConfig"
nane="j boss. docs. security: servi ce=Logi nConfi g- EX3" >
<attribute name="Aut hConfi g">META-| NF/ | ogi n-config. xm </attri bute>
<attribute
nane="Securi t yConf i gNane" >j boss. security: name=SecurityConfig</attri bute>
</ nbean>

<I-- The SRP service that provides the SRP RM server and server side

281

Chapter 9. Security on JBoss

aut henti cati on cache -->
<nmbean code="org.jboss. security.srp. SRPService"
nane="j boss. docs. security: servi ce=SRPSer vi ce" >
<attribute
name="\Veri fi er Sour ceJndi Nanme" >srp-test/security-ex3</attri bute>
<attribute name="Jndi Nane" >srp-test/SRPServerlnterface</attribute>
<attribute
nane="Aut henti cati onCacheJndi Nane" >sr p-t est/ Aut henti cati onCache</attri but e>
<attribute name="ServerPort">0</attribute>
<depends>j boss. docs. security: servi ce=Properti esVerifierStore</depends>
</ mbean>

<l-- The SRP store handl er service that provides the user password
verifier
information -->
<nmbean code="org.jboss. security.ex3.service.PropertiesVerifierStore"
nane="j boss. docs. security: servi ce=PropertiesVerifierStore">
<attribute nanme="Jndi Nane">srp-test/security-ex3</attribute>
</ nbean>
</ server >

Example 9.11. The security-ex3.sar jboss-service.xml descriptor for the
SRP services

srp {
org.j boss. security. srp.jaas. SRPLogi nMbdul e required
srpSer ver Jndi Name="sr p-t est/ SRPSer ver | nt er f ace"

org.j boss. security. dientlLogi nMbdul e required
passwor d- st acki ng="useFi r st Pass"

Example 9.12. The client side standard JAAS configuration

<appl i cati on-policy name="security-ex3">
<aut henti cati on>
<l ogi n- nodul e code="org. | boss. security.srp.jaas. SRPCacheLogi nModul e"
flag = "required">
<nodul e- opti on
name="cacheJndi Nanme" >sr p-t est / Aut hent i cati onCache</ nodul e- opti on>
</ | ogi n- nodul e>
<l ogi n- nodul e
code="org. j boss. security. aut h. spi . User sRol esLogi nModul e"
flag = "required">
<nmodul e- opti on

282

Inside of the SRP algorithm

name="passwor d- st acki ng" >useFi r st Pass</ nodul e- opti on>
</ | ogi n- modul e>
</ aut henti cati on>
</ appl i cati on-policy>

Example 9.13. The server side XMLLoginConfig configuration

The example services are the Ser vi ceConfi g and the PropertiesVerifierStore and
SRPSer vi ce MBeans. Note that the Jndi Nane attribute of the Properti esVerifierStoreis
equal to the Veri fi er Sour ceJndi Name attribute of the SRPSer vi ce, and that the SRPSer vi ce
depends on the PropertiesVerifierStore. This is required because the SRPSer vi ce needs
an implementation of the SRPVerii fi er St or e interface for accessing user password verification
information.

The client side login module configuration makes use of the SRPLogi nMbdul e with a

srpSer ver Jndi Nane option value that corresponds to the JBoss server component SRPSer vi ce
JndiName attribute value(sr p-t est / SRPSer ver I nt er f ace). Also needed is the

d i ent Logi nMbdul e configured with the passwor d- st acki ng="useFi r st Pass" value to
propagate the user authentication credentials generated by the SRPLogi nMbdul e to the EJB
invocation layer.

There are two issues to note about the server side login module configuration. First, note the
cacheJndi Name=sr p-t est/ Aut hent i cat i onCache configuration option tells the

SRPCachelLogi nModul e the location of the CachePol i cy that contains the SRPSer ver Sessi on
for users who have authenticated against the SRPSer vi ce. This value corresponds to the
SRPSer vi ceAut hent i cat i onCacheJndi Nane attribute value. Second, the configuration includes
a User sRol esLogi nMbdul e with the passwor d- st acki ng=useFi r st Pass configuration option. It
is required to use a second login module with the SRPCacheLogi nMbdul e because SRP is only
an authentication technology. A second login module needs to be configured that accepts the
authentication credentials validated by the SRPCacheLogi nMbdul e to set the principal's roles
that determines the principal's permissions. The User sRol esLogi nMbdul e is augmenting the
SRP authentication with properties file based authorization. The user's roles are coming the

rol es. properti es file included in the EJB JAR.

Now, run the example 3 client by executing the following command from the book examples
directory:

[exanpl es] $ ant -Dchap=security -Dex=3 run-exanpl e

run- exanpl e3:
[echo] Waiting for 5 seconds for deploy...
[java]l Logging in using the 'srp' configuration
[java] Created Echo
[java] Echo. echo() #1
[java] Echo. echo() #2

This is call 1
This is call 2

283

Chapter 9. Security on JBoss

In the exanpl es/ | ogs directory you will find a file called ex3-trace. | og. This is a detailed trace
of the client side of the SRP algorithm. The traces show step-by-step the construction of the
public keys, challenges, session key and verification.

Note that the client has taken a long time to run relative to the other simple examples. The
reason for this is the construction of the client's public key. This involves the creation of a
cryptographically strong random number, and this process takes quite a bit of time the first time
it occurs. If you were to log out and log in again within the same VM, the process would be
much faster. Also note that Echo. echo() #2 fails with an authentication exception. The client
code sleeps for 15 seconds after making the first call to demonstrate the behavior of the

SRPSer vi ce cache expiration. The SRPSer vi ce cache policy timeout has been set to a mere 10
seconds to force this issue. As stated earlier, you need to make the cache timeout very long, or
handle re-authentication on failure.

7. Running JBoss with a Java 2 security manager

By default the JBoss server does not start with a Java 2 security manager. If you want to restrict
privileges of code using Java 2 permissions you need to configure the JBoss server to run
under a security manager. This is done by configuring the Java VM options in the r un. bat or
run. sh scripts in the JBoss server distribution bin directory. The two required VM options are as
follows:

e java.security.manager: This is used without any value to specify that the default security
manager should be used. This is the preferred security manager. You can also pass a value
to the j ava. securi ty. manager option to specify a custom security manager implementation.
The value must be the fully qualified class name of a subclass of
j ava. | ang. Securi t yManager . This form specifies that the policy file should augment the
default security policy as configured by the VM installation.

 java.security.policy: This is used to specify the policy file that will augment the default
security policy information for the VM. This option takes two forms:
java.security. policy=policyFileURL andj ava. security. policy==policyFileURL.
The first form specifies that the policy file should augment the default security policy as
configured by the VM installation. The second form specifies that only the indicated policy file
should be used. The pol i cyFi | eURL value can be any URL for which a protocol handler
exists, or a file path specification.

Both the run. bat and r un. sh start scripts reference an JAVA_OPTS variable which you can
use to set the security manager properties.

Enabling Java 2 security is the easy part. The difficult part of Java 2 security is establishing the
allowed permissions. If you look at the server. pol i cy file that is contained in the default
configuration file set, you'll see that it contains the following permission grant statement:

grant {
/] Allow everything for now
perm ssion java.security. Al | Perm ssion;

284

Running JBoss with a Java 2 security

This effectively disables security permission checking for all code as it says any code can do
anything, which is not a reasonable default. What is a reasonable set of permissions is entirely
up to you.

The current set of JBoss specific j ava. | ang. Runt i nePer ni ssi ons that are required include:

TargetName What the permission allows Risks

org.jboss.security.SecurityAssodati@sgeiRhacipallnfo The ability to see the current
org.jboss.security.SecurityAssodiatézau caller and credentials.
getPrincipal() and
getCredentials() methods.

org.jboss.security.SecurityAssodtatimssedRHacipalinfo The ability to set the current
org.jboss.security.SecurityAssodiatéau caller and credentials.
setPrincipal() and
setCredentials() methods.

org.jboss.security.SecurityAssoclatiassenShever The ability to enable or
org.jboss.security.SecurityAssoadiigadrie multithread storage of
setServer method. the caller principal and
credential.
org.jboss.security.SecurityAssodatimssedRbeAsRole The ability to change the
org.jboss.security.SecurityAssoaiati@nt caller run-as role
pushRunAsRole and principal.

popRunAsRole methods.

To conclude this discussion, here is a little-known tidbit on debugging security policy settings.
There are various debugging flag that you can set to determine how the security manager is
using your security policy file as well as what policy files are contributing permissions. Running
the VM as follows shows the possible debugging flag settings:

[bin]$ java -Djava. security. debug=hel p

al | turn on all debugging

access print all checkPermi ssion results
combi ner Subj ect Domai nComnbi ner debuggi ng

jar jar verification

| ogi ncontext |ogin context results

pol i cy | oadi ng and granti ng

provi der security provider debuggi ng

scl per m ssi ons Secur eCl assLoader assi gns

The following can be used with access:

st ack i nclude stack trace
domai n dunps all donmins in context
failure before throwi ng exception, dunp stack

285

Chapter 9. Security on JBoss

and domain that didn't have permni ssion

Not e: Separate nultiple options with a comma

Running with - Oj ava. securi ty. debug=al | provides the most output, but the output volume is
torrential. This might be a good place to start if you don't understand a given security failure at
all. A less verbose setting that helps debug permission failures is to use

-Dj ava. security. debug=access, f ai | ur e. This is still relatively verbose, but not nearly as
bad as the all mode as the security domain information is only displayed on access failures.

8. Using SSL with JBoss

8.1. Adding SSL to EJB3

By default JBoss EJB3 uses a socket based invoker layer on port 3878. This is set up in
$JBOSS_HOVE/ server/ <server confi g>/ depl oy/ ej b3. depl oyer/ META- | NF/ j boss-servi ce. xm
In some cases you may wish to use SSL as the protocol. In order to do this you must generate

a keystore and then configure your beans to use SSL transport.

8.1.1. Generating the keystore and truststore

For SSL to work you need to create a public/private key pair, which will be stored in a keystore.
Generate this using the genkey command that comes with the JDK.

$cd $IBOSS_HOWE/ ser ver/ producti on/ conf/
$keyt ool -genkey -alias ejb3-ssl -keypass opensource -keystore
| ocal host . keyst ore

Enter keystore password: opensource

What is your first and | ast nane?

[Unknown] :

What is the nanme of your organi zational unit?
[Unknown] :

What is the name of your organization?
[Unknown] :

VWhat is the name of your City or Locality?
[Unknown] :

What is the nane of your State or Province?
[Unknown] :

VWhat is the two-letter country code for this unit?
[Unknown] :

I's CN=Unknown, OU=Unknown, O=Unknown, L=Unknown, ST=Unknown, C=Unknown
correct?
[no]: yes

where al i as is the name ("ejb2-ssl") of the key pair within the keystore. keypass is the
password ("opensource") for the keystore, and keyst or e specifies the location
("localhost.keystore") of the keystore to create/add to.

286

manager

Since you have not signed our certificate through any certification authoritiy, you also need to
create a truststore for the client, explicitly saying that you trust the certificate you just created.
The first step is to export the certificate using the JDK keytool:

$ keytool -export -alias ejb3-ssl -file mycert.cer -keystore
| ocal host . keystore

Enter keystore password: opensource

Certificate stored in file <mycert.cer>

Then you need to create the truststore if it does not exist and import the certificate into the
trueststore:

$ keytool -inmport -alias ejb3-ssl -file mycert.cer -keystore
| ocal host.truststore
Ent er keystore password: opensource
Omner: CN=Unknown, OU=Unknown, O=Unknown, L=Unknown, ST=Unknown,
C=Unknown
| ssuer: CN=Unknown, OU=Unknown, O=Unknown, L=Unknown, ST=Unknown,
C=Unknown
Seri al nunber: 43bff 927
Valid from Sat Jan 07 18:23:51 CET 2006 until: Fri Apr 07 19:23:51 CEST
2006
Certificate fingerprints:
MD5: CF: DC. 71: A8: F4: EA: 8F: 5A: E9: 94: E3: E6: 5B: A9: C8: F3
SHA1:
OE: AD: F3: D6: 41: 5E: F6: 84: 9A: D1: 54: 3D: DE: A9: B2: 01: 28: F6: 7C. 26
Trust this certificate? [no]: yes
Certificate was added to keystore

8.1.2. Setting up the SSL transport

The simplest way to define an SSL transport is to define a new Remoting connector using the
ssl socket protocol as follows. This transport will listen on port 3843:

<nmbean code="org.jboss.renmoting.transport. Connector"
xmbean- dd="or g/ j boss/ renot i ng/ transport/ Connect or. xm "
nane="j boss. renot i ng: t ype=Connect or, transport =socket 3843, handl er =ej b3" >
<depends>j boss. aop: servi ce=Aspect Depl oyer </ depends>
<attribute name="Invoker Locat or">ssl socket://0.0.0.0: 3843</attri bute>
<attribute nane="Configuration">
<handl er s>
<handl er subsystem="AOP" >
org. j boss. aspects. remoti ng. AOPRenot i ngl nvocat i onHandl er
</ handl er >
</ handl er s>
</attri bute>
</ nbean>

287

Chapter 9. Security on JBoss

Now you need to tell JBoss Remoting where to find the keystore to be used for SSI and its
password. This is done using j avax. net . ssl . keySt or e and

j avax. net . ssl . keySt or ePasswor d=opensour ce system properties when starting JBoss, as
the following example shows:

$cd $IBOSS_HOVE/ bi n
$ run
- O avax. net . ssl . keyStore=. ./server/production/conf/l| ocal host. keystore
- Dj avax. net . ssl . keySt or ePasswor d=opensour ce

8.1.3. Configuring your beans to use the SSL transport

By default all the beans will use the default connector on socket : // 0. 0. 0. 0: 3873. By using
the @r g. j boss. annot at i on. ej b. Renot eBi ndi ng annotation you can have the bean
invokable via SSL.

@Renot eBi ndi ng(clientBi ndUr| ="ssl socket://0.0.0.0: 3843",
j ndi Bi ndi ng="St at ef ul SSL"),
@Renot e(Busi nessl nt erf ace. cl ass)
public class Stateful Bean i npl enents Busi nesslnterface

{
}

This bean will be bound under the JNDI name St at ef ul SSL and the proxy implementing the
remote interface returned to the client will communicate with the server via SSL.

You can also enable different types of communication for your beans

@Renot eBi ndi ngs({
@=enot eBi ndi ng(clientBi ndUr| ="ssl socket://0.0.0.0: 3843",
j ndi Bi ndi ng="St at ef ul SSL") ,
@=enot eBi ndi ng(j ndi Bi ndi ng=" St at ef ul Nor nal ")

})

@Renvot e(Busi nessl nt erf ace. cl ass)
public class Stateful Bean i npl enents Busi nesslnterface

{
}

Now if you look up St at ef ul Nor mal the returned proxy implementing the remote interface will
communicate with the server via the normal unencrypted socket protocol, and if you look up
St at ef ul SSL the returned proxy implementing the remote interface will communicate with the
server via SSL.

288

Adding SSL to EJB 2.1 calls

8.1.4. Setting up the client to use the truststore

If not using a certificate signed by a certificate authorization authority, you need to point the
client to the truststore using the j avax. net . ssl . t rust St or e system property and specify the
password using the j avax. net. ssl . t r ust St or ePasswor d system property:

java -Djavax. net.ssl.trust Store=%{resources}/test/ssl /| ocal host.truststore
- Dj avax. net. ssl . trust St or ePasswor d=opensour ce com acne. RunC i ent

8.2. Adding SSL to EJB 2.1 calls

8.2.1. Generating the keystore and truststore

This is similar to the steps described for Adding SSL to EJB3 calls.

8.2.2. Setting up the SSL transport

Now you need to tell JBoss Remoting where to find the keystore to be used for SS| and its
password. This is done using j avax. net . ssl . keySt or e and

j avax. net. ssl . keySt or ePasswor d=opensour ce system properties when starting JBoss, as
the following example shows:

$cd $IBOSS_HOVE/ bi n
$ run
- Dj avax. net . ssl . keyStore=. ./ server/ producti on/ conf/| ocal host . keyst ore
- O avax. net . ssl . keySt or ePasswor d=opensour ce

If you wish to customize the SSLSocketBuilder you need to add the following to your
$JIBOSS_HOVE/ server/ ${server Conf}/conf/jboss-service.xn file.

<I-- This section is for custom (SSL) server socket factory -->
<mbean code="org.jboss.remting. security. SSLSocket Bui | der"
nane="j boss. renoti ng: servi ce=Socket Bui | der, t ype=SSL"
di spl ay- nane="SSL Server Socket Factory Buil der">
<I-- I MPORTANT - I|f making ANY custom zations, this MJST be set to
fal se. -->
<I-- Oherwise, will used default settings and the foll ow ng
attributes will be ignored. -->
<attribute nane="UseSSLServer Socket Fact ory">f al se</attri bute>
<I-- This is the url string to the key store to use -->
<attribute nanme="KeySt oreURL" >l ocal host . keyst ore</attri bute>
<l-- The password for the key store -->
<attribute nane="KeySt or ePasswor d">ssl| socket </attri bute>
<I-- The password for the keys (w |l use KeystorePassword if this is
not set explicitly. -->
<attribute nane="KeyPassword">ssl socket</attribute>
<l-- The protocol for the SSLContext. Default is TLS. -->

289

Chapter 9. Security on JBoss

<attribute nanme="SecureSocket Prot ocol ">TLS</ attri bute>
<I-- The algorithmfor the key nanager factory. Default is SunX509

-->

<attribute name="KeyManagenent Al gori t hni >SunX509</ attri but e>

<I-- The type to be used for the key store. -->

<I-- Defaults to JKS. Sone acceptable values are JKS (Java Keystore -
Sun's keystore format), -->

<I-- JCEKS (Java Cryptography Extension keystore - Mre secure version
of JKS), and -->
<l -- PKCS12 (Public-Key Cryptography Standards #12
keystore - RSA's Personal |nformation Exchange Syntax
Standard). -->

<l-- These are not case sensitive. -->
<attribute nane="KeyStoreType">JKS</attri bute>
</ nbean>

<mbean code="or(g.jboss.renoting. security.SSLServer Socket Fact oryServi ce"
nane="] boss. renot i ng: servi ce=Ser ver Socket Fact ory, t ype=SSL"
di spl ay- nanme="SSL Server Socket Factory">
<depends optional -attri but e- name="SSLSocket Bui | der"
proxy-type="attri bute">j boss. renoting: servi ce=Socket Bui | der, t ype=SSL</ depends>
</ mbean>

8.2.3. Configuring your beans to use the SSL transport
In your $JBOSS_HOVE/ ser ver/ ${ server Conf}/ conf/j boss-service. xm file, comment out

the following lines:

<nbean code="org.j boss.renoting.transport. Connector"
nanme="j boss. renot i ng: servi ce=Connect or, t ransport =socket "
di spl ay- name="Socket transport Connector">

<l-- Can either just specify the |InvokerLocator attribute and not the
i nvoker element in the -->

<I-- Configuration attribute, or do the full invoker configuration in
the in invoker elenent -->

<l-- of the Configuration attribute. -->

<I-- Remenber that if you do use nore than one paramon the uri, wll
have to include as a CDATA, -->

<l-- otherw se, parser will conplain. -->

<I--

<attribute name="InvokerLocat or" >
<! [CDATA[socket : // ${j boss. bi nd. addr ess} : 4446/ ?dat at ype=i nvocati on]] >
</attribute>
-->

<attribute nane="Configuration">
<l-- Using the foll ow ng
<i nvoker >
el enent instead of the InvokerLocator above because specific

290

Adding SSL to EJB 2.1 calls

attri butes needed.

-->
<l-- |f wanted to use any of the paraneters bel ow, can
just add them as parameters to the url above if wanted use
the InvokerLocator attribute. -->
<config>
<l-- Oher than transport type and handl er, none of these
configurations are required
(will just use defaults). -->

<i nvoker transport="socket">
<attri bute nane="dat aType"
i sParane"true">i nvocation</attri bute>
<attribute nane="marshall er"

i sParan¥"true">org.]jboss.invocation.unified. marshall.|nvocati onMarshall er</attri bute>
<attribute nane="unnarshal |l er"
i sParan¥"true">org.j boss.invocation.unified. marshall.|nvocati onUnMarshall er</attri bute>
<I-- This will be port on which the marshall |oader port runs
on. -->
<l-- <attribute nanme="| oaderport"
i sParan¥"true">4447</attribute> -->
<I-- The following are specific to socket invoker -->
<I-- <attribute name="numAccept Threads">1</attri but e>-->
<l-- <attribute name="maxPool Si ze">303</attri bute>-->
<l-- <attribute name="client MaxPool Si ze"

i sParan¥"true">304</attri bute>-->
<attribute nane="socket Ti neout"

i sParan¥"true">600000</attribute>
<attribute

name="ser ver Bi ndAddr ess" >${j boss. bi nd. addr ess} </ attri but e>
<attribute nane="serverBi ndPort">4446</attri but e>

<l-- <attribute
nane="cl i ent Connect Addr ess" >216. 23. 33. 2</attri bute> -->
<l-- <attribute nane="client Connect Port">7777</attribute> -->

<attribute nane="enabl eTcpNoDel ay"
i sParanE"true">true</attri bute>

<l-- <attribute name="backl og">200</attri bute>-->

<l-- The following is for callback configuration and is
i ndependant of invoker type -->

<I-- <attribute name="cal | backMenCei |l i ng">30</attri bute>-->

<I-- indicates callback store by fully qualified class nane
S

<l-- <attribute
nanme="cal | backSt or e" >or g. j boss. renoti ng. Cal | backSt ore</attri bute>-->

<I-- indicates callback store by object nanme -->

<I--

<attribute nane="cal | backStore">
j boss. renoting: servi ce=Cal | backSt ore, t ype=Seri al i zabl e
</attribute>

-->

<I-- config parans for callback store. if were declaring
cal | back store via object nanme, -->

<!-- could have specified these config parans there. -->

<I-- StoreFilePath indicates to which directory to wite the
cal | back objects. -->

<!-- The default value is the property val ue of
'j boss. server.data.dir' and

if this is not set, -->

291

Chapter 9. Security on JBoss

<I-- then will be 'data'. WII then append 'renpoting' and the
call back client's session id. -->

<!-- An exanple woul d be
' dat a\r enot i ng\ 5¢4005I - 9j i j yx- e5b6xyph- 1- e5b6xyph-2'. -->

<I-- <attribute name="StoreFil ePat h">cal | back</attri bute>-->

<I-- StoreFileSuffix indicates the file suffix to use

for the call back objects witten to disk. -->
<I-- The default value for file suffix is "ser'. -->
<I-- <attribute nane="StoreFil eSuffix">cst</attribute>-->

</i nvoker >

<l-- At least one handler is required by the connector. |If have
nore than one, nust decalre -->
<l-- different subsystem values. herw se, all invocations
will be routed to the only one -->
<l-- that is declared. -->
<handl| er s>
<I-- can also specify handler by fully qualified classnane
S
<handl er

subsyst en¥"i nvoker " >j boss: servi ce=i nvoker, t ype=uni fi ed</ handl er >
</ handl er s>
</ confi g>
</attribute>
<depends>j boss. renot i ng: servi ce=Net wor kRegi stry</ depends>
</ nbean>

and add the following in it's place:

<nbean code="org.j boss.renoting.transport. Connector"
xnmbean- dd="or g/ j boss/ renoti ng/transport/ Connect or. xm "
nane="j boss. renot i ng: servi ce=Connect or, t ransport =ssl socket " >
di spl ay- nane="SSL Socket transport Connector">

<attribute nane="Configuration">
<confi g>
<i nvoker transport="ssl socket">
<attribute nane="server Socket Fact ory" >
j boss. remoti ng: servi ce=Ser ver Socket Fact ory, t ype=SSL
</attribute>
<attribute
name="ser ver Bi ndAddr ess" >${] boss. bi nd. addr ess} </ attri but e>
<attribute nanme="serverBi ndPort">3843</attri bute>
</i nvoker >
<handl er s>
<handl er
subsyst en¥"i nvoker " >j boss: servi ce=i nvoker, t ype=uni fi ed</ handl| er >
</ handl er s>

</ confi g>
</attri bute>
<!--If you specify the keystore and password in the command |ine and

you're
not using the custom Server Socket Factory, you shoul d take out the
follow ng line-->
<depends>j boss. renpt i ng: servi ce=Ser ver Socket Fact ory, t ype=SSL</ depends>

292

Configuring JBoss for use Behind a Firewall

<depends>j boss. renot i ng: servi ce=Net wor kRegi st ry</ depends>
</ mbean>

8.2.4. Setting up the client to use the truststore

This is similar to the steps described for EJB3.

9. Configuring JBoss for use Behind a Firewall

JBoss comes with many socket based services that open listening ports. In this section we list
the services that open ports that might need to be configured to work when accessing JBoss
behind a firewall. The following table shows the ports, socket type, associated service for the
services in the default configuration file set. Table 9.2, “Additional ports in the all configuration”
shows the same information for the additional ports that exist in the all configuration file set.

Port Type Service

1098 TCP org.j boss. nani ng. Nam ngSer vi ce

1099 TCP org.j boss. nanm ng. Nanmi ngServi ce

4444 TCP org.jboss.invocation.jrnp.server.JRVPI nvoker
4445 TCP org.j boss.invocation. pool ed. server. Pool edl nvoker
8009 TCP org.j boss. web. tontat.tc4. EnbeddedTontat Ser vi ce
8080 TCP org.j boss. web. tontat.tc4. EnbeddedTontat Ser vi ce
8083 TCP org.j boss. web. WebSer vi ce

8093 TCP org.jboss.ng.il.uil2 U LServerlLService

Table 9.1. The ports found in the default configuration

Port Type Service

1100 TCP org.j boss. ha. j ndi . HANani ngSer vi ce

1101 TCP org. j boss. ha. j ndi . HANami ngServi ce

1102 UDP org.j boss. ha.jndi . HANani ngSer vi ce

1161 UDP org.j boss.j nmx. adapt or. snnp. agent . SnnpAgent Ser vi ce
1162 UDP org. j boss. j nx. adapt or. snnp. t rapd. Tr apdSer vi ce
3528 TCP org.jboss.invocation.iiop.!|OPlnvoker

4447 TCP org.jboss.invocation.jrnp.server.JRVPI nvoker HA
455662 UDP org.jboss. ha. framewor k. server. ClusterPartition

2 Plus two additional anonymous UDP ports, one can be set using the r cv_por t , and the other cannot be set.

Table 9.2. Additional ports in the all configuration

293

Chapter 9. Security on JBoss

10. How to Secure the JBoss Server

JBoss comes with several admin access points that need to be secured or removed to prevent
unauthorized access to administrative functions in a deployment. This section describes the
various admin services and how to secure them.

10.1. The JMX Console

The j nx- consol e. war found in the deploy directory provides an html view into the JIMX
microkernel. As such, it provides access to arbitrary admin type access like shutting down the
server, stopping services, deploying new services, etc. It should either be secured like any other
web application, or removed.

10.2. The Web Console

The web- consol e. war found in the depl oy/ managenent directory is another web application
view into the JMX microkernel. This uses a combination of an applet and a HTML view and
provides the same level of access to admin functionality as the j nx- consol e. war . As such, it
should either be secured or removed. The web- consol e. war contains commented out
templates for basic security in its WEB- | NF/ web. xm as well as commented out setup for a
security domain in VEB- | NF/ j boss- web. xni .

10.3. The HTTP Invokers

The htt p-i nvoker. sar found in the deploy directory is a service that provides RMI/HTTP
access for EJBs and the JNDI Nani ng service. This includes a servlet that processes posts of
marshalled or g. j boss. i nvocati on. | nvocat i on objects that represent invocations that should
be dispatched onto the MBeanSer ver . Effectively this allows access to MBeans that support the
detached invoker operation via HTTP since one could figure out how to format an appropriate
HTTP post. To security this access point you would need to secure the JMXI nvoker Ser vl et
servlet found in the ht t p-i nvoker. sar/i nvoker. war/VWEB- | NF/ web. xnl descriptor. There is a
secure mapping defined for the / rest ri ct ed/ JMXI nvoker Ser vl et path by default, one would
simply have to remove the other paths and configure the ht t p-i nvoker security domain setup
in the htt p-i nvoker. sar/i nvoker. war/WEB- | NF/ j boss-web. xm descriptor.

10.4. The JMX Invoker

The j nx-i nvoker - adapt or - server . sar is a service that exposes the IMX MBeanServer
interface via an RMI compatible interface using the RMI/JJRMP detached invoker service. The
only way for this service to be secured currently would be to switch the protocol to RMI/HTTP
and secure the htt p-i nvoker. sar as described in the previous section. In the future this
service will be deployed as an XMBean with a security interceptor that supports role based
access checks.

294

Chapter 10.

Web Services

The biggest new feature of J2EE 1.4 is the ability of J2EE components to act both as web
service providers and consumers.

1. Document/Literal

With document style web services two business partners agree on the exchange of complex
business documents that are well defined in XML schema. For example, one party sends a
document describing a purchase order, the other responds (immediately or later) with a
document that describes the status of the purchase order. No need to agree on such low level
details as operation names and their associated parameters. The payload of the SOAP
message is an XML document that can be validated against XML schema. Document is defined
by the style attribute on the SOAP binding.

<bi ndi ng nanme=' Endpoi nt | nt erfaceBi ndi ng' type='tns: Endpoi ntlnterface' >
<soap: bi ndi ng styl e=' docunent'
transport="http://schemas. xm soap. or g/ soap/ http' />
<oper ati on nane=' concat' >
<soap: operati on soapAction=""/>
<i nput >
<soap: body use='literal'/>
</i nput >
<out put >
<soap: body use='literal'/>
</ out put >
</ oper ati on>
</ bi ndi ng>

With document style web services the payload of every message is defined by a complex type
in XML schema.

<conpl exType nanme='concat Type' >
<sequence>
<el ement nane='String 1' nillable="true' type='string' />
<el ement name='long_1' type='long'/>
</ sequence>
</ conpl exType>
<el ement nane='concat' type='tns:concat Type' />
Therefore, nessage parts nust refer to an elenent fromthe schena.
<message nane=' Endpoi ntl|nterface_concat' >
<part name=' paraneters' elenent='"tns:concat'/>
</ nessage>
The followi ng message definition is invalid.
<nmessage nane=' Endpoi nt | nterface_concat' >
<part name='paraneters' type='tns:concat Type'/>

295

Chapter 10. Web Services

</ nessage>

2. Document/Literal (Bare)

Bare is an implementation detail from the Java domain. Neither in the abstract contract (i.e.
wsdl+schema) nor at the SOAP message level is a bare endpoint recognizable. A bare endpoint
or client uses a Java bean that represents the entire document payload.

@\ebServi ce
@0APBI ndi ng(par anet er Styl e = SOAPBi ndi ng. Par anet er St yl e. BARE)
publ i c cl ass DocBareServi cel npl

{
@\bMet hod
publ i ¢ Subm t Bar eResponse subm t PQ{ Submi t Bar eRequest poRequest)

{

}
}

The trick is that the Java beans representing the payload contain JAXB annotations that define
how the payload is represented on the wire.

@Xm Accessor Type(Xm AccessType. Fl ELD)
@Xm Type(nane = "Subm t Bar eRequest ",
nanmespace="htt p: // soapbi ndi ng. sanpl es. j axws. ws. test.j boss.org/", propOrder =
{ "product" })
@ Root El ement (namespace="htt p: // soapbi ndi ng. sanpl es. j axws. ws. test.j boss.org/",
name = "Subm t PO")
public class Subm t Bar eRequest

{

@Xm El enent (nanespace="htt p://soapbi ndi ng. sanpl es. j axws. ws. test. j boss. org/ ",
required = true)
private String product;

3. Document/Literal (Wrapped)

Wrapped is an implementation detail from the Java domain. Neither in the abstract contract (i.e.
wsdl+schema) nor at the SOAP message level is a wrapped endpoint recognizable. A wrapped
endpoint or client uses the individual document payload properties. Wrapped is the default and
does not have to be declared explicitly.

296

RPC/Literal

@\ebServi ce

public class DocW appedServi cel npl
{
@\bMet hod

@Request W apper (cl assNane="or g. sonmepackage. Subni t PO")
@ResponseW apper (cl assNane="or g. sonepackage. Subni t POResponse")
public String subm tPQ(String product, int quantity)

{

}

Note, that with JBossWS the request/response wrapper annotations are not required, they will
be generated on demand using sensible defaults.

4. RPC/Literal

With RPC there is a wrapper element that names the endpoint operation. Child elements of the
RPC parent are the individual parameters. The SOAP body is constructed based on some
simple rules:

* The port type operation name defines the endpoint method name
* Message parts are endpoint method parameters

RPC is defined by the style attribute on the SOAP binding.

<bi ndi ng nanme=' Endpoi nt | nt er f aceBi ndi ng' type='tns: Endpoi ntlnterface'>
<soap: bi ndi ng styl e='rpc
transport="http://schemas. xm soap. org/ soap/ http'/>
<operation nane='echo' >
<soap: oper ati on soapAction=""/>
<i nput >
<soap: body
nanmespace="' http://org.jboss. ws/sanpl es/jsr181pojo' use='literal'/>
</i nput >
<out put >
<soap: body
nanespace=' http://org.jboss. ws/sanpl es/jsr181lpoj o' use='literal'/>
</ out put >
</ oper ati on>
</ bi ndi ng>

With rpc style web services the portType names the operation (i.e. the java method on the
endpoint)

<port Type nane=' Endpoi nt| nterface' >
<operation nane='echo' paraneterOrder="String_1'>

297

Chapter 10. Web Services

<i nput message='tns: Endpoi ntlnterface_echo' />
<out put
nessage='t ns: Endpoi nt I nt erf ace_echoResponse' / >
</ oper ati on>
</ port Type>

Operation parameters are defined by individual message parts.

<message hane=' Endpoi ntlnterface_echo' >
<part name='String_1' type='xsd:string' />
</ nessage>
<nmessage nane=' Endpoi nt| nterface_echoResponse' >
<part name='result' type=' xsd:string' />
</ nessage>

Note, there is no complex type in XML schema that could validate the entire SOAP message
payload.

@\ebServi ce
@50APBI ndi ng(styl e = SOAPBI ndi ng. St yl e. RPC)
public class JSEBean0O1

{

@\bMet hod

@\ébResul t (nanme="result")

public String echo(@ebParan(nane="String_1") String input)

{

}

The element names of RPC parameters/return values may be defined using the JAX-WS
Annotations#javax.jws.WebParam and JAX-WS Annotations#javax.jws.WebResult respectively.

5. RPC/Encoded

SOAP encodeding style is defined by the infamous chapter 5% of the SOAP-1.12 specification. It
has inherent interoperability issues that cannot be fixed. The Basic Profile-1.0% prohibits this
encoding style in 4.1.7 SOAP encodingStyle Attribute®. JBossWS has basic support for
rpc/encoded that is provided as is for simple interop scenarios with SOAP stacks that do not
support literal encoding. Specifically, JBossWS does not support:-

* element references

1 http:/Amvww.w3.0rg/ TR/2000/NOTE-SOAP-20000508/# _Toc478383512

2 http://www.w3.0rg/TR/2000/NOTE-SOAP-20000508/

8 http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html

4 http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html#refinement16448072

298

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/#_Toc478383512
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/#_Toc478383512
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html#refinement16448072
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html#refinement16448072

Web Service Endpoints

e soap arrays as bean properties

6. Web Service Endpoints

JAX-WS simplifies the development model for a web service endpoint a great deal. In short, an
endpoint implementation bean is annotated with JAX-WS annotations and deployed to the
server. The server automatically generates and publishes the abstract contract (i.e.
wsdl+schema) for client consumption. All marshalling/unmarshalling is delegated to JAXB [2].

7. Plain old Java Object (POJO)

Let's take a look at simple POJO endpoint implementation. All endpoint associated metadata is
provided via JSR-181 annotations

@\ebServi ce
@0OAPBI ndi ng(styl e = SOAPBi ndi ng. Styl e. RPC)
public class JSEBean0O1l

{
@\bMet hod
public String echo(String input)
{
}

8. The endpoint as a web application

A JAX-WS java service endpoint (JSE) is deployed as a web application.

<web-app ...>
<servl et >
<servl et - nane>Test Ser vi ce</ ser vl et - nane>
<servl et-cl ass>org. j boss. test.ws.jaxws. sanpl es. j sr181poj 0. JSEBean01</ servl et - cl ass>
</servl et>
<servl et - mappi ng>
<servl et - nane>Test Ser vi ce</ ser vl et - nane>
<url-pattern>/*</url-pattern>
</ servl et - mappi ng>
</ web- app>

9. Packaging the endpoint

A JSR-181 java service endpoint (JSE) is packaged as a web application in a *.war file.

<war warfile="${build.dir}/libs/jbossws-sanples-jsr181pojo.war"

299

Chapter 10. Web Services

webxm ="${bui |l d. resources. dir}/sanpl es/j sr181poj o/ WEB- | NF/ web. xmi " >
<cl asses dir="${build.dir}/classes">
<i ncl ude nane="org/j boss/test/ws/sanpl es/j sr181poj o/ JSEBean01. cl ass"/ >
</ cl asses>
</ war >

Note, only the endpoint implementation bean and web.xml are required.

10. Accessing the generated WSDL

A successfully deployed service endpoint will show up in the service endpoint manager. This is
also where you find the links to the generated wsdl.

http://yourhost: 8080/ bossws/ servi ces

Note, it is also possible to generate the abstract contract off line using jpossw tools. For details
of that please see #Top Down (Java to WSDL)®

11. EJB3 Stateless Session Bean (SLSB)

The JAX-WS programming model support the same set of annotations on EJB3 stateless
session beans as on # Plain old Java Object (POJO)6 endpoints. EJB-2.1 endpoints are
supported using the JAX-RPC progamming model.

@t at el ess
@=enot e(EJB3Renot el nt er f ace. cl ass)
@=enot eBi ndi ng(j ndi Bi nding = "/ ej b3/ EJB3Endpoi nt | nt er f ace")

@\ebServi ce
@0APBI ndi ng(styl e = SOAPBi ndi ng. Styl e. RPC)
public class EIJB3Bean0l1l i npl ements EJB3Renot el nt er f ace

{
@ebMet hod

public String echo(String input)
{

}

Above you see an EJB-3.0 stateless session bean that exposes one method both on the remote
interface and on and as an endpoint operation.

® http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Top_Down_.28Java_to_WSDL.29
6 http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#_Plain_old_Java_Object_.28P0JO.29

300

http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Top_Down_.28Java_to_WSDL.29
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Top_Down_.28Java_to_WSDL.29
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#_Plain_old_Java_Object_.28POJO.29
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#_Plain_old_Java_Object_.28POJO.29

Endpoint Provider

Packaging the endpoint

A JSR-181 EJB service endpoint is packaged as an ordinary ejb deployment.

<jar jarfile="${build.dir}/libs/jbossws-sanpl es-jsrl18lejb.jar">
<fileset dir="${build.dir}/classes">

<i ncl ude name="org/j boss/test/ws/sanpl es/j sr18lej b/ EJB3BeanO1l. cl ass"/ >
<i ncl ude

nane="or g/ j boss/test/ws/ sanpl es/jsr18lej b/ EJB3Renvt el nt er f ace. cl ass"/ >
</fileset>

</jar>

Accessing the generated WSDL

A successfully deployed service endpoint will show up in the service endpoint manager. This is
also where you find the links to the generated wsdl.

http://your host: 8080/ bossws/ servi ces

Note, it is also possible to generate the abstract contract off line using jbossw tools. For details
of that please see #Top Down (Java to WSDL)7

12. Endpoint Provider

JAX-WS services typically implement a native Java service endpoint interface (SEI), perhaps
mapped from a WSDL port type, either directly or via the use of annotations.

Java SEls provide a high level Java-centric abstraction that hides the details of converting
between Java objects and their XML representations for use in XML-based messages.
However, in some cases it is desirable for services to be able to operate at the XML message
level. The Provider interface offers an alternative to SEls and may be implemented by services
wishing to work at the XML message level.

A Provider based service instance’s invoke method is called for each message received for the
service.

@\ebSer vi cePr ovi der

@er vi ceMode(val ue = Servi ce. Mode. PAYLQAD)

public class Provi der BeanPayl oad i npl enents Provi der <Sour ce>
{

publ i ¢ Source invoke(Source req)

{
/] Access the entire request PAYLOAD and return the response PAYLOAD

! http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Top_Down_.28Java_to_WSDL.29

301

http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Top_Down_.28Java_to_WSDL.29
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Top_Down_.28Java_to_WSDL.29

Chapter 10. Web Services

Note, Service.Mode.PAYLOAD is the default and does not have to be declared explicitly. You
can also use Service.Mode.MESSAGE to access the entire SOAP message (i.e. with
MESSAGE the Provider can also see SOAP Headers)

13. WebServiceContext

The WebServiceContext is treated as an injectable resource that can be set at the time an
endpoint is initialized. The WebServiceContext object will then use thread-local information to
return the correct information regardless of how many threads are concurrently being used to
serve requests addressed to the same endpoint object.

@\ebServi ce

public class Endpoi nt JSE
{

@Resour ce

WebSer vi ceCont ext wsCt x;

@\ebMet hod
public String testGet MessageCont ext ()
{

SOAPMessageCont ext j axwsCont ext =
(SCAPMessageCont ext) wsCt x. get MessageCont ext () ;

return jaxwsContext != null ? "pass" : "fail";
}

@\bMet hod

public String testGetUserPrincipal ()

{

Princi pal principal = wsCtx.getUserPrincipal ();
return principal.getNanme();

}

@\bMet hod
publ i ¢ bool ean testlsUserlnRol e(String role)

{

return wsCt x.i sUserl nRol e(rol e);

}
}

14. Web Service Clients

14.1. Service

Ser vi ce is an abstraction that represents a WSDL service. A WSDL service is a collection of

302

Service

related ports, each of which consists of a port type bound to a particular protocol and available
at a particular endpoint address.

For most clients, you will start with a set of stubs generated from the WSDL. One of these will
be the service, and you will create objects of that class in order to work with the service (see
"static case" below).

14.1.1. Service Usage

Static case

Most clients will start with a WSDL file, and generate some stubs using jpossws tools like
wsconsume. This usually gives a mass of files, one of which is the top of the tree. This is the
service implementation class.

The generated implementation class can be recognised as it will have two public constructors,
one with no arguments and one with two arguments, representing the wsdl location (a
java.net.URL) and the service name (a javax.xml.namespace.QName) respectively.

Usually you will use the no-argument constructor. In this case the WSDL location and service
name are those found in the WSDL. These are set implicitly from the WebServiceClient
annotation that decorates the generated class.

The following code snippet shows the generated constructors from the generated class:

/|l Generated Service C ass

@\ebServi ced i ent (name="St ockQuot eSer vi ce",
t ar get Nanespace="htt p: // exanpl e. conf st ocks",
wsdl Locati on="http://exanpl e. com st ocks. wsdl ")
public class StockQuoteService extends javax.xm .ws. Servi ce

{
publ i c St ockQuot eServi ce()

{
super (new URL("http://exanpl e. conf st ocks. wsdl "), new

Nanme("http://exanmpl e. conl st ocks", "StockQuoteService"));
}

publ i ¢ St ockQuot eService(String wsdl Locati on, QNane servi ceNane)

{

super (wsdl Locati on, servi ceNane);

}

Section #Dynamic Proxy8 explains how to obtain a port from the service and how to invoke an
operation on the port. If you need to work with the XML payload directly or with the XML
representation of the entire SOAP message, have a look at #Dispatchg.

8 http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Dynamic_Proxy

303

http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Dynamic_Proxy
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Dynamic_Proxy
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Dispatch

Chapter 10. Web Services

Dynamic case

In the dynamic case, when nothing is generated, a web service client uses Ser vi ce. creat e to
create Service instances, the following code illustrates this process.

URL wsdl Location = new URL("http://exanple.org/m.wsdl");
Nane servi ceNamre = new QNane("http://exanpl e. org/ sanpl e", "M/Service");
Service service = Service. creat e(wsdl Locati on, servi ceNane);

This is the nastiest way to work with JBossWs. Older versions have extensive details on DIl as it
was then known.

14.1.2. Handler Resolver

JAX-WS provides a flexible plug-in framework for message processing modules, known as
handlers, that may be used to extend the capabilities of a JAX-WS runtime system. #Handler
Framework® describes the handler framework in detail. A Service instance provides access to
a HandlerResolver via a pair of getHandlerResolver/setHandlerResolver methods that may be
used to configure a set of handlers on a per-service, per-port or per-protocol binding basis.

When a Service instance is used to create a proxy or a Dispatch instance then the handler
resolver currently registered with the service is used to create the required handler chain.
Subsequent changes to the handler resolver configured for a Service instance do not affect the
handlers on previously created proxies, or Dispatch instances.

14.1.3. Executor

Service instances can be configured with a java.util.concurrent.Executor. The executor will then
be used to invoke any asynchronous callbacks requested by the application. The setExecutor
and getExecutor methods of Service can be used to modify and retrieve the executor configured
for a service.

14.2. Dynamic Proxy

You can create an instance of a client proxy using one of getPort methods on the #Service®®.

/**

* The getPort nethod returns a proxy. A service client

* uses this proxy to invoke operations on the target

* service endpoint. The <code>servi ceEndpoi nt | nterface</code>

* specifies the service endpoint interface that is supported by
* the created dynam c proxy instance.

**/

public <T> T getPort(Q\Nanme portNanme, Cl ass<T> servi ceEndpoi ntl nterface)

® http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Dispatch
10 http:/fjows.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Handler_Framework
un http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Service

304

http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Dispatch
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Handler_Framework
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Handler_Framework
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Handler_Framework
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Service
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Service

WebServiceRef

/**
* The getPort nmethod returns a proxy. The paraneter
* <code>servi ceEndpoi nt I nterface</code> specifies the service
* endpoint interface that is supported by the returned proxy.
* In the inplementation of this method, the JAX-WS
* runtinme systemtakes the responsibility of selecting a protocol
* binding (and a port) and configuring the proxy accordingly.
* The returned proxy should not be reconfigured by the client.

**/
public <T> T getPort(C ass<T> servi ceEndpoi nt| nt erface)

{

The service endpoint interface (SEI) is usually generated using tools. For details see # Top
Down (WSDL to Java)12

A generated static #Service®® usually also offers typed methods to get ports. These methods

also return dynamic proxies that implement the SEI.

@ebServi ceC i ent (nane = "Test Endpoi nt Servi ce", target Nanespace =
"http://org.jboss. ws/wsref",

wsdl Location =
"http://1ocal host .| ocal dormai n: 8080/ j axws- sanpl es- webser vi cer ef 2wsdl ")

publi c class Test Endpoi nt Servi ce extends Service

{

publ i ¢ Test Endpoi nt Servi ce(URL wsdl Locati on, QName servi ceNane) ({
super (wsdl Locat i on, servi ceNane) ;

}

@\éebEndpoi nt (name = " Test Endpoi nt Port")
publ i ¢ Test Endpoi nt get Test Endpoi nt Port ()

{
return (Test Endpoi nt) super. get Port (TESTENDPO NTPORT,

Test Endpoi nt . cl ass) ;
}
}

14.3. WebServiceRef

12 nttp:/fbws.dyndns.org/mediawiki/index.php2title=JAX-WS_User_Guide#_Top_Down_.28WSDL_to_Java.29
18 http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Service

305

http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#_Top_Down_.28WSDL_to_Java.29
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#_Top_Down_.28WSDL_to_Java.29
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#_Top_Down_.28WSDL_to_Java.29
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Service
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Service

Chapter 10. Web Services

The WebServiceRef annotation is used to declare a reference to a Web service. It follows the
resource pattern exemplified by the javax.annotation.Resource annotation in JSR-250 [5]

There are two uses to the WebServiceRef annotation:

1. To define a reference whose type is a generated service class. In this case, the type and
value element will both refer to the generated service class type. Moreover, if the reference
type can be inferred by the field/method declaration the annotation is applied to, the type and
value elements MAY have the default value (Object.class, that is). If the type cannot be
inferred, then at least the type element MUST be present with a non-default value.

2. To define a reference whose type is a SEI. In this case, the type element MAY be present
with its default value if the type of the reference can be inferred from the annotated
field/method declaration, but the value element MUST always be present and refer to a
generated service class type (a subtype of javax.xml.ws.Service). The wsdlLocation element,
if present, overrides theWSDL location information specified in the WebService annotation of
the referenced generated service class.

public class EIJB3Cient inplenents EIJB3Renote

{
@\ebSer vi ceRef
publ i c Test Endpoi nt Servi ce servi ce4;

@\ebSer vi ceRef
publ i ¢ Test Endpoi nt port 3;

WebServiceRef Customization

In jboss-5.0.x we offer a number of overrides and extensions to the WebServiceRef annotation.
These include

« define the port that should be used to resolve a container-managed port

« define default Stub property settings for Stub objects

« define the URL of a final WSDL document to be used

Example:

<service-ref>

<servi ce-ref-name>0rgani zati onSer vi ce</ servi ce-r ef - name>

<wsdl -override>fil e:/wsdl Reposi t ory/ organi zati on-servi ce. wsdl </ wsdl - overri de>
</ service-ref>

<service-ref>

306

Dispatch

<servi ce-ref-name>0rgani zat i onSer vi ce</ servi ce-r ef - nane>

<confi g- name>Secure dient Config</config-nanme>

<config-fil e>META-| NF/j bossws-client-config.xm </config-file>
<handl er - chai n>META- | NF/ j bossws- cl i ent - handl er s. xm </ handl er - chai n>
</ service-ref>

<servi ce-ref>
<servi ce-ref-name>Secur eServi ce</ servi ce-ref - nane>

<servi ce-cl ass- name>or g. j boss. t est s. ws. j axws. webser vi cer ef . Secur eEndpoi nt Ser vi ce</ servi ce-cl
<servi ce-qnane>{http://org.jboss. ws/wsref } Secur eEndpoi nt Ser vi ce</ servi ce- gnanme>

<port-info>

<servi ce- endpoi nt-i nterface>org.j boss. tests.ws.jaxws. webservi ceref. Secur eEndpoi nt </ servi ce- el

<port-qgnane>{http://org.jboss. ws/wsref}Secur eEndpoi nt Port </ port - gnane>
<st ub- property>

<nane>j avax. xm . ws. securi ty. aut h. user nanme</ nane>
<val ue>kerm t </ val ue>

</ st ub- property>

<st ub- property>

<name>j avax. xm . ws. securi ty. aut h. passwor d</ nane>
<val ue>t hef r og</ val ue>

</ st ub- property>

</ port-info>

</ service-ref>

For details please see service-ref_5 0.dtd in the jboss docs directory.

14.4. Dispatch

XMLWeb Services use XML messages for communication between services and service clients.
The higher level JAX-WS APIs are designed to hide the details of converting between Java
method invocations and the corresponding XML messages, but in some cases operating at the
XML message level is desirable. The Dispatch interface provides support for this mode of
interaction.

Dispatch supports two usage modes, identified by the constants
javax.xml.ws.Service.Mode.MESSAGE and javax.xml.ws.Service.Mode.PAYLOAD respectively:

Message In this mode, client applications work directly with protocol-specific message
structures. E.g., when used with a SOAP protocol binding, a client application would work
directly with a SOAP message.

Message Payload In this mode, client applications work with the payload of messages rather
than the messages themselves. E.g., when used with a SOAP protocol binding, a client
application would work with the contents of the SOAP Body rather than the SOAP message as
a whole.

Dispatch is a low level API that requires clients to construct messages or message payloads as
XML and requires an intimate knowledge of the desired message or payload structure. Dispatch
is a generic class that supports input and output of messages or message payloads of any type.

307

Chapter 10. Web Services

Service service = Service. create(wsdl URL, servi ceNane);
Di spatch di spatch = service. creat eDi spat ch(portNanme, StreanfSource. cl ass,
Mode. PAYLQAD) ;

String payl oad = "<ns1: pi ng
xm ns: nsl='"http://oneway. sanpl es. j axws. ws. test.j boss.org/'/>";
di spat ch. i nvokeOneWay(new StreanSour ce(new Stri ngReader (payl oad)));

payl oad = "<nsl:feedback

xm ns: nsl='"http://oneway. sanpl es. j axws. ws. test.j boss.org/'/>";
Source ret Cbj = (Source)dispatch.invoke(new StreanSource(new
Stri ngReader (payl oad))) ;

14.5. Asynchronous Invocations

The BindingProvider interface represents a component that provides a protocol binding for use
by clients, it is implemented by proxies and is extended by the Dispatch interface.

BindingProvider instances may provide asynchronous operation capabilities. When used,
asynchronous operation invocations are decoupled from the BindingProvider instance at
invocation time such that the response context is not updated when the operation completes.
Instead a separate response context is made available using the Response interface.

public void testlnvokeAsync() throws Exception

{
URL wsdl URL = new URL("http://" + getServerHost() +

": 8080/ j axws- sanpl es- asynchr onous?wsdl ") ;

MName servi ceName = new QNane(targetNS, "TestEndpoint Service");
Service service = Service. create(wsdl URL, serviceNane);

Test Endpoi nt port = service. get Port (Test Endpoi nt . cl ass) ;

Response response = port.echoAsync("Async");

/| access future
String retStr = (String) response.get();
assert Equal s("Async", retStr);

}

14.6. Oneway Invocations

@Oneway indicates that the given web method has only an input message and no output.
Typically, a oneway method returns the thread of control to the calling application prior to
executing the actual business method.

@ebServi ce (nanme="Pi ngEndpoi nt")
@0APBI ndi ng(styl e = SOAPBi ndi ng. Styl e. RPC)

308

Common API

public class Pi ngEndpoi nt| npl
{

private static String feedback;

@\¥bMet hod

@neway

public void ping()
{

| og. i nfo("ping");
f eedback = "ok";

}

@\ebMet hod

public String feedback()
{

| og. i nfo("feedback");
return feedback;

}
}

15. Common API

This sections describes concepts that apply equally to #Web Service Endpoints14 and #Web
Service Clients™®

15.1. Handler Framework

The handler framework is implemented by a JAX-WS protocol binding in both client and server
side runtimes. Proxies, and Dispatch instances, known collectively as binding providers, each
use protocol bindings to bind their abstract functionality to specific protocols.

Client and server-side handlers are organized into an ordered list known as a handler chain.
The handlers within a handler chain are invoked each time a message is sent or received.
Inbound messages are processed by handlers prior to binding provider processing. Outbound
messages are processed by handlers after any binding provider processing.

Handlers are invoked with a message context that provides methods to access and modify
inbound and outbound messages and to manage a set of properties. Message context
properties may be used to facilitate communication between individual handlers and between
handlers and client and service implementations. Different types of handlers are invoked with
different types of message context.

15.1.1. Logical Handler

Handlers that only operate on message context properties and message payloads. Logical
handlers are protocol agnostic and are unable to affect protocol specific parts of a message.

14 http:/ljows.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Web_Service_Endpoints
1 http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Web_Service_Clients

309

http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Web_Service_Endpoints
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Web_Service_Endpoints
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Web_Service_Clients
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Web_Service_Clients
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#Web_Service_Clients

Chapter 10. Web Services

Logical handlers are handlers that implement javax.xml.ws.handler.LogicalHandler.

15.1.2. Protocol Handler

Handlers that operate on message context properties and protocol specific messages. Protocol
handlers are specific to a particular protocol and may access and change protocol specific
aspects of a message. Protocol handlers are handlers that implement any interface derived
from javax.xml.ws.handler.Handler except javax.xml.ws.handler.LogicalHandler.

15.1.3. Service endpoint handlers

On the service endpoint, handlers are defined using the @HandlerChain annotation.

@\ebServi ce

@andl er Chai n(file = "jaxws-server-source-handl ers. xm ")
publ i c cl ass SOAPEndpoi nt Sour cel npl

{

}

The location of the handler chain file supports 2 formats
1. An absolute java.net.URL in externalForm. (ex: http://myhandlers.foo.com/handlerfilel.xml)

2. A relative path from the source file or class file. (ex: bar/handlerfilel.xml)

15.1.4. Service client handlers

On the client side, handler can be configured using the @HandlerChain annotation on the SEI
or dynamically using the API.

Service service = Service. create(wsdl URL, servi ceNane);
Endpoi nt port = (Endpoi nt)service. get Port (Endpoi nt. cl ass);

Bi ndi ngPr ovi der bi ndi ngProvi der = (Bi ndi ngProvi der) port;

Li st <Handl er > handl er Chai n = new ArrayLi st <Handl er>();

handl er Chai n. add(new LogHandl er());

handl er Chai n. add(new Aut hori zati onHandl er());

handl er Chai n. add(new Rout i ngHandl er());

bi ndi ngPr ovi der . get Bi ndi ng() . set Handl er Chai n(handl er Chain); // inportant!

15.2. Message Context

MessageContext is the super interface for all JAX-WS message contexts. It extends
Map<String,Object> with additional methods and constants to manage a set of properties that

310

http://myhandlers.foo.com/handlerfile1.xml

Fault Handling

enable handlers in a handler chain to share processing related state. For example, a handler
may use the put method to insert a property in the message context that one or more other
handlers in the handler chain may subsequently obtain via the get method.

Properties are scoped as either APPLICATION or HANDLER. All properties are available to all
handlers for an instance of an MEP on a particular endpoint. E.g., if a logical handler puts a
property in the message context, that property will also be available to any protocol handlers in
the chain during the execution of an MEP instance. APPLICATION scoped properties are also
made available to client applications and service endpoint implementations. The defaultscope
for a property is HANDLER.

15.2.1. Logical Message Context

#Logical Handlers®® are passed a message context of type LogicalMessageContext when
invoked. LogicalMessageContext extends MessageContext with methods to obtain and modify
the message payload, it does not provide access to the protocol specific aspects of amessage.
A protocol binding defines what component of a message are available via a logical message
context. The SOAP binding defines that a logical handler deployed in a SOAP binding can
access the contents of the SOAP body but not the SOAP headers whereas the XML/HTTP
binding defines that a logical handler can access the entire XML payload of a message.

15.2.2. SOAP Message Context

SOAP handlers are passed a SOAPMessageContext when invoked. SOAPMessageContext
extends MessageContext with methods to obtain and modify the SOAP message payload.

15.3. Fault Handling

An implementation may thow a SOAPFaultException

public void throwSoapFaul t Excepti on()

{
SQAPFact ory factory = SOAPFact ory. new nst ance();
SOAPFault fault = factory.createFault("this is a fault string!", new

Name("http://foo", "FooCode"));

fault.set Faul t Actor("nr.actor");

faul t.addDetail ().addChil dEl ement ("test");
t hr ow new SQAPFaul t Exception(fault);

}

or an application specific user exception

public void throwApplicati onException() throws User Exception
{

16#

311

#
#

Chapter 10. Web Services

t hrow new User Excepti on("val i dation", 123, "Sone validation error");

}

Note

In case of the latter JBossWS generates the required fault wrapper beans at
runtime if they are not part of the deployment

16. DataBinding

16.1. Using JAXB with non annotated classes

Since 2.0.2

JAXB is heavily driven by Java Annotations on the Java Bindings. It currently doesn't support an
external binding configuration. This recently became an issue for us on JBossESB since the
JBossWS 2.0.0 native SOAP stack uses JAXB to perform the SOAP to Java bindings (see 1, 2).
It's an issue for JBossESB simply because it needs to be able to support user definition of
JBossWS native Webservice Endpoints (e.g. JSR 181) using Java typesets that have not been
"JAXB Annotated" (see JAXB Introductions On JBossWS).

In order to support this, we built on a JAXB RI feature whereby it allows you to specify a
RuntimelnlineAnnotationReader implementation during JAXBContext creation (see
JAXBRIContext).

We call this feature "JAXB Annotation Introduction" and we've made it available for general
consumption i.e. it can be checked out, built and used from SVN:

« http://anonsvn.jboss.org/repos/jbossws/projects/jaxbintros/
Complete documentation can be found here:

+ JAXB Introductions®’

17. Attachments

17.1. MTOM/XOP

e http://wiki.jboss.org/wiki/Wiki.jsp?page=JAXBIntroductions

312

http://anonsvn.jboss.org/repos/jbossws/projects/jaxbintros/
http://wiki.jboss.org/wiki/Wiki.jsp?page=JAXBIntroductions
http://wiki.jboss.org/wiki/Wiki.jsp?page=JAXBIntroductions

MTOM/XOP

This section describes Message Transmission Optimization Mechanism (MTOM) and
XML-binary Optimized Packaging (XOP), a means of more efficiently serializing XML Infosets
that have certain types of content. The related specifications are

* SOAP Message Transmission Optimization Mechanism (MTOM)18

« XML-binary Optimized Packaging (XOP)lg

17.1.1. Supported MTOM parameter types

image/jpeg java.awt.Image

text/xml javax.xml.transform.Source
application/xml javax.xml.transform.Source
application/octet-stream javax.activation.DataHandler

The above table shows a list of supported endpoint parameter types. The recommended
approach is to use the javax.activation.DataHandIer20 classes to represent binary data as
service endpoint parameters.

Note

Microsoft endpoints tend to send any data as application/octet-stream. The only
Java type that can easily cope with this ambiguity is javax.activation.DataHandler

17.1.2. Enabling MTOM per endpoint

On the server side MTOM processing is enabled through the @i ndi ngType annotation.
JBossWS does handle SOAP1.1 and SOAP1.2. Both come with or without MTOM flavours:

MTOM enabled service implementations

package org.j boss.test.ws.jaxws. sanpl es. xop. doclit;

i mport javax.ejb. Renot e;

i nport javax.jws.WhbService;

i mport javax.jws. soap. SOAPBi ndi ng;
i mport javax.xm .ws. Bi ndi ngType;

@Renvot e

~nupgjava.sun.comyjZeel L.4/aocs/apijavaxiacuvaton/vatafanaier.nuni

313

http://www.w3.org/TR/soap12-mtom/
http://www.w3.org/TR/soap12-mtom/
http://www.w3.org/TR/xop10/
http://www.w3.org/TR/xop10/
http://java.sun.com/j2ee/1.4/docs/api/javax/activation/DataHandler.html
http://java.sun.com/j2ee/1.4/docs/api/javax/activation/DataHandler.html

Chapter 10. Web Services

@ebServi ce(target Namespace = "http://org.jboss. ws/xop/doclit")

@0APBI ndi ng(styl e = SOAPBI ndi ng. St yl e. DOCUVENT, paraneterStyle =

SOAPBI ndi ng. Par anet er St yl e. BARE)

@i ndi ngType(val ue="http://schemas. xm soap. or g/ wsdl / soap/ htt p?nmt omet r ue")

(1)
public interface MIOVEndpoi nt {

[...]
}

1. The MTOM enabled SOAP 1.1 binding ID

MTOM enabled clients

Web service clients can use the same approach described above or rely on the Bi ndi ng API to
enable MTOM (Excerpt taken from the
org.j boss. test.ws.jaxws. sanpl es. xop. docl i t. XOPTest Case):

(-]
Servi ce service = Service. create(wsdl URL, serviceNane);
port = service. get Port (MITOVEndpoi nt. cl ass);

/!l enabl e MIGM

bi ndi ng = (SCAPBI ndi ng) ((Bi ndi ngPr ovi der) port). get Bi ndi ng();
bi ndi ng. set MTOVEnabl ed(true);

Note

You might as well use the JBossWS configuration templates to setup deployment
defaults.

17.2. SwaRef

Since 2.0

WS-| Attachment Profile 1.0%* defines mechanism to reference MIME attachment parts using
swaRef?2. In this mechanism the content of XML element of type wsi:swaRef is sent as MIME
attachment and the element inside SOAP Body holds the reference to this attachment in the

21 http://www.ws-i.org/Profiles/AttachmentsProfile-1.0-2004-08-24.html
22

http://www.ws-i.org/Profiles/AttachmentsProfile-1.0-2004-08-24.html#Referencing_Attachments_from_the_SOAP_Envelope

314

http://www.ws-i.org/Profiles/AttachmentsProfile-1.0-2004-08-24.html
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0-2004-08-24.html
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0-2004-08-24.html#Referencing_Attachments_from_the_SOAP_Envelope
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0-2004-08-24.html#Referencing_Attachments_from_the_SOAP_Envelope

SwaRef

CID URI scheme as defined by RFC 211123,
17.2.1. Using SwaRef with JAX-WS endpoints

JAX-WS endpoints delegate all marshalling/unmarshalling to the JAXB API. The most simple
way to enable SwaRef encoding for Dat aHand! er types is to annotate a payload bean with the
@n At t achnent Ref annotation as shown below:

/**

* Payl oad bean that will use SwaRef encoding
*/

@m Root El enent

publ i c class Docunent Payl oad

{
pri vate Dat aHandl er dat a;

publ i ¢ Document Payl oad()
{
}

publ i ¢ Docunent Payl oad(Dat aHandl er dat a)
{

this.data = data;

}

@ El enent
@ At t achnent Ref
publ i ¢ Dat aHandl er get Dat a()

{

return data;

}

public voi d set Dat a(Dat aHandl er dat a)
{

this.data = data;
}
}

With document wrapped endpoints you may even specify the @Xnl At t achnent Ref annotation
on the service endpoint interface:

@\ébServi ce
public interface DocW appedEndpoi nt

{
@ebMet hod

Document Payl oad beanAnnot ati on(Docunent Payl oad dhw, String test);

@\ébMet hod
@ At t achnent Ref

2 http://www.ietf.org/rfc/rfc2111.txt

315

http://www.ietf.org/rfc/rfc2111.txt
http://www.ietf.org/rfc/rfc2111.txt

Chapter 10. Web Services

Dat aHandl er par anmet er Annot at i on(@<m At t achnent Ref Dat aHandl er data, String
test);

}

The message would then refer to the attachment part by CID:

<env: Envel ope xm ns: env='http://schenmas. xm soap. or g/ soap/ envel ope/ "' >
<env: Header/ >

<env: Body>

<ns2: par anet er Annot at i on

xm ns: ns2="http://swaref.sanpl es. j axws. ws. test.jboss.org/"'>

<ar g0>ci d: 0- 1180017772935- 32455963@ns. j boss. or g</ ar g0>

<ar g1>W apped test</argl>

</ ns2: par anet er Annot at i on>

</ env: Body>

</ env: Envel ope>

17.2.2. Starting from WSDL

If you chose the contract first approach then you need to ensure that any element declaration
that should use SwaRef encoding simply refers to wsi:swaRef schema type:

<el enrent nane="data" type="wsi:swaRef"
xm ns:wsi ="http://ws-i.org/profiles/basic/1.1/xsd"/>

Any wsi:swaRef schema type would then be mapped to DataHandler.

18. Tools

The JAX-WS tools provided by JBossWS can be used in a variety of ways. First we will look at
server-side development strategies, and then proceed to the client. When developing a Web
Service Endpoint (the server-side) you have the option of starting from Java (bottom-up
development), or from the abstact contract (WSDL) that defines your service (top-down
development). If this is a new service (no existing contract), the bottom-up approach is the
fastest route; you only need to add a few annotations to your classes to get a service up and
running. However, if you are developing a service with an already defined contract, it is far
simpler to use the top-down approach, since the provided tool will generate the annotated code
for you.

Bottom-up use cases:

316

Bottom-Up (Using wsprovide)

« Exposing an already existing EJB3 bean as a Web Service

» Providing a new service, and you want the contract to be generated for you
Top-down use cases:
» Replacing the implementation of an existing Web Service, and you can't break compatibility

with older clients

» Exposing a service that conforms to a contract specified by a third party (e.g. a vender that
calls you back using an already defined protocol).

» Creating a service that adheres to the XML Schema and WSDL you developed by hand up
front

The following JAX-WS command line tools are included in JBossWS:

Command Description

Wsprovide24 Generates JAX-WS portable artifacts, and
provides the abstract contract. Used for
bottom-up development.

wsconsume?® Consumes the abstract contract (WSDL and
Schema files), and produces artifacts for both
a server and client. Used for top-down and
client development

wsrunclient?® Executes a Java client (has a main method)
using the JBossWS classpath.

18.1. Bottom-Up (Using wsprovide)

The bottom-up strategy involves developing the Java code for your service, and then annotating
it using JAX-WS annotations. These annotations can be used to customize the contract that is
generated for your service. For example, you can change the operation name to map to
anything you like. However, all of the annotations have sensible defaults, so only the
@WebService annotation is required.

This can be as simple as creating a single class:

24 http://jbws.dyndns.org/mediawiki/index.php?title=Wsprovide
25 http:/fjows.dyndns.org/mediawiki/index. php?title=Wsconsume
26 http://jbws.dyndns.org/mediawiki/index.php?title=Wsrunclient

317

http://jbws.dyndns.org/mediawiki/index.php?title=Wsprovide
http://jbws.dyndns.org/mediawiki/index.php?title=Wsprovide
http://jbws.dyndns.org/mediawiki/index.php?title=Wsconsume
http://jbws.dyndns.org/mediawiki/index.php?title=Wsconsume
http://jbws.dyndns.org/mediawiki/index.php?title=Wsrunclient
http://jbws.dyndns.org/mediawiki/index.php?title=Wsrunclient

Chapter 10. Web Services

package echo;

@ avax. j ws. \ebSer vi ce
public class Echo

{
public String echo(String input)

{

return input;

}
}

A JSE or EJB3 deployment can be built using this class, and it is the only Java code needed to
deploy on JBossWS. The WSDL, and all other Java artifacts called "wrapper classes" will be
generated for you at deploy time. This actually goes beyond the JAX-WS specification, which
requires that wrapper classes be generated using an offline tool. The reason for this
requirement is purely a vender implementation problem, and since we do not believe in
burdening a developer with a bunch of additional steps, we generate these as well. However, if
you want your deployment to be portable to other application servers, you will unfortunately
need to use a tool and add the generated classes to your deployment.

This is the primary purpose of the wsprovide27 tool, to generate portable JAX-WS artifacts.
Additionally, it can be used to "provide" the abstract contract (WSDL file) for your service. This
can be obtained by invoking Wsprovide28 using the "-w" option:

$ javac -d . -classpath jboss-jaxws.jar Echo.java
$ wsprovi de -w echo. Echo

Generati ng WSDL:

EchoSer vi ce. wsdl

Witing d asses:

echo/ j axws/ Echo. cl ass

echo/ j axws/ EchoResponse. cl ass

Inspecting the WSDL reveals a service called EchoService:

<servi ce nane=' EchoServi ce' >

<port bi ndi ng='tns: EchoBi ndi ng' nane=' EchoPort"' >
<soap: address | ocati on=" REPLACE W TH ACTUAL_URL' / >
</ port>

</ servi ce>

As expected, this service defines one operation, "echo":

27 http:/fjows.dyndns.org/mediawiki/index.php?title=Wsprovide
28 http://jbws.dyndns.org/mediawiki/index.php?title=Wsprovide

318

http://jbws.dyndns.org/mediawiki/index.php?title=Wsprovide
http://jbws.dyndns.org/mediawiki/index.php?title=Wsprovide
http://jbws.dyndns.org/mediawiki/index.php?title=Wsprovide
http://jbws.dyndns.org/mediawiki/index.php?title=Wsprovide

Bottom-Up (Using wsprovide)

<port Type nane=' Echo' >

<operati on nane='echo' paraneter O der="echo' >
<i nput message='tns: Echo_echo' />

<out put message='tns: Echo_echoResponse' />

</ oper ati on>

</ port Type>

Note

Remember that when deploying on JBossWS you do not need to run this

tool. You only need it for generating portable artifacts and/or the abstract
contract for your service.

Let's create a POJO endpoint for deployment on JBoss AS. A simple web.xml needs to be
created:

<web-app xm ns="http://java. sun. com xm / ns/j 2ee"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
Xsi : schemalLocati on="http://java. sun. com xm / ns/j 2ee
http://java. sun. coml xm / ns/j 2ee/ web- app_2_4. xsd"
version="2.4">

<servl et >

<ser vl et - nane>Echo</ ser vl et - nane>

<servl et - cl ass>echo. Echo</ servl et - cl ass>
</servl et>

<ser vl et - mappi ng>

<ser vl et - nane>Echo</ ser vl et - nanme>
<url - pattern>/ Echo</url - pattern>
</ servl et - mappi ng>

</ web- app>

The web.xml and the single class can now be used to create a war:

$ nkdir -p WEB-INF/ cl asses

$ cp -rp echo WEB-I NF/ cl asses/

$ cp web. xm WEB- | NF

$ jar cvf echo.war WEB-INF

added mani f est

addi ng: WEB-INF/(in = 0) (out= 0)(stored 0%

addi ng: VEB-I NF/cl asses/(in = 0) (out= 0)(stored 0%

addi ng: VEB- | NF/ cl asses/ echo/ (in = 0) (out= 0)(stored 0%

319

Chapter 10. Web Services

addi ng: WEB- | NF/ cl asses/ echo/ Echo. cl ass(in = 340) (out= 247)(deflated 27%
addi ng: VEB- | NF/ web. xm (i n = 576) (out= 271)(defl ated 52%

The war can then be deployed:

cp echo.war jboss-as/server/default/depl oy

This will internally invoke Wsprovidezg, which will generate the WSDL. If deployment was
successful, and you are using the default settings, it should be available here:
http://localhost:8080/echo/Echo?wsdl

For a portable JAX-WS deployment, the wrapper classes generated earlier could be added to
the deployment.

18.2. Top-Down (Using wsconsume)

The top-down development strategy begins with the abstract contract for the service, which
includes the WSDL file and zero or more schema files. The wsconsume® tool is then used to
consume this contract, and produce annotated Java classes (and optionally sources) that define
it.

Note

wsconsume seems to have a problem with symlinks on unix systems

Using the WSDL file from the bottom-up example, a new Java implementation that adheres to
this service can be generated. The "-k" option is passed to wsconsume®! to preserve the Java
source files that are generated, instead of providing just classes:

$ wsconsune -k EchoServi ce. wsdl
echo/ Echo. j ava

echo/ EchoResponse. j ava

echo/ EchoSer vi ce. j ava

echo/ Echo_Type. j ava

echo/ Obj ect Factory. j ava

echo/ package-i nfo.j ava

echo/ Echo. j ava

28 http://jbws.dyndns.org/mediawiki/index.php?title=Wsprovide
30 nttp://jbws.dyndns.org/mediawiki/index.php?title=Wsconsume
81 http://jbws.dyndns.org/mediawiki/index.php?tite=Wsconsume

320

http://jbws.dyndns.org/mediawiki/index.php?title=Wsprovide
http://jbws.dyndns.org/mediawiki/index.php?title=Wsprovide
http://localhost:8080/echo/Echo?wsdl
http://jbws.dyndns.org/mediawiki/index.php?title=Wsconsume
http://jbws.dyndns.org/mediawiki/index.php?title=Wsconsume
http://jbws.dyndns.org/mediawiki/index.php?title=Wsconsume
http://jbws.dyndns.org/mediawiki/index.php?title=Wsconsume

Top-Down (Using wsconsume)

echo/ EchoResponse. j ava
echo/ EchoServi ce. j ava
echo/ Echo_Type. j ava
echo/ Obj ect Factory. j ava
echo/ package-i nfo. j ava

The following table shows the purpose of each generated file:

File Purpose

Echo.java Service Endpoint Interface
Echo_Type.java Wrapper bean for request message
EchoResponse.java Wrapper bean for response message
ObjectFactory.java JAXB XML Registry
package-info.java Holder for JAXB package annotations
EchoService.java Used only by JAX-WS clients

Examining the Service Endpoint Interface reveals annotations that are more explicit than in the
class written by hand in the bottom-up example, however, these evaluate to the same contract:

@ebServi ce(nane = "Echo", target Nanespace = "http://echo/")

public interface Echo {

@\ebMet hod

@ebResul t (tar get Nanespace = "")

@request W apper (| ocal Name = "echo", targetNanmespace = "http://echo/",
cl assName = "echo. Echo_Type")

@ResponseW apper (| ocal Nane = "echoResponse", target Nanespace =
"http://echo/", classNane = "echo. EchoResponse")

public String echo(

@ebPar am(name = "arg0", targetNamespace = "")

String argo);

}

The only missing piece (besides the packaging) is the implementation class, which can now be
written, using the above interface.

package echo;

321

Chapter 10. Web Services

@ avax. j ws. WebSer vi ce(endpoi nt | nt er f ace="echo. Echo")
public class Echol npl inplenments Echo

{
public String echo(String arg0)

{

return argo;
}
}

18.3. Client Side

Before going to detail on the client-side it is important to understand the decoupling concept that
is central to Web Services. Web Services are not the best fit for internal RPC, even though they
can be used in this way. There are much better technologies for this (CORBA, and RMI for
example). Web Services were designed specifically for interoperable coarse-grained
correspondence. There is no expectation or guarantee that any party participating in a Web
Service interaction will be at any particular location, running on any particular OS, or written in
any particular programming language. So because of this, it is important to clearly separate
client and server implementations. The only thing they should have in common is the abstract
contract definition. If, for whatever reason, your software does not adhere to this principal, then
you should not be using Web Services. For the above reasons, the recommended
methodology for developing a client is to follow the top-down approach , even if the client
is running on the same server.

Let's repeat the process of the top-down section, although using the deployed WSDL, instead of
the one generated offline by Wsprovide?’z. The reason why we do this is just to get the right
value for soap:address. This value must be computed at deploy time, since it is based on
container configuration specifics. You could of course edit the WSDL file yourself, although you
need to ensure that the path is correct.

Offline version:

<servi ce name=' EchoService' >

<port bi ndi ng='tns: EchoBi ndi ng' nane=' EchoPort"' >
<soap: address | ocati on=" REPLACE W TH ACTUAL_URL' / >
</ port>

</ servi ce>

Online version:

<servi ce nane="EchoService">
<port bindi ng="t ns: EchoBi ndi ng" nane="EchoPort" >
<soap: address | ocation="http://I| ocal host. | ocal donai n: 8080/ echo/ Echo"/ >

82 http://jbws.dyndns.org/mediawiki/index.php?title=Wsprovide

322

http://jbws.dyndns.org/mediawiki/index.php?title=Wsprovide
http://jbws.dyndns.org/mediawiki/index.php?title=Wsprovide

Client Side

</ port>
</ service>

Using the online deployed version with wsconsume33;

$ wsconsune -k http://1 ocal host: 8080/ echo/ Echo?wsdl
echo/ Echo. j ava

echo/ EchoResponse. j ava
echo/ EchoServi ce. j ava
echo/ Echo_Type. j ava
echo/ Obj ect Factory. j ava
echo/ package-i nfo. j ava
echo/ Echo. j ava

echo/ EchoResponse. j ava
echo/ EchoSer vi ce. j ava
echo/ Echo_Type. j ava
echo/ Obj ect Factory. j ava
echo/ package-i nfo. j ava

The one class that was not examined in the top-down section, was EchoService.java. Notice
how it stores the location the WSDL was obtained from.

@ebServi ceC i ent (name = "EchoService", targetNamespace = "http://echo/"
wsdl Location = "http://I| ocal host: 8080/ echo/ Echo?wsdl ")
public class EchoService extends Service

{
private final static URL ECHOSERVI CE_ WSDL_LOCATI ON,;

static {
URL url = null

try {
url = new URL("http://I| ocal host: 8080/ echo/ Echo?wsdl ") ;

} catch (Ml fornedURLException e) ({
e.printStackTrace();

}
ECHOSERVI CE_WSDL_LOCATI ON = ur

}

publ i ¢ EchoServi ce(URL wsdl Locati on, QName servi ceNane) {
super (wsdl Locati on, servi ceNane) ;

}

publ i c EchoService() {
super (ECHOSERVI CE_WBDL_LOCATI ON, new QName(" http://echo/ ", " EchoServi ce"));

}

@\ébEndpoi nt (nane = "EchoPort")

3 http://jbws.dyndns.org/mediawiki/index.php?tite=Wsconsume

323

http://jbws.dyndns.org/mediawiki/index.php?title=Wsconsume
http://jbws.dyndns.org/mediawiki/index.php?title=Wsconsume

Chapter 10. Web Services

publi ¢ Echo get EchoPort () {
return (Echo)super. get Port (new QNanme("http://echo/", "EchoPort"),
Echo. cl ass) ;

}
}

As you can see, this generated class extends the main client entry point in JAX-WS,
javax.xml.ws.Service. While you can use Service directly, this is far simpler since it provides the
configuration info for you. The only method we really care about is the getEchoPort() method,
which returns an instance of our Service Endpoint Interface. Any WS operation can then be
called by just invoking a method on the returned interface.

Note

It's not recommended to refer to a remote WSDL URL in a production

application. This causes network I/O every time you instantiate the Service
Object. Instead, use the tool on a saved local copy, or use the URL version of the
constructor to provide a new WSDL location.

All that is left to do, is write and compile the client:

i mport echo. *;

public class Echod i ent

{

public static void main(String args[])
{

if (args.length !'= 1)

{

Systemerr. println("usage: Echodient <nessage>");
System exit(1);
}

EchoServi ce service = new EchoService();
Echo echo = service. get EchoPort ();
Systemout. println("Server said: " + echo.echo(args[0]));

}
}

It can then be easily executed using the wsrunclient®* tool. This is just a convenience tool that
invokes java with the needed classpath:

84 http://jbws.dyndns.org/mediawiki/index.php?title=Wsrunclient

324

http://jbws.dyndns.org/mediawiki/index.php?title=Wsrunclient
http://jbws.dyndns.org/mediawiki/index.php?title=Wsrunclient

Command-line & Ant Task Reference

$ wsrunclient Echolient '"Hello World!"'
Server said: Hello Wrld!

It is easy to change the endpoint address of your operation at runtime, setting the
ENDPOINT_ADDRESS_PROPERTY as shown below:

EchoServi ce service = new EchoService();
Echo echo = service. get EchoPort () ;

/* Set NEW Endpoi nt Location */

String endpoi ntURL = "http://NEWENDPO NT_URL";

Bi ndi ngProvi der bp = (Bi ndi ngProvi der) echo;

bp. get Request Cont ext () . put (Bi ndi ngPr ovi der . ENDPO NT_ADDRESS PROPERTY,
endpoi nt URL) ;

Systemout . println("Server said: " + echo.echo(args[0]));

18.4. Command-line & Ant Task Reference

» wsconsume reference page35
- 36
« wsprovide reference page

« wsrunclient reference page37

18.5. JAX-WS binding customization

An introduction to binding customizations:
 http://java.sun.com/webservices/docs/2.0/jaxws/customizations.html
The schema for the binding customization files can be found here:

« binding customization®®

35 nttp://jbws.dyndns.org/mediawiki/index.php?title=Wsconsume

36 http://jbws.dyndns.org/mediawiki/index.php?title=Wsprovide

57 nttp://jbws.dyndns.org/mediawiki/index.php?title=Wsrunclient

38 https://jax-ws.dev.java.net/source/browse/jax-ws/guide/docs/wsdl-customization.xsd?rev=1.2&view=log

325

http://jbws.dyndns.org/mediawiki/index.php?title=Wsconsume
http://jbws.dyndns.org/mediawiki/index.php?title=Wsconsume
http://jbws.dyndns.org/mediawiki/index.php?title=Wsprovide
http://jbws.dyndns.org/mediawiki/index.php?title=Wsprovide
http://jbws.dyndns.org/mediawiki/index.php?title=Wsrunclient
http://jbws.dyndns.org/mediawiki/index.php?title=Wsrunclient
http://java.sun.com/webservices/docs/2.0/jaxws/customizations.html
https://jax-ws.dev.java.net/source/browse/jax-ws/guide/docs/wsdl-customization.xsd?rev=1.2&view=log
https://jax-ws.dev.java.net/source/browse/jax-ws/guide/docs/wsdl-customization.xsd?rev=1.2&view=log

Chapter 10. Web Services

19. Web Service Extensions

19.1. WS-Addressing

This section describes how WS—Addressing39 can be used to provide a staful service endpoint.

19.1.1. Specifications

WS-Addressing is defined by a combination of the following specifications from the W3C
Candidate Recommendation 17 August 2005. The WS-Addressing API is standardized by
JSR-261 - Java API for XML Web Services Addre:ssing40

« Web Services Addressing 1.0 - Core*

« Web Services Addressing 1.0 - SOAP Binding42

19.1.2. Addressing Endpoint

The following endpoint implementation has a set of operation for a typical stateful shopping
chart application.

@\ébServi ce(nane = "Stateful Endpoi nt", target Nanespace =
"http://org.jboss. ws/sanpl es/ wsaddr essi ng
", serviceNane = "Test Service")
@ndpoi nt Confi g(confi gNane = "Standard WSAddr essi ng Endpoi nt")
@+andl er Chai n(file = "WEB-1 NF/j axws-handl ers. xm ")
@0APBI ndi ng(styl e = SOAPBi ndi ng. Styl e. RPC)
public class Stateful Endpoi ntlnpl inplenments Stateful Endpoi nt,
Servi celLi fecycl e

{@Y‘ébMathod

public void addltenm(String item
...}

@\bMet hod

public void checkout ()

{...1}

@\ebMet hod

public String getltens()

{...1}

}

It uses the JAX-WS Endpoint Configuration# Standard WSAddressing Endpoint43 to enable the
server-side-addressing handler. It processes the incomming WS-Addressing header elements
39 http:/iwww.w3.org/TR/ws-addr-core

40 http://www.jcp.org/en/jsr/detail?id=261

4 nttp:/iwww.w3.org/ TR/ws-addr-core

42 http://www.w3.org/TR/ws-addr-soap

326

http://www.w3.org/TR/ws-addr-core
http://www.w3.org/TR/ws-addr-core
http://www.jcp.org/en/jsr/detail?id=261
http://www.jcp.org/en/jsr/detail?id=261
http://www.w3.org/TR/ws-addr-core
http://www.w3.org/TR/ws-addr-core
http://www.w3.org/TR/ws-addr-soap
http://www.w3.org/TR/ws-addr-soap
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_Endpoint_Configuration#_Standard_WSAddressing_Endpoint

WS-Addressing

and provides access to them through the JSR-261 API.

The endpoint handler chain

<handl er - chai ns xm ns="http://j ava. sun. com xm / ns/j avaee"
xm ns: xsi ="http://ww. wW3. org/ 2001/ XM_Schema- i nst ance"

Xsi : schemalLocati on="http://java. sun. comi xnm / ns/ j avaee

j avaee_web_services_1 2. xsd">

<handl er - chai n>

<pr ot ocol - bi ndi ngs>##SOAP11_HTTP</ pr ot ocol - bi ndi ngs>

<handl er >

<handl er - nane>Appl i cati on Server Handl er </ handl er - name>

<handl er - cl ass>org. j boss. test.ws.] axws. sanpl es. wsaddr essi ng. Ser ver Handl er </ handl er - cl ass>
</ handl er >

</ handl er - chai n>

</ handl er - chai ns>

defines an application specific hander that assignes/processes stateful client ids.

19.1.3. Addressing Client

On the client side there are simmilar handlers that does the reverse. It uses the JSR-261 API to
add WS-Addressing header elements including the clientid association.

The client sets a custom handler chain in the binding

Servi ce service = Service. create(wsdl URL, serviceNane);
portl = (Stateful Endpoi nt)service. getPort (Stateful Endpoi nt. cl ass);
Bi ndi ngPr ovi der bi ndi ngProvi der = (Bi ndi ngProvi der)port1;

Li st <Handl er > cust omHandl er Chai n = new ArrayLi st <Handl er >();

cust onHandl er Chai n. add(new d i ent Handl er ()) ;

cust onHandl| er Chai n. add(new W5Addr essi ngCl i ent Handl er ()) ;

bi ndi ngPr ovi der. get Bi ndi ng() . set Handl er Chai n(cust onHandl| er Chai n) ;

The WSAddressingClientHandler is provided by JBossWS and reads/writes the addressing
properties and puts then into the message context.

A client connecting to the stateful endpoint

publi c class Addressi ngSt at ef ul Test Case ext ends JBossWsTest
{

43

http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_Endpoint_Configuration#_Standard_WSAddressing_Endpoint

327

http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_Endpoint_Configuration#_Standard_WSAddressing_Endpoint

Chapter 10. Web Services

public void testAddlten() throws Exception
{

portl.addltem("lce Creant);

portl. addltem("Ferrari");

port?2.addltem("Mars Bar");
port 2. addl t en(" Por sche") ;

}

public void testGetltens() throws Exception
{

String itensl = portl.getltens();
assert Equal s("[lce Cream Ferrari]", itemsl);

String items2 = port2.getltens();
assert Equal s("[Mars Bar, Porsche]", itens2);
}

}

SOAP message exchange

Below you see the SOAP messages that are beeing exchanged.

<env: Envel ope xm ns: env="http://schemas. xm soap. or g/ soap/ envel ope/ ' >
<env: Header xm ns:wsa='http://schenmas. xm soap. or g/ ws/ 2004/ 08/ addr essi ng' >
<wsa: To>uri : j bossws- sanpl es- wsaddr / Test Ser vi ce</ wsa: To>

<wsa: Action>http://org.jboss. ws/ addr essi ng/ st at ef ul /acti on</ wsa: Acti on>
<wsa: Ref er encePar anet er s>

<nsl:clientid xm ns: nsl="http://sonens' >clientid-1</nsl:clientid>

</ wsa: Ref er encePar anet er s>

</ env: Header >

<env: Body>

<nsl: addltem xm ns: ns1=' http://org.jboss. ws/sanpl es/ wsaddr' >
<String_1>lce Creanx/ String_1>

</ nsl: addl tenr

</ env: Body>

</ env: Envel ope>

<env: Envel ope xm ns: env='http://schenmas. xm soap. or g/ soap/ envel ope/ "' >

<env: Header xnl ns:wsa='http://schenmas. xm soap. or g/ ws/ 2004/ 08/ addr essi ng' >
<wsa: To>ht t p: / / www. w3. or g/ 2005/ 08/ addr essi ng/ anonynous</ wsa: To>

<wsa: Action>http://org.jboss. ws/addressi ng/ stat eful /acti onRepl y</wsa: Acti on>
<nsl:clientid xm ns:nsl="http://sonens' >clientid-1</nsl:clientid>

</ env: Header >

<env: Body>

<nsl: addl t enResponse xm ns: nsl='http://org.jboss.ws/sanpl es/wsaddr' />

</ env: Body>

</ env: Envel ope>

<env: Envel ope xm ns: env='http://schemas. xm soap. or g/ soap/ envel ope/"' >
<env: Header xnl ns:wsa='http://schenmas. xnm soap. or g/ ws/ 2004/ 08/ addr essi ng' >

328

WS-BPEL

<wsa: To>uri : j bossws- sanpl es- wsaddr/ Test Servi ce</ wsa: To>

<wsa: Action>http://org.jboss. ws/addr essi ng/ st at ef ul /acti on</ wsa: Acti on>
<wsa: Ref er encePar anet er s>

<nsl:clientid xm ns:nsl="http://sonens' >clientid-1</nsl:clientid>

</ wsa: Ref er encePar anet er s>

</ env: Header >

<env: Body>

<nsl:getltens xm ns:nsl="http://org.jboss.ws/sanpl es/wsaddr'/>

</ env: Body>

</ env: Envel ope>

<env: Envel ope xm ns: env='"http://schemas. xnl soap. or g/ soap/ envel ope/"' >
<env: Header xm ns:wsa='http://schenmas. xm soap. or g/ ws/ 2004/ 08/ addr essi ng' >
<wsa: To>htt p: // www. W3. or g/ 2005/ 08/ addr essi ng/ anonynous</ wsa: To>

<wsa: Action>http://org.jboss. ws/ addr essi ng/ st at ef ul / acti onRepl y</wsa: Acti on>
<nsl:clientid xm ns:nsl="http://sonens' >clientid-1</nsl:clientid>

</ env: Header >

<env: Body>

<nsl: getltensResponse xm ns:nsl="http://org.jboss. ws/sanpl es/wsaddr' >
<result>[lce Cream Ferrari]</result>

</ nsl: getltensResponse>

</ env: Body>

</ env: Envel ope>

19.2. WS-BPEL
WS-BPEL is not supported with JAX-WS, please refer to JAX-RPC User Guide#WS-BPEL*4,
19.3. WS-Eventing

WS-Eventing specifies a set of operations that allow an event consumer to register (subscribe)
with an event producer (source) to receive events (notifications) in an asynchronous fashion.

19.3.1. Specifications

WS-Eventing is defined by the combination of the following specifications:

« WS-Eventing specification45

« WS-Addressing Specifications46

The following section will introduce the main eventing actors and their responsiblities.

44 http://jbws.dyndns.org/mediawiki/index.php?tite=JAX-RPC_User_Guide#WS-BPEL
5 ftp://vww6.software.ibm.com/software/developer/library/ws-eventing/WS-Eventing. pdf
46 http://www.w3.org/TR/ws-addr-core

329

http://jbws.dyndns.org/mediawiki/index.php?title=JAX-RPC_User_Guide#WS-BPEL
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-RPC_User_Guide#WS-BPEL
http://www.w3.org/TR/ws-addr-core
http://www.w3.org/TR/ws-addr-core

Chapter 10. Web Services

Note

The original eventing specification builds upon WS-Addressing 2004/08.

JBossWS however decided to stick to the latest version, which is the W3C
candidate release.

19.3.2. Collaboration

1. An event sink (web service client) sends a subscribtion request to the event source endpoint.
This includes the event sink endpoint address where notifications should delivered. Upon
successful subscription the sink receives a leased subscription ID that can be used to identify
the client in subsequent requests.

2. A successfully registered event sink directs management requests (Renew, GetStatus,
Unsubscribe) to the subscription manager endpoint using the previously received
subscription ID. The subscription manager endpoint address was returned as part of the
subscription response in the first place.

3. The actual event sink (application) emits notification messages through the
JBossWS-Eventing module. JBossWS-Eventing dispatches the notification to any subscriber
endpoint that is registered with a particular event source.s

4. Besides notifications JBossWS-Eventing may emit lifecycle events at any time, i.e. to inform
an event sink that a subscription was canceled. This can be the case when the subscription
expired or the event source was undeployed.

It is the users responsibilty to supply the web service endpoints (EventSourceEndpoint,
SubscriptionManagerEndpoint) that are required for a complete event source deployment.
Fortunatly JBossWS-Eventing already ships with a implementation that can be used right away.
All that's left todo is packaging of standard JSR-109 deployment archive that includes the event
source specific WSDL and points to the JBossWS-Eventing endpoint implementations.

The relevant steps are:
» Create a custom WSDL that describes your event source, in respect to the notification
schema (1) and the fact that is actually contains an event source port (2)

» Use the JBossWS SEI (3) and endpoint (4) implementations (webservices.xml, web.xml).

19.3.3. Setup an event source endpoint

With JAX-WS the event source setup has actually become quiet easy. All you need to do is to
subclass your endpoint implementation from Abst r act Event Sour ceEndpoi nt and a

330

WS-Eventing

subscription manager from Abst r act Subscri pti onManager Endpoi nt and finally point that
implementation to a event source specific WSDL*'.

package org.jboss.test.ws.jaxws. sanpl es. wseventi ng;
i mport javax.jws.WebServi ce;

i mport org.jboss. | ogging. Logger;
i mport org.jboss.ws. annot ati on. Endpoi nt Confi g;
i nport org.jboss.ws. extensi ons. eventi ng.j axws. Abstract Event Sour ceEndpoi nt ;

/**

* @ut hor Hei ko. Braun@ boss. org

* @ersion $ld: Web_Services.xnl,v 1.2 2007/11/22 13:30: 13 vreni sh Exp $
* @ince 18.01. 2007

*/

@\ebSer vi ce(

(1)

name = "Event Source",

port Nane = "Event SourcePort",

t ar get Nanespace = "http://schemas. xm soap. or g/ ws/ 2004/ 08/ event i ng",

wsdl Location = "/WEB- | NF/ wsdl / sysnmon. wsdl ",

(2)

endpoi ntl nterface =

"org.j boss. ws. ext ensi ons. eventi ng. j axws. Event Sour ceEndpoi nt ")

@ndpoi nt Confi g(confi gNane = "Standard WSAddr essi ng Endpoi nt")

(3)

public class SysnonRegi strati onEndpoi nt extends Abstract Event Sour ceEndpoi nt

{ 4

private static final Logger log =
Logger . get Logger (SysnonRegi st rati onEndpoi nt. cl ass);

prot ect ed Logger getLogger()
{

return | og;

}
}

1. Of course we need a @ebSer vi ce annotation
2. It's important to override the WSDL here
3. You need to tell JIBossWS that it requires WS-Addressing for this endpoint

4. Subclass a predefined implementation that knows how to delegate to the actual eventing
service implementation

a7

http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#The_WSDL_that_describes_an_event_source

331

http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#The_WSDL_that_describes_an_event_source
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_User_Guide#The_WSDL_that_describes_an_event_source

Chapter 10. Web Services

19.3.4. The WSDL that describes an event source

Even though we are already using the annotation driven approach, JBossWS eventing still
requires an event source specific WSDL.

The following excerpt shows the relevant WSDL details that describe an event source.

<?xm version="1.0" encodi ng="UTF- 8" ?>

<wsdl : definitions

t ar get Nanespace="htt p: / / ww. j boss. or g/ sysnon"

xm ns: tns="http://ww.jboss. org/ sysnon"

xm ns: wse="http://schenmas. xm soap. or g/ ws/ 2004/ 08/ event i ng
xm ns: wsdl =" http://schemas. xm soap. or g/ wsdl /'

xm ns: wsalO=" http://ww. w3. or g/ 2005/ 08/ addr essi ng'

xm ns: xs=' http://ww. w3. or g/ 2001/ XM_Schema'

xm ns: soap="http://schemas. xm soap. or g/ wsdl / soap/ " >

<wsdl : i nport
(1) nanespace=' http://schenmas. xnl soap. or g/ ws/ 2004/ 08/ event i ng'
| ocati on='j bwse.wsdl' />

<wsdl : t ypes>

<xs: schema t ar get Nanespace=' http://schenmas. xnl soap. or g/ ws/ 2004/ 08/ event i ng' >
(2) <xs:include schemalLocati on='j bwse. xsd' />
</ xs: schema>

(3) <xs: schema

t ar get Nanespace="htt p: / / www. j boss. or g/ sysnon*

el ement For nDef aul t =" qual i fi ed"

bl ockDef aul t ="#al | ">

<xs: el ement nanme="Syst enfst at us" >

<xs: conpl exType>

<Xs:sequence>

<xs:el ement name="Tine " type="xs:dateTine"/>
<xs: el ement nanme="Host Nane" type="xs:string"/>
<xs: el enent nanme="Host Addr ess" type="xs:string"/>
<xs: el ement name="ActiveThreadCount" type="xs:int"/>
<xs: el ement name="FreeMenory" type="xs:string"/>
<xs: el ement nanme="MaxMenory" type="xs:string"/>
</ xs: sequence>

</ xs: conpl exType>

</ xs: el enent >

</ xs: schema>

</ wsdl : types>

<wsdl : nessage nanme=' Syst em nf oMsg' >
<wsdl| : part nane=' body' el enent='tns: Systenfstatus'/>
</ wsdl : ressage>

(4) <wsdl: portType nane=' System nfo' wse: Event Source='true' >
<wsdl : operation name='SysmonCp' >
<wsdl : out put nessage='tns: Syst enl nfoMsg' / >

332

WS-Eventing

</ wsdl : oper ati on>
</ wsdl : port Type>

<wsdl : bi ndi ng nane="Syst enl nf oBi ndi ng" type="tns: Syst em nf 0" >
<soap: bi ndi ng styl e="docunent"

transport="http://schemas. xm soap. or g/ soap/ http"/>

<wsdl : operati on nane="SysnmonCp" >

<soap: operati on soapAction=""/>

<wsdl : out put >

<soap: body use="literal"/>

</ wsdl : out put >

</ wsdl : operati on>

</ wsdl : bi ndi ng>

</ wsdl : definitions>

1. Import the default eventing WSDL, that includes service and port declarations.
2. Include the default eventing Types
3. Specifiy the notitification message schema.

4. Declare a port type, attributed "wse:EventSource="true
message schema.

that points to your notification

19.3.5. Emitting notifications

JBossWS-Eventing registeres a event dispatcher within local JNDI tree that can be used to emit
notifications from applications.

j ava: / Event Di spat cher

The event dispatcher interface:

public interface EventD spatcher

{
voi d di spat ch(URI event SourceNS, El enent payl oad);

}

Example notification

(1) URlI event Sour ceURI = new
URI ("http://http://ww.]jboss. org/ sysnon/ Syst em nfo");

333

Chapter 10. Web Services

(2) El ement payl oad = DOMUJti | s. parse("SOVE XM. STRING') ;

try

{

Initial Context iniCtx = getlnitial Context();

(3) Event Di spat cher del egate = (Event Di spat cher)
i ni Ctx.|lookup(EventingConstants. Dl SPATCHER _JNDI _NAME) ;
(4) del egat e. di spat ch(event Sour ceURI, payl oad);
}

catch (Exception e)

{

/1

}

1. Address your event source correctly (TargetNamespace+PortTypeName)
2. Create your payload

3. Lookup dispatcher from JNDI

4. Dispatch natification.

The SubscriptionManager MBean is the actual core component that drives the
JBossWS-Eventing implementation. It can be accessed through the jmx-console.

j boss. ws. event i ng: servi ce=Subscri pti onManager

Management operations exist to monitor and maintain active subscritions and deployed event
sources. The current implementation is backed by a ThreadPoolExecutor, that asynchronously
delivers messages to event sink endpoints. It can be configured through the following attributes:

« corePoolSize - average number of idle threads

* maximumPoolSize - maximum number of threads

« eventKeepAlive - keep alive before an undelivered event message is discarded.

19.4. WS-Security

WS-Security addresses message level security. It standardizes authorization, encryption, and
digital signature processing of web services. Unlike transport security models, such as SSL,
WS-Security applies security directly to the elements of the web service message. This
increases the flexibility of your web services, by allowing any message model to be used (point
to point, multi-hop relay, etc).

334

WS-Security

This chapter describes how to use WS-Security to sign and encrypt a simple SOAP message.
Specifications

WS-Security is defined by the combination of the following specifications:

SOAP Message Security 1.0%8

+ Username Token Profile 1.0*°

X.509 Token Profile 1.0°°

« W3C XML Encryption®!

W3C XML Signature®?

« Basic Security Profile 1.0 (Still in Draft)®®

19.4.1. Endpoint configuration

JBossWS uses handlers to identify ws-security encoded requests and invoke the security
components to sign and encrypt messages. In order to enable security processing, the client
and server side need to include a corressponding handler configuration. The preferred way is to
reference a predefined JAX-WS Endpoint Configuration54 or JAX-WS Client Configuration55
respectively.

Note

You need to setup both the endpoint configuration and the WSSE declarations.
That's two separate steps.

19.4.2. Server side WSSE declaration (jboss-wsse-server.xml)

In this example we configure both the client and the server to sign the message body. Both also
require this from each other. So, if you remove either the client or the server security
deployment descriptor, you will notice that the other party will throw a fault explaining that the
message did not conform to the proper security requirements.

<j boss-ws-security xm ns="http://ww.] boss. conl ws-security/config"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

xsi : schemaLocati on="http://wwv j boss. com ws-security/config
http://ww. j boss. coml ws-security/schema/jboss-ws-security 1 0.xsd">
(1) <key-store-fil e>VEB-| NF/ wsse. keyst ore</ key-store-file>

(2) <key-store-password>j bossws</ key- st or e- passwor d>

58 http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_Client_Configuration

335

http://www.w3.org/TR/xmlenc-core
http://www.w3.org/TR/xmlenc-core
http://www.w3.org/TR/xmldsig-core
http://www.w3.org/TR/xmldsig-core
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://www.ws-i.org/Profiles/BasicSecurityProfile-1.0.html
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_Endpoint_Configuration
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_Client_Configuration
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_Endpoint_Configuration
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_Client_Configuration

Chapter 10. Web Services

(3) <trust-store-file>WEB-|INF/ wsse.truststore</trust-store-file>
(4) <trust-store-password>j bossws</trust-store-password>
(5) <config>

(6) <sign type="x509v3" alias="wsse"/>
(7) <requi r es>

(8) <si gnature/ >

</requires>

</ confi g>

</j boss-ws-security>

1. This specifies that the key store we wish to use is WEB-INF/wsse.keystore, which is located
in our war file.

2. This specifies that the store password is "jbossws". Password can be encypted using the
{EXT} and {CLASS} commands. Please see samples for their usage.

3. This specifies that the trust store we wish to use is WEB-INF/wsse.truststore, which is
located in our war file.

4. This specifies that the trust store password is also "jbossws". Password can be encrypted
using the {EXT} and {CLASS} commands. Please see samples for their usage.

5. Here we start our root config block. The root config block is the default configuration for all
services in this war file.

6. This means that the server must sign the message body of all responses. Type means that
we are to use a X.509v3 certificate (a standard certificate). The alias option says that the
certificate/key pair to use for signing is in the key store under the "wsse" alias

7. Here we start our optional requires block. This block specifies all security requirements that
must be met when the server receives a message.

8. This means that all web services in this war file require the message body to be signed.

By default an endpoint does not use the WS-Security configuration. Use the proprietary
@EndpointConfig annotation to set the config name. See JAX—WS_Endpoint_Com‘iguration56
for the list of available config names.

@\ebServi ce
@ndpoi nt Confi g(confi gNane = "Standard WsSecurity Endpoint")
public class Hell oJavaBean

{

56 http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_Endpoint_Configuration

336

http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_Endpoint_Configuration
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_Endpoint_Configuration

WS-Security

19.4.3. Client side WSSE declaration (jboss-wsse-client.xml)

<j boss-ws-security xm ns="http://ww.] boss. conl ws-security/config"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"

xsi : schemalLocati on="http://wwmv. j boss. com ws-security/config
http://ww. j boss. coml ws-security/schema/jboss-ws-security 1 0.xsd">
(1) <config>

(2) <sign type="x509v3" alias="wsse"/>
(3) <r equi r es>

(4) <si gnat ure/ >

</requires>

</ confi g>

</j boss-ws-security>

1. Here we start our root config block. The root config block is the default configuration for all
web service clients (Call, Proxy objects).

2. This means that the client must sign the message body of all requests it sends. Type means
that we are to use a X.509v3 certificate (a standard certificate). The alias option says that the
certificate/key pair to use for signing is in the key store under the "wsse" alias

3. Here we start our optional requires block. This block specifies all security requirements that
must be met when the client receives a response.

4. This means that all web service clients must receive signed response messages.

19.4.3.1. Client side key store configuration

We did not specify a key store or trust store, because client apps instead use the wsse System
properties instead. If this was a web or ejb client (meaning a webservice client in a war or ejb jar
file), then we would have specified them in the client descriptor.

Here is an excerpt from the JBossWS samples:

<sysproperty key="org.j boss.ws. wsse. keySt or e"

val ue="${tests. out put.dir}/resources/jaxrpc/sanpl es/ wssecurity/wsse. keystore"/>
<sysproperty key="org.j boss.ws.wsse. trust Store"

val ue="${tests. output.dir}/resources/jaxrpc/sanpl es/wssecurity/wsse.truststore"/>
<sysproperty key="org.]jboss.ws.wsse. keySt or ePasswor d" val ue="j bossws"/>
<sysproperty key="org.jboss.ws.wsse. trust St orePassword" val ue="j bossws"/ >
<sysproperty key="org.jboss.ws.wsse. keySt or eType" val ue="j ks"/>

<sysproperty key="org.jboss.ws.wsse.trust StoreType" val ue="j ks"/>

SOAP message exchange

337

Chapter 10. Web Services

Below you see the incomming SOAP message with the details of the security headers ommited.
The idea is, that the SOAP body is still plain text, but it is signed in the security header and can
therefore not manipulated in transit.

Incomming SOAPMessage

<env: Envel ope xm ns: env="http://schenmas. xm soap. or g/ soap/ envel ope/ ">
<env: Header >

<wsse: Security env:nustUnderstand="1" ...>
<wsu: Ti mest anp wsu: | d="ti mest anp”>. .. </wsu: Ti nest anp>
<wsse: Bi narySecurityToken ...>

</ wsse: Bi narySecurityToken>
<ds: Signature xm ns:ds="http://wwm. w3. or g/ 2000/ 09/ xm dsi g#" >

</ ds: Si gnat ur e>

</ wsse: Security>

</ env: Header >

<env: Body wsu:ld="el ement - 1-1140197309843- 12388840" ... >

<nsl: echoUser Type xm ns:nsl="http://org.jboss.ws/sanpl es/wssecurity">
<User Type_1 xm ns: xsi="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance" >
<msg>Ker ni t </ msg>

</ User Type_1>

</ nsl: echoUser Type>

</ env: Body>

</ env: Envel ope>

19.4.4. Installing the BouncyCastle JCE provider (JDK 1.4)

The information below has originaly been provided by The Legion of the Bouncy Castle®’.

The provider can be configured as part of your environment via static registration by adding an
entry to the java.security properties file (found in $JAVA_HOME/jre/lib/security/java.security,
where $JAVA_HOME is the location of your JDK/JRE distribution). You'll find detailed
instructions in the file but basically it comes down to adding a line:

security. provider.<n>=org. bouncycast| e.j ce. provi der. BouncyCast | eProvi der

Where <n> is the preference you want the provider at.

57 http://www.bouncycastle.org/specifications.html#install

338

http://www.bouncycastle.org/specifications.html#install
http://www.bouncycastle.org/specifications.html#install

WS-Transaction

Note

Issues may arise if the Sun provided providers are not first.

Where you put the jar is mostly up to you, although with jdk1.4 the best (and in some cases
only) place to have it is in $JAVA_HOME/jre/lib/ext. Under Windows there will normally be a
JRE and a JDK install of Java if you think you have installed it correctly and it still doesn't work
chances are you have added the provider to the installation not being used.

19.4.5. Keystore, truststore - What?

Note

If you having a hard time understanding how the different trust- and keystore

configurations are used for signature and encryption, then read this thread first:
http://www.jboss.org/index.html?module=bb&op=viewtopic&t=94406

19.5. WS-Transaction

Support for the WS-Coordination, WS-AtomicTransaction and WS-BusinessActivity
specifications will be provided by technology recently acquired from Arjuna Technologies Ltd.
This technology will be present within the JBoss Transactions 4.2.1 release. Further information
can be obtained from the JBoss Transactions Project58

19.6. XML Registries

J2EE 1.4 mandates support for Java API for XML Registries (JAXR). Inclusion of a XML
Registry with the J2EE 1.4 certified Application Server is optional. Starting jboss-4.0.2, JBoss
ships a UDDI v2.0 compliant registry, the Apache jUDDI registry. We also provide support for
JAXR Capability Level 0 (UDDI Registries) via integration of Apache Scout.

This chapter describes how to configure the jUDDI registry in JBoss and some sample code
outlines for using JAXR API to publish and query the jUDDI registry.

19.6.1. Apache juDDI Configuration

Configuration of the jUDDI registry happens via an MBean Service that is deployed in the
juddi-service.sar archive in the "all* configuration. The configuration of this service can be done
in the jboss-service.xml of the META-INF directory in the juddi-service.sar

58 http://labs.jboss.org/portal/jbosstm

339

http://www.jboss.org/index.html?module=bb&op=viewtopic&t=94406
http://labs.jboss.org/portal/jbosstm
http://labs.jboss.org/portal/jbosstm

Chapter 10. Web Services

Let us look at the individual configuration items that can be changed.

DataSources configuration

<!-- Datasource to Database-->
<attribute nane="Dat aSourceUr|">j ava: /Defaul t DS</ attri but e>

Database Tables (Should they be created on start, Should they be dropped on stop, Should
they be dropped on start etc)

<l-- Shoul d al
tables be created on Start-->

<attribute
nanme="Creat eOnSt art " >f al se</attri bute>

<l-- Shoul d al
tabl es be dropped on Stop-->

<attribute
nanme="Dr opOnSt op" >t rue</attri but e>

<l-- Should al
tabl es be dropped on Start-->

<attribute
nane="DropOnStart">f al se</attri bute>

JAXR Connection Factory to be bound in JNDI. (Should it be bound? and under what name?)

<l-- Should I bind a Context to which JaxrConnectionFactory bound-->
<attribute name="Shoul dBi ndJaxr">true</attri bute>

<I-- Context to which JaxrConnectionFactory to bind to.

I f you have renpte clients, please bind it to the gl obal namespace(default
behavi or) .

To just cater to clients running on the sane VM as JBoss, change to
java: /[JAXR -->

<attribute name="Bi ndJaxr">JAXR</attri bute>

Other common configuration:

Add authorized users to access the jUDDI registry. (Add a sql insert statement in a single line)

Look at the script META-INF/ ddl/juddi _data.ddl for nore details. Exanple for
a user 'jboss'

| NSERT | NTO PUBLI SHER (PUBLI SHER | D, PUBLI SHER_NAVE,
EMAI L_ADDRESS, | S_ENABLED, | S_ADM N)

340

XML Registries

VALUES (' boss','JBoss User','jboss@xx','true', 'true');

19.6.2. JBoss JAXR Configuration

In this section, we will discuss the configuration needed to run the JAXR API. The JAXR
configuration relies on System properties passed to the JVM. The System properties that are
needed are:

javax. xm . regi stry. Connecti onFact or yCl ass=or g. apache. ws. scout . regi stry. Connect i onFact or yl npl
jaxr.query.url=http://1ocal host:8080/j uddi/inquiry

jaxr.publish.url=http://Iocal host: 8080/ uddi / publ i sh

juddi . proxy.transport Cl ass=org. j boss.jaxr.juddi.transport. Saaj Transport

Please remember to change the hostname from "localhost" to the hostname of the UDDI
service/JBoss Server.

You can pass the System Properties to the JVM in the following ways:

« When the client code is running inside JBoss (maybe a servlet or an EJB). Then you will need
to pass the System properties in the run.sh/run.bat scripts to the java process via the "-D"
option.

* When the client code is running in an external JVM. Then you can pass the properties either
as "-D" options to the java process or explicitly set them in the client code(not recommended).

Syst em set Property(propertyname, propertyval ue);

19.6.3. JAXR Sample Code

There are two categories of APIl: JAXR Publish APl and JAXR Inquiry API. The important JAXR
interfaces that any JAXR client code will use are the following.

. javax.xml.registry.RegistryService59 From J2EE 1.4 JavaDoc: "This is the principal interface
implemented by a JAXR provider. A registry client can get this interface from a Connection to
a registry. It provides the methods that are used by the client to discover various capability
specific interfaces implemented by the JAXR provider."

. javax.xml.registry.BusinessLifeCyCIeManager60 From J2EE 1.4 JavaDoc: "The

59 BUSINESSLITET n}/_cIeMana er interface, which is e_xtposed bx the Registry Service, implements
http://java.sun.com/j2ee/1.4/dots/api/javax/xmilregistry/RegistryService html

&0 http://java.sun.com/j2ee/1.4/docs/api/javax/xml/registry/BusinessLifeCycleManager.html

341

http://java.sun.com/j2ee/1.4/docs/api/javax/xml/registry/RegistryService.html
http://java.sun.com/j2ee/1.4/docs/api/javax/xml/registry/RegistryService.html
http://java.sun.com/j2ee/1.4/docs/api/javax/xml/registry/BusinessLifeCycleManager.html
http://java.sun.com/j2ee/1.4/docs/api/javax/xml/registry/BusinessLifeCycleManager.html

Chapter 10. Web Services

the life cycle management functionality of the Registry as part of a business level API. Note
that there is no authentication information provided, because the Connection interface keeps
that state and context on behalf of the client."

. javax.xml.reg:;istry.BusinessQueryManager61 From J2EE 1.4 JavaDoc: "The
BusinessQueryManager interface, which is exposed by the Registry Service, implements the
business style query interface. It is also referred to as the focused query interface."

Let us now look at some of the common programming tasks performed while using the JAXR
API:

Getting a JAXR Connection to the registry.

String queryurl = System getProperty("jaxr.query.url",
"http://1ocal host: 8080/ uddi/inquiry");
String puburl = System getProperty("jaxr.publish.url",
"http://1ocal host: 8080/ j uddi / publish");

Properties props = new Properties();
props. set Property("javax. xm . regi stry. queryManager URL", queryurl);
props. set Property("javax. xm .registry.|ifeCycl eManager URL", puburl);

String transportd ass = System get Property("j uddi.proxy.transportC ass",
"org.jboss.jaxr.juddi.transport. Saaj Transport");
System set Property("juddi.proxy.transportd ass", transportC ass);

/'l Create the connection, passing it the configuration properties
factory = Connecti onFactory. newl nst ance();

factory. set Properti es(props);

connection = factory. createConnection();

Authentication with the registry.

/**

* Does authentication with the uddi registry

*/

protected void | ogin() throws JAXRException

{

Passwor dAut henti cati on passwdAut h = new Passwor dAut henti cati on(useri d,
passwd. t oChar Array());

Set creds = new HashSet () ;

creds. add(passwdAut h) ;

connecti on. set Credenti al s(creds);

}

S%‘l’tﬁ:/ﬂaﬁa’t@l‘]ﬂ%gﬁvj2ee/1.4/docs/api/javax/xmIlregistry/BusinessQueryMalnager.html

342

http://java.sun.com/j2ee/1.4/docs/api/javax/xml/registry/BusinessQueryManager.html
http://java.sun.com/j2ee/1.4/docs/api/javax/xml/registry/BusinessQueryManager.html

XML Registries

/**

* Creates a Jaxr Organization with 1 or nore services

*/

protected O gani zati on createOrgani zati on(String orgnane) throws
JAXRExcept i on

{

Organi zation org = bl mcreateCrgani zati on(getl String(orgnane));

org. set Description(getlString("JBoss Inc"));

Service service = bl mcreateService(getl String("JBOSS JAXR Service"));
service. setDescription(getlString("Services of XM. Registry"));

/] Create serviceBindi ng

Servi ceBi ndi ng servi ceBi nding = bl m creat eServi ceBi ndi ng() ;

servi ceBi ndi ng. set Descri ption(bl mcreatelnternational String("Test Service
Bi ndi ng"));

[/ Turn validation of URl off
servi ceBi ndi ng. set Val i dat eURI (f al se);
servi ceBi ndi ng. set AccessURI ("http://testjboss.org");

// Add the serviceBinding to the service
servi ce. addSer vi ceBi ndi ng(servi ceBi ndi ng) ;

User user = bl mcreateUser();

org. set Pri mar yCont act (user) ;

Per sonName per sonNanme = bl m cr eat ePer sonNane("Anil S");

Tel ephoneNunber tel ephoneNunber = bl m creat eTel ephoneNunber () ;

t el ephoneNunber . set Nunber ("111-111-7777");

t el ephoneNunber . set Type(nul |);

Post al Address address = bl m cr eat ePost al Address(" 111", "My Drive",
"BuckHead", "GA", "USA", "1111-111", "");

Col | ecti on postal Addresses = new ArraylLi st ();

post al Addr esses. add(addr ess) ;

Col | ecti on enni | Addresses = new Arrayli st();

Emai | Addr ess emai | Address = bl m cr eat eEnai | Addr ess("ani | @pache. org");
ermai | Addr esses. add(enai | Addr ess) ;

Col | ecti on nunbers = new ArraylList();
nunber s. add(t el ephoneNunber) ;

user . set Per sonName(per sonNane) ;

user . set Post al Addr esses(post al Addr esses) ;
user. set Emai | Addr esses(enai | Addr esses) ;
user . set Tel ephoneNunber s(nunbers) ;

Cl assificationScheme cScheme = get Cl assificati onSchene("ntis-gov: naics",

")

Key cKey = bl m creat eKey(" uui d: COBOFE13- 324F- 413D- 5A5B- 2004DB8E5CC2") ;

cSchene. set Key(cKey) ;

Classification classification = bl mcreated assification(cSchene,
"Conput er Systens Design and Rel ated Services",

"5415");
or g. addCl assi fi cation(cl assification);
Cl assi ficati onScheme cSchemel = get Cl assificati onScheme("D-U-N-S*, "");

Key cKeyl = bl m creat eKey("uui d: 3367C81E- FF1F- 4D5A- B202- 3EB13AD02423") ;
cSchenel. set Key(cKeyl);

External I dentifier ei = bl mcreateExternalldentifier(cSchenel, "D-U- NS
nunber”, "08-146-6849");

343

Chapter 10. Web Services

org. addExt ernal I dentifier(ei);
org. addSer vi ce(service);
return org;

}

Query a Business

/**

* Local e aware Search a business in the registry

*/

publ i c voi d searchBusi ness(String biznane) throws JAXRException
{

try

{

/] Get registry service and busi ness query manager
t hi s. get JAXREssenti al s();

// Define find qualifiers and nane patterns
Col | ection findQualifiers = new ArrayList();
findQualifiers.add(Fi ndQualifier.SORT_BY_NAME_ASC);
Col | ecti on nanePatterns = new ArraylList();

String pattern = "% + bizname + "%;
Local i zedString |I's = bl mcreatelLocal i zedStri ng(Local e. get Defaul t (),
pattern);

nanePatt erns. add(| s);

/! Find based upon qualifier type and val ues
Bul kResponse response = bgm fi ndOrgani zati ons(fi ndQualifiers, nanePatterns,
null, null, null, null);

/'l check how many organi sati on we have nmat ched
Col l ection orgs = response. get Col |l ection();

if (orgs == null)

{

| og. debug(" -- Matched 0 orgs");

}

el se

{

| og. debug(" -- Matched " + orgs.size() + " organizations -- ");

/] then step through them

for (lterator orglter = orgs.iterator(); orglter.hasNext();)
{

Organi zation org = (Organi zation)orglter.next();

| og. debug("Org nane: " + getNanme(org));

| og. debug("Org description: " + getDescription(org));
| og. debug("Org key id: " + getKey(org));

checkUser (orQg);

checkServi ces(org);

}

}

}

344

WS-Policy

finally

{

connection. cl ose();
}

}

For more examples of code using the JAXR API, please refer to the resources in the Resources
Section.

19.6.4. Troubleshooting

* | cannot connect to the registry from JAXR. Please check the inquiry and publish url
passed to the JAXR ConnectionFactory.

« | cannot connect to the jUDDI registry. Please check the jUDDI configuration and see if
there are any errors in the server.log. And also remember that the jUDDI registry is available
only in the "all" configuration.

« | cannot authenticate to the jUDDI registry.Have you added an authorized user to the
jUDDI database, as described earlier in the chapter?

I would like to view the SOAP messages in transit between the client and the UDDI
Registry. Please use the tcpmon tool to view the messages in transit. TCPMon®?

19.6.5. Resources

« JAXR Tutorial and Code Camps63
« J2EE 1.4 Tutorial®*

« J2EE Web Services by Richard Monson-Haefel®®

19.7. WS-Policy

The Web Services Policy Framework (WS-Policy) provides a general purpose model and
corresponding syntax to describe the policies of a Web Service.

WS-Policy defines a base set of constructs that can be used and extended by other Web
services specifications to describe a broad range of service requirements and capabilities.

Current JBoss implementation can instrument a webservice with policies attached at endpoint,
port or port-type scope level only. There are two different methods to attach policies: providing a
wsehdreIad, yith Relicies and policy attachments as defined by specifications, or using JBoss
proprigsasys anaotatiesyithefngtavayghas tamasuamtage of being standard, while the second

orisnd/isvacHTReFS28RHEIesSISENeRt. OF course the wsdl generated by these annotations
&5 http://www.amazon.com/exec/obidos/ASIN/0321146182

345

http://tcpmon.dev.java.net/
http://tcpmon.dev.java.net/
http://java.sun.com/webservices/jaxr/learning/tutorial/index.html
http://java.sun.com/webservices/jaxr/learning/tutorial/index.html
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/
http://www.amazon.com/exec/obidos/ASIN/0321146182
http://www.amazon.com/exec/obidos/ASIN/0321146182

Chapter 10. Web Services

conforms to standard defined in specifications and can be used with any ws-policy compliant
client.

Please note that ws-policy specifications only define policy requirements and their attachment
method to wsdl through specific extensions. It is out of the scope of ws-policy specifications and
thus implementation to define and use the content of assertions. The way these assertions
(called domain assertions or domain policies) have to be deployed and used is left to other
specification like WS-Security-Policy or more generally to domain specific implementation.

19.7.1. Specification

WS-Policy is defined by the combination of the following specifications:

* <ulink url="http://ww.w3. org/ Subm ssi on/ Ws- Pol i cy/"> W5- Pol i cy
speci fi cati on</ul i nk>

* <ulink url="http://ww. w3. or g/ Subm ssi on/ W5- Pol i cyAtt achnent/" >
WS- Pol i cy- Att achnment speci ficati on</ul i nk>

19.7.2. Using policies in a user provided wsdl

To attach policies in this manner, the only thing you have to do in a webservice class is to
provide a custom wsdl. This will cause JBossws to skip wsdl generation at deploy time, since
the wsdl file you provided will be published. Please refer to specification
(WS-Policy-Attachment) to learn how to modify wsdl to attach a policy.

Here you find an example of a webservice class and provided wsdl with a policy containing a
domain assertion for JBoss wssecurity.

@ebServi ce(nane = "Hel | 0",

t ar get Nanespace = "http://org.jboss. ws/ sanpl es/ wssecuritypolicy",
wsdl Locat i on="\EB- | NF/ wsdl / Hel | oSer vi ce. wsdl ")

@QOAPBI ndi ng(styl e = SOAPBI ndi ng. Styl e. RPC)

public class Hell oJavaBean

{

private Logger | og = Logger. get Logger (Hell oJavaBean. cl ass);

@\ébMet hod

publ i c User Type echoUser Type(@¥bPar am(namre = "user") User Type i n0)
{

| 0og.i nfo(in0);

return inO;

}

}

<?xm version="1.0" encodi ng="UTF- 8" ?>

<definiti ons nanme=' Hel | oServi ce'

t ar get Nanespace=' http: //org. j boss. ws/ sanpl es/ wssecuritypolicy'
xm ns='http://schemas. xm soap. or g/ wsdl /'

xm ns: nsl="http://org.jboss. ws/sanpl es/ wssecurity'

xm ns: soap="http://schemas. xn soap. or g/ wsdl / soap/"'

346

WS-Policy

xm ns:tns="http://org.jboss. ws/sanpl es/ wssecuritypolicy
xm ns: wsp='http://schemas. xm soap. or g/ ws/ 2004/ 09/ pol i cy
xm ns: xsd=" htt p: //ww. w3. or g/ 2001/ XM_Schema' >
<t ypes>
<xs: schema t arget Nanespace=' http://org.jboss. ws/sanpl es/wssecurity
version='1.0'
xm ns: xs=' http://ww. w3. or g/ 2001/ XM_Schema' >
<xs:conpl exType nanme=' User Type' >
<Xs:sequence>
<xs: el ement m nCccurs='0" name='nsg' type='xs:string />
</ xs: sequence>
</ xs: conpl exType>
</ xs: schema>
</types>
<wsp: Policy wsu: | d=' X509Endpoi nt Pol i cy'
xm ns: wsu=' http://docs. oasi s- open. or g/ wss/ 2004/ 01/ oasi s- 200401- wss-wssecurity-utility-1.0.xs
<wsp: Al | >
<sp:j boss-ws-security
xm ns: sp=' http://ww. j boss. com ws-security/schena/jboss-ws-security_ 1 0.xsd' >
<sp: key-store-fil e>VEB- | NF/ wsse. keyst or e</ sp: key-store-fil e>
<sp: key- st or e- passwor d>j bossws</ sp: key- st or e- passwor d>
<sp:trust-store-fil e>WEB-| NF/ wsse.truststore</sp:trust-store-file>
<sp: trust-store-password>j bossws</ sp: trust - st or e- passwor d>
<sp: confi g>
<sp: encrypt alias="wsse' type='x509v3'/>
<sp:requires>
<sp: encryption/ >
</ sp:requires>
</ sp: confi g>
</ sp:j boss-ws-security>
</wsp: Al | >
</wsp: Pol i cy>
<nessage nane=' Hel | o_echoUser Type' >
<part nane='user' type='nsl: UserType'/>
</ nessage>
<message name=' Hel | o_echoUser TypeResponse' >
<part name='return' type='nsl: UserType'/>
</ message>
<port Type nane='Hel | o' >
<oper ati on nane=' echoUser Type' paraneter Order="'user'>
<i nput nessage='tns: Hel | o_echoUser Type' />
<out put nmessage='tns: Hel | o_echoUser TypeResponse' / >
</ oper ati on>
</ port Type>
<bi ndi ng nane=' Hel | oBi ndi ng' type='tns: Hello' >
<wsp: Pol i cyRef erence URI =' #X509Endpoi nt Pol i cy' />
<soap: bi ndi ng style="rpc' transport='"http://schemas. xm soap. org/ soap/ http'/>
<oper ati on name='echoUser Type' >
<soap: operati on soapAction=""/>

<i nput >

<soap: body nanespace='http://org.jboss.ws/sanpl es/wssecuritypolicy'
use='literal'/>

</i nput >

<out put >

<soap: body nanespace='http://org.jboss.ws/sanpl es/wssecuritypolicy'
use='literal'/>

</ out put >

347

Chapter 10. Web Services

</ oper ati on>

</ bi ndi ng>

<servi ce nane=' Hel | oService' >

<port bindi ng='tns: Hel | oBi ndi ng' name=' Hel | oPort"' >
<soap: address | ocati on=' REPLACE_ W TH ACTUAL_URL' / >
</ port>

</ servi ce>

</ definitions>

Please note in the wsdl file the wsp:Policy element and the wsp:PolicyReference in
'HelloBinding' binding Element.

19.7.3. Using policies with JBoss annotations

Using JBoss proprietary annotation you only have to provide the policy xml, leaving wsdl
generation to the JBossWS deployer.

There are two annotations to use, the first one (@PolicyAttachment) containing an array of the
second one (@Policy): this lets you have many policies attached to a class or method. In future
domain policy implementations might ship domain annotations extending the @Policy
annotation to provide needed metadata directly as annotation parameters. The current @Policy
annotation takes a reference to a xml file containing a generic policy description written
respecting ws-policy specification rules.

/**

@rar get (El ement Type. TYPE)

@ret ent i on(Ret enti onPol i cy. RUNTI VE)
public @nterface PolicyAttachment {
Policy[] value();

}

@ret ent i on(Ret enti onPol i cy. RUNTI VE)
public @nterface Policy {

public String policyFilelLocation();

publ i ¢ Pol i cyScopeLevel scope();

}

And here you have the previous section example re-implemented using annotations and xml
policy file:

@ebServi ce(nane = "Hel | 0", target Namespace =

"http://org.jboss. ws/sanpl es/ wssecurit yAnnot at edpol i cy")

@ol i cyAttachnment ({ @ol icy(policyFilelLocation="WEB-I|NF/ Policy.xm", scope =
Pol i cyScopelLevel . WsDL_PORT) })

348

JBossWS Extensions

@0APBI ndi ng(styl e = SOAPBi ndi ng. Styl e. RPC)
public class Hell oJavaBean

{

private Logger | og = Logger.get Logger (Hell oJavaBean. cl ass);

@\ébMet hod

publ i c User Type echoUser Type(@¢bPar am(nanme = "user") User Type i n0)
{

| og. i nfo(in0);

return in0

}

}

<?xm version="1.0" encodi ng="UTF- 8" ?>

<wsp: Pol i cy wsu: | d="X509Endpoi nt Pol i cy"

xm ns: wsp="http://schemas. xm soap. or g/ ws/ 2004/ 09/ pol i cy"

xm ns: wsu="http://docs. oasi s- open. or g/ wss/ 2004/ 01/ oasi s- 200401- wss-wssecurity-utility-1.0.xs
<wsp: Exact | yOne>

<wsp: Al | >

<sp:j boss-ws-security

xm ns: sp="http://ww.j boss. com ws-security/schema/jboss-ws-security_1 0.xsd">
<sp: key-store-fil e>VEB- | NF/ wsse. keyst or e</ sp: key-store-fil e>

<sp: key- st or e- passwor d>j bossws</ sp: key- st or e- passwor d>
<sp:trust-store-fil e>WEB-| NF/ wsse.truststore</sp:trust-store-file>
<sp: trust-store-passwor d>j bossws</sp: trust-store-password>

<sp: confi g>

<sp: encrypt type="x509v3" alias="wsse"/>

<sp:requires>

<sp: encryption/ >

</ sp: requires>

</ sp: confi g>

</ sp:j boss-ws-security>

</wsp: Al | >

</ wsp: Exact | yOne>

</ wsp: Pol i cy>

20. JBossWS Extensions
This section describes propriatary JBoss extensions to JAX-WS.
20.1. Proprietary Annotations

For the set of standard annotations, please have a look at JAX-WS Annotations®®

20.1.1. EndpointConfig

/**

* Defines an endpoint or client configuration.
* This annotation is valid on an endpoi nt inplenentai on bean or a SEIl.

66 http://jbws.dyndns.org/mediawiki/index.php?tite=JAX-WS_Annotations

349

http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_Annotations
http://jbws.dyndns.org/mediawiki/index.php?title=JAX-WS_Annotations

Chapter 10. Web Services

*

* @ut hor Hei ko. Braun@ boss. org

* @ince 16.01. 2007

*/

@Ret ention(val ue = RetentionPolicy. RUNTI ME)

@arget (value = { El enent Type. TYPE })

public @nterface Endpoint Config {

[*x

* The optional config-nane el ement gives the configuration nane that nust be
present in

* the configuration given by el enent config-file.

*

* Server side default: Standard Endpoi nt

* Cient side default: Standard di ent

*/

String configName() default "";

[

* The optional config-file elenent is a URL or resource nane for the
configurati on.

*

* Server side default: standard-jaxws-endpoint-config.xm
* Cient side default: standard-jaxws-client-config.xm
*/

String configFile() default "";

}

20.1.2. WebContext

/**

* Provi des web context specific meta data to EJB based web service
endpoi nt s.

*

* @ut hor thonms. di esl er @boss. org

* @ince 26- Apr-2005

*/

@Ret ention(val ue = RetentionPolicy. RUNTI ME)

@arget (value = { El enent Type. TYPE })

public @nterface WebCont ext {

/**
* The cont ext Root el ement specifies the context root that the web service

endpoi nt is depl oyed to.

* If it is not specified it will be derived fromthe depl oyment short nane.
*

* Applies to server side port conponents only.

*/

String contextRoot() default "";

[

* The virtual hosts that the web service endpoint is deployed to.

*

350

Proprietary Annotations

* Applies to server side port conponents only.
*/
String[] virtual Hosts() default {};

/**

* Relative path that is appended to the contextRoot to formfully qualified
* endpoi nt address for the web service endpoint.

*

* Applies to server side port conmponents only.

*/

String url Pattern() default "";

/**

* The authMethod is used to configure the authenticati on mechani smfor the
web service.

* As a prerequisite to gaining access to any web service which are protected
by an authori zation

* constraint, a user rmust have authenticated using the configured nmechani sm
*

* Legal values for this element are "BASIC', or "CLIENT-CERT".

*/

String aut hMet hod() default "";

/**

* The transport Guarantee specifies that the comunication

* between client and server shoul d be NONE, | NTEGRAL, or

* CONFI DENTI AL. NONE neans that the applicati on does not require any

* transport guarantees. A value of | NTEGRAL nmeans that the application
* requires that the data sent between the client and server be sent in
* such a way that it can't be changed in transit. CONFI DENTI AL nmeans

* that the application requires that the data be transnmitted in a

* fashion that prevents other entities from observing the contents of
* the transmission. In nobst cases, the presence of the | NTEGRAL or

* CONFIDENTIAL flag will indicate that the use of SSL is required.

*/

String transport Guarantee() default ;

/**

* A secure endpoi nt does not by default publish it's wsdl on an unsecure
transport.

* You can override this behaviour by explicitly setting the secureWsDLAccess
flag to fal se.

*

* Protect access to WBDL. See http://jira.jboss.org/jiralbrowse/ JBWS- 723

*/

bool ean secur eWsDLAccess() default true;

}

20.1.3. SecurityDomain

/**

* Annotation for specifying the JBoss security domain for an EJB

*

351

Chapter 10. Web Services

* @uthor Bill Burke

**/

@rar get (El ement Type. TYPE) @Rret enti on(Ret enti onPol i cy. RUNTI MVE)
public @nterface SecurityDomain

{

/**

* The required nane for the security donain.

*

* Do not use the JNDI nane

*

* Good: " MyDomai n"

* Bad: "java:/jaas/ MyDonai n"
*/

String val ue();

/**

* The nane for the unauthenticated pricipal
*/

String unaut henti catedPrincipal () default ;

}

352

Chapter 11.

Additional Services

This chapter discusses useful MBean services that are not discussed elsewhere either because
they are utility services not necessary for running JBoss, or they don't fit into a current section of
the book.

1. Memory and Thread Monitoring

The j boss. syst em t ype=Ser ver | nf o MBean provides several attributes that can be used to
monitor the thread and memory usage in a JBoss instance. These attributes can be monitored
in many ways: through the JMX Console, from a third-party JMX management tool, from shell
scripts using the twiddle command, etc... The most interesting attributes are shown below.

FreeMemory
This is the current free memory available in the JVM.

ActiveThreadCount
This is the number of active threads in the JVM.

ActiveThreadGroupCount
This is the number of active thread groups in the JVM.

These are useful metrics for monitoring and alerting, but developers and administrators need a
little more insite than this. The Java 5 JVMs from Sun provide more detailed information about
the current state of the JVM. Some of these details are exposed by JBoss through operations
on the Systeminfo MBean.

listMemoryPools
This operations shows the size and current usage of all JVM memory pools. This operation
is only available when using Java 5.

listThreadDump
This operations shows all threads currently running in the JVM. When using Java 5, JBoss
will display a complete stack trace for each thread, showing you exactly what code each
thread is executing.

listThreadCpuUtilization
This operations shows all threads currently running in the JVM along with the total CPU
time each thread has used. The operation is only available in Java 5.

2. The Log4j Service

The Log4j Ser vi ce MBean configures the Apache log4j system. JBoss uses the log4j
framework as its internal logging API.

353

Chapter 11. Additional Services

e ConfigurationURL: The URL for the log4j configuration file. This can refer to either a XML
document parsed by the or g. apache. | og4j . xm . DOMConf i gur at or or a Java properties file
parsed by the or g. apache. | og4j . PropertyConfi gurat or. The type of the file is determined
by the URL content type, or if this is null, the file extension. The default setting of
resource: | og4j . xnl refers to the conf /1 og4j . xnl file of the active server configuration file
set.

« RefreshPeriod: The time in seconds between checks for changes in the log4 configuration
specified by the Conf i gur ati onURL attribute. The default value is 60 seconds.

« CatchSystemErr: This boolean flag if true, indicates if the Syst em err stream should be
redirected onto a log4j category called STDERR. The default is true.

« CatchSystemOut: This boolean flag if true, indicates if the Syst em out stream should be
redirected onto a log4j category called STDOUT. The default is true.

* Log4jQuietMode: This boolean flag if true, sets the
or g. apache. | og4j . hel pers. LogLog. set Qui t eMbde. As of log4j1.2.8 this needs to be set to
avoid a possible deadlock on exception at the appender level. See bug#696819.

3. System Properties Management

The management of system properties can be done using the system properties service. It
supports setting of the VM global property values just as j ava. | ang. Syst em set Property
method and the VM command line arguments do.

Its configurable attributes include:

» Properties: a specification of multiple property name=val ue pairs using the
java. util.Properites.|oad(java.io.lnputStrean) method format. Each
propert y=val ue statement is given on a separate line within the body of the Properti es
attribute element.

e URLList: a comma separated list of URL strings from which to load properties file formatted
content. If a component in the list is a relative path rather than a URL it will be treated as a file
path relative to the <j boss- di st >/ server/ <confi g> directory. For example, a component of
conf/l ocal . properties would be treated as a file URL that points to the
<j boss-di st >/ server/ producti on/ conf/l ocal . properti es file when running with the
def aul t configuration file set.

The following illustrates the usage of the system properties service with an external properties
file.

<nmbean code="org.jboss.varia. property. Syst enPropertiesService"
nanme="j boss. util:type=Servi ce, nane=Syst enProperti es">

<I-- Load properties fromeach of the given comma separated URLS -->

354

Property Editor Management

<attribute nane="URLLi st">
http://sonehost/some-| ocati on. properti es,
./ conf/sonel ocal . properties
</attribute>
</ mbean>

The following illustrates the usage of the system properties service with an embedded
properties list.

<mbean code="org.jboss.varia. property. Syst enPropertiesService"
name="j boss. util:type=Servi ce, nane=Syst enProperti es">
<I-- Set properties using the properties file style. -->
<attribute nane="Properties">
propertyl=This is the value of ny property
property2=This is the value of ny other property
</attribute>

</ nbean>

4. Property Editor Management

In JBoss, JavaBean property editors are used for reading data types from service files and for
editing values in the JMX console. The j ava. bean. Propert yEdi t or Manager class controls the
j ava. bean. Propert yEdi t or instances in the system. The property editor manager can be
managed in JBoss using the or g. j boss. vari a. property. Propert yEdi t or Manager Ser vi ce
MBean. The property editor manager service is configured in

depl oy/ properti es-service. xnl and supports the following attributes:

« BootstrapEditors: This is a listing of property_edi t or _cl ass=edi tor_val ue_type_cl ass
pairs defining the property editor to type mappings that should be preloaded into the property
editor manager. The value type of this attribute is a string so that it may be set from a string
without requiring a custom property editor.

« Editors: This serves the same function as the Boot st r apEdi t or s attribute, but its type is
java.util.Properties. Setting it from a string value in a service file requires a custom
property editor for properties objects already be loaded. JBoss provides a suitable property
editor.

« EditorSearchPath: This attribute allows one to set the editor packages search path on the
Proper t yEdi t or Manager editor packages search path. Since there can be only one search
path, setting this value overrides the default search path established by JBoss. If you set this,
make sure to add the JBoss search path, org. j boss. uti | . propertyeditor and
org.jboss.mk.util.propertyeditor,tothe front of the new search path.

5. Services Binding Management

355

Chapter 11. Additional Services

With all of the independently deployed services available in JBoss, running multiple instances
on a given machine can be a tedious exercise in configuration file editing to resolve port
conflicts. The binding service allows you centrally configure the ports for multiple JBoss
instances. After the service is normally loaded by JBoss, the Ser vi ceConf i gur at or queries the
service binding manager to apply any overrides that may exist for the service. The service
binding manager is configured in conf/j boss-servi ce. xm . The set of configurable attributes it
supports include:

« ServerName: This is the name of the server configuration this JBoss instance is associated
with. The binding manager will apply the overrides defined for the named configuration.

» StoreFactoryClassName: This is the name of the class that implements the
Ser vi cesSt or eFact or y interface. You may provide your own implementation, or use the
default XML based store or g. j boss. servi ces. bi ndi ng. XM_Ser vi cesSt or eFact ory. The
factory provides a Ser vi cesSt or e instance responsible for providing the names configuration
sets.

« StoreURL: This is the URL of the configuration store contents, which is passed to the
Ser vi cesSt or e instance to load the server configuration sets from. For the XML store, this is
a simple service binding file.

The following is a sample service binding manager configuration that uses the ports- 01
configuration from the sanpl e- bi ndi ngs. xm file provided in the JBoss examples directory.

<nmbean code="org.j boss. servi ces. bi ndi ng. Servi ceBi ndi ngManager "
nanme="j boss. syst em servi ce=Ser vi ceBi ndi ngManager " >
<attribute nane="Server Nane" >ports-01</attri bute>
<attribute name="StoreURL">
../ docs/ exanpl es/ bi ndi ng- manager / sanpl e- bi ndi ngs. xm
</attribute>
<attribute nane="StoreFact oryC assNane" >
org.j boss. servi ces. bi ndi ng. XM_Ser vi cesSt or eFact ory
</attribute>
</ nbean>

The structure of the binding file is shown in Figure 11.1, “The binding service file structure”.

356

Services Binding Management

#®service-bindings

]

®server

+ E_
®name @®delegateClass
=iring strirg
#delegate-config B ®portName @®hosthame
- . =tring siring
®binding _| '.pcrt .name ®host
E stnng stnng Iring

Figure 11.1. The binding service file structure

* service-config

EE

The elements are:

» service-bindings: The root element of the configuration file. It contains one or more server
elements.

e server: This is the base of a JBoss server instance configuration. It has a required name
attribute that defines the JBoss instance name to which it applies. This is the name that
correlates with the Ser vi ceBi ndi ngManager Ser ver Nane attribute value. The server element
content consists of one or more ser vi ce- conf i g elements.

» service-config: This element represents a configuration override for an MBean service. It has
a required name attribute that is the JMX Qbj ect Nane string of the MBean service the
configuration applies to. It also has a required del egat eCl ass name attribute that specifies
the class name of the Ser vi cesConf i gDel egat e implementation that knows how to handle
bindings for the target service. Its contents consists of an optional del egat e- conf i g element
and one or more binding elements.

* binding: A bi ndi ng element specifies a named port and address pair. It has an optional narme
that can be used to provide multiple binding for a service. An example would be multiple
virtual hosts for a web container. The port and address are specified via the optional port and
host attributes respectively. If the port is not specified it defaults to 0 meaning choose an
anonymous port. If the host is not specified it defaults to null meaning any address.

» delegate-config: The del egat e- conf i g element is an arbitrary XML fragment for use by the
Ser vi cesConf i gDel egat e implementation. The host Nane and por t Nanme attributes only
apply to the At t ri but eMappi ngDel egat e of the example and are there to prevent DTD
aware editors from complaining about their existence in the At t ri but eMappi ngDel egat e
configurations. Generally both the attributes and content of the del egat e- confi g are
arbitrary, but there is no way to specify and a element can have any number of attributes with
a DTD.

357

Chapter 11. Additional Services

The three Ser vi cesConf i gDel egat e implementations are At t ri but eMappi ngDel egat e,
XSLTConf i gDel egat e, and XSLTFi | eDel egat e.

5.1. AttributeMappingDelegate

The At t ri but eMappi ngDel egat e class is an implementation of the Ser vi cesConf i gDel egat e
that expects a del egat e- conf i g element of the form:

<del egat e-confi g port Nane="port Attr Name" host Name="host Attr Name" >
<attribute nane="soneAttrNane">sonmeHost Port Expr</attri bute>
<l-- ... -->

</ del egat e- confi g>

The port At t r Nane is the attribute name of the MBean service to which the binding port value
should be applied, and the host At t r Nane is the attribute name of the MBean service to which
the binding host value should be applied. If the port Name attribute is not specified then the
binding port is not applied. Likewise, if the host Nane attribute is not specified then the binding
host is not applied. The optional attribute element(s) specify arbitrary MBean attribute names
whose values are a function of the host and/or port settings. Any reference to ${ host} in the
attribute content is replaced with the host binding and any ${ port} reference is replaced with
the port binding. The port Nane, host Nane attribute values and attribute element content may
reference system properties using the ${ x} syntax that is supported by the JBoss services
descriptor.

The sample listing illustrates the usage of Att ri but eMappi ngDel egat e.

<servi ce-config name="j boss: servi ce=Nam ng"

del egat e ass="org. j boss. servi ces. bi ndi ng. Attri but eMappi ngDel egat e" >
<del egat e- confi g port Name="Port"/>
<bi ndi ng port="1099" />

</ servi ce-confi g>

Here the j boss: ser vi ce=Nanmi ng MBean service has its Port attribute value overridden to
1099. The corresponding setting from the jboss1 server configuration overrides the port to 1199.

5.2. XSLTConfigDelegate

The XSLTConf i gDel egat e class is an implementation of the Ser vi cesConf i gDel egat e that
expects a del egat e- conf i g element of the form;

<del egat e- confi g>
<xsl t-confi g confi gNanme="Confi gurati onEl enent " ><! [CDATA[
Any XSL docunent contents...
11>
</ xsl t-config>
<xsl t - par am nane="par am name" >par am val ue</ xsl t - par an»
<l-- ... -->
</ del egat e- confi g>

358

XSLTFileDelegate

The xsl t - confi g child element content specifies an arbitrary XSL script fragment that is to be
applied to the MBean service attribute named by the conf i gNane attribute. The named attribute
must be of type or g. w3c. dom El ement . The optional xs! t - par amelements specify XSL script
parameter values for parameters used in the script. There are two XSL parameters defined by
default called host and port, and their values are set to the configuration host and port
bindings.

The XSLTConf i gDel egat e is used to transform services whose port/i nt er f ace configuration
is specified using a nested XML fragment. The following example maps the port number on
hypersonic datasource:

<service-config
name="j boss. j ca: servi ce=ManagedConnect i onFact ory, nane=Def aul t DS"
del egat ed ass="org. j boss. servi ces. bi ndi ng. XSLTConf i gDel egat e" >
<del egat e- confi g>
<xslt-config
conf i gName=" ManagedConnecti onFact or yProperti es" ><! [CDATA[
<xsl : styl esheet
xm ns: xsl =" http://ww. w3. org/ 1999/ XSL/ Transform versi on='1.0' >

<xsl : out put nethod="xm" />
<xsl : param nane="host "/ >
<xsl : param name="port"/>

<xsl :tenpl ate match="/">
<xsl : appl y-tenpl at es/ >
</ xsl :tenpl at e>

<xsl:tenpl ate mat ch="confi g- property[@ame=" Connecti onURL'] ">
<config-property type="java.lang. String" name="Connecti onURL">
j dbc: hsqgl db: hsqgl : // <xsl : val ue- of sel ect ="' $host '/ >: <xsl : val ue- of
sel ect =" $port' />
</ confi g- property>
</ xsl:tenpl at e>

<xsl:tenplate match="*| @">
<xsl : copy>
<xsl : appl y-tenpl ates sel ect="@ | node()"/>
</ xsl : copy>
</ xsl :tenpl at e>
</ xsl : styl esheet >
11>
</ xslt-config>
</ del egat e- confi g>
<bi ndi ng host="1ocal host" port="1901"/>
</ servi ce-confi g>

5.3. XSLTFileDelegate

The XSLTFi | eDel egat e class works similarly to the XSLTConf i gDel egat e except that instead
of transforming an embedded XML fragment, the XSLT script transforms a file read in from the

359

Chapter 11. Additional Services

file system. The del egat e- conf i g takes exactly the same form:

<del egat e- confi g>
<xsl t-config confi gName="Confi gurati onEl enent " ><! [CDATA[
Any XSL docunent contents...
11>
</ xsl t-config>
<xsl t - par am nane=" par am nane" >par am val ue</ xsl t - par an>
<l-- .. -->
</ del egat e- confi g>

The xsl t - conf i g child element content specifies an arbitrary XSL script fragment that is to be
applied to the MBean service attribute named by the conf i gNane attribute. The named attribute
must be a String value corresponding to an XML file that will be transformed. The optional

xsl t - par amelements specify XSL script parameter values for parameters used in the script.
There are two XSL parameters defined by default called host and port, and their values are set
to the configuration host and port bindings.

The following example maps the host and port values for the Tomcat connectors:

<servi ce-config nane="j boss. web: servi ce=\ebhServer"
del egat eC ass="org.] boss. servi ces. bi ndi ng. XSLTFi | eDel egat e">
<del egat e- confi g>
<xsl t-config confi gName="Confi gFi | e"><! [CDATA[
<xsl : styl esheet
xm ns: xsl ="' http://ww. w3. org/ 1999/ XSL/ Transform versi on="1.0" >

<xsl : out put nethod="xm" />
<xsl : param nane="port"/>

<xsl :vari abl e nane="port AJP" sel ect="$port - 71"/>
<xsl : vari abl e nanme="port H t ps" sel ect="$port + 363"/>

<xsl :tenplate match="/">
<xsl : appl y-t enpl at es/ >
</ xsl:tenpl at e>

<xsl:tenplate match = "Connector">
<Connect or >
<xsl:for-each select="@">
<xsl : choose>
<xsl : when test="(nane() = 'port' and . = '8080")">
<xsl:attribute name="port">
<xsl : val ue- of select="$port" />
</xsl:attribute>
</ xsl : when>
<xsl :when test="(nanme() = 'port' and . = '8009')">
<xsl:attribute name="port">
<xsl : val ue- of sel ect="$port AJP" />
</xsl:attribute>
</ xsl : when>
<xsl :when test="(nanme() = 'redirectPort')">
<xsl:attribute name="redirectPort">

360

The Sample Bindings File

<xsl : val ue- of select="$portHttps" />
</ xsl :attribute>
</ xsl : when>
<xsl:when test="(name() = 'port' and . = '8443")">
<xsl:attribute name="port">
<xsl : val ue- of sel ect="$portHttps" />
</ xsl:attribute>
</ xsl : when>
<xsl : ot her wi se>
<xsl:attribute name="{name()}"><xsl:val ue-of sel ect=".
/></xsl :attribute>
</ xsl : ot her wi se>
</ xsl : choose>
</ xsl: for-each>
<xsl : appl y-tenpl at es/ >
</ Connect or >
</ xsl :tenpl at e>

<xsl:tenplate match="*| @" >
<xsl : copy>
<xsl : appl y-tenpl ates sel ect="@ | node()"/>
</ xsl : copy>
</ xsl:tenpl at e>
</ xsl : styl esheet >
11>
</ xslt-config>
</ del egat e- confi g>
<bi ndi ng port="8280"/>
</ servi ce-confi g>

5.4. The Sample Bindings File

JBoss ships with service binding configuration file for starting up to three separate JBoss
instances on one host. Here we will walk through the steps to bring up the two instances and
look at the sample configuration. Start by making two server configuration file sets called
j boss0 and j boss1 by running the following command from the book examples directory:

[exanpl es] $ ant - Dchap=m sc -Dex=1 run-exanpl e

This creates duplicates of the ser ver/ def aul t configuration file sets as server/j boss0 and
server/j boss1, and then replaces the conf/j boss- servi ce. xnl descriptor with one that has
the Servi ceBi ndi ngManager configuration enabled as follows:

<mbean code="org.j boss. servi ces. bi ndi ng. Servi ceBi ndi ngManager "
nane="j boss. syst em servi ce=Ser vi ceBi ndi ngManager " >
<attribute name="Server Name">${j boss. server. nane}</attri bute>
<attribute
nanme=" St or eURL" >${] boss. server. base. di r}/ m sc- ex1- bi ndi ngs. xm </attri bute>
<attribute nanme="St oreFact oryCl assNane" >
org. j boss. servi ces. bi ndi ng. XM_Ser vi cesSt or eFact ory
</attribute>

361

Chapter 11. Additional Services

</ nbean>

Here the configuration name is ${j boss. ser ver . nane}. JBoss will replace that with name of
the actual JBoss server configuration that we pass to the run script with the - ¢ option. That will
be either j boss0 or j boss1, depending on which configuration is being run. The binding
manager will find the corresponding server configuration section from the

mi sc- ex1- bi ndi ngs. xm and apply the configured overrides. The j boss0 configuration uses
the default settings for the ports, while the j boss1 configuration adds 100 to each port number.

To test the sample configuration, start two JBoss instances using the j boss0 and j boss1
configuration file sets created previously. You can observe that the port numbers in the console
log are different for the j boss1 server. To test out that both instances work correctly, try
accessing the web server of the first JBoss on port 8080 and then try the second JBoss
instance on port 8180.

6. RMI Dynamic Class Loading

The WebSer vi ce MBean provides dynamic class loading for RMI access to the server EJBs.
The configurable attributes for the service are as follows:

» Port: the WebSer vi ce listening port number. A port of 0 will use any available port.

» Host: Set the name of the public interface to use for the host portion of the RMI codebase
URL.

« BindAddress: the specific address the WebSer vi ce listens on. This can be used on a
multi-homed host for a j ava. net . Ser ver Socket that will only accept connect requests to one
of its addresses.

« Backlog: The maximum queue length for incoming connection indications (a request to
connect) is set to the backl og parameter. If a connection indication arrives when the queue is
full, the connection is refused.

« DownloadServerClasses: A flag indicating if the server should attempt to download classes
from thread context class loader when a request arrives that does not have a class loader key
prefix.

» DownloadResources: A flag indicating whether the server should attempt to download
non-class file resources using the thread context class loader. Note that allowing this is
generally a security risk as it allows access to server configuration files which may contain
security settings.

e ThreadPool: The org.j boss. util.threadpool . Basi cThr eadPool MBean instance thread
pool used for the class loading.

7. Scheduling Tasks

362

org.jboss.varia.scheduler.Scheduler

Java includes a simple timer based capability through the j ava. uti | . Ti mer and
java.util.TinerTask utility classes. JIMX also includes a mechanism for scheduling JIMX
notifications at a given time with an optional repeat interval as the

j avax. managenent . ti mer. Ti mer MBean agent service.

JBoss includes two variations of the JMX timer service in the

org.j boss.varia. schedul er. Schedul er and

org.j boss. vari a. schedul er. Schedul eManager MBeans. Both MBeans rely on the JMX timer
service for the basic scheduling. They extend the behavior of the timer service as described in
the following sections.

7.1. org.jboss.varia.scheduler.Scheduler

The Scheduler differs from the Ti mer MBean in that the Schedul er directly invokes a callback on
an instance of a user defined class, or an operation of a user specified MBean.

- InitialStartDate: Date when the initial call is scheduled. It can be either:
* NOW date will be the current time plus 1 seconds
» A number representing the milliseconds since 1/1/1970

» Date as String able to be parsed by Si npl eDat eFor mat with default format pattern "M d/ yy
h: mm a". If the date is in the past the Schedul er will search a start date in the future with
respect to the initial repetitions and the period between calls. This means that when you
restart the MBean (restarting JBoss etc.) it will start at the next scheduled time. When no
start date is available in the future the Schedul er will not start.

For example, if you start your Schedul abl e everyday at Noon and you restart your JBoss
server then it will start at the next Noon (the same if started before Noon or the next day if
start after Noon).

« InitialRepetitions: The number of times the scheduler will invoke the target's callback. If -1
then the callback will be repeated until the server is stopped.

« StartAtStartup: A flag that determines if the Schedul er will start when it receives its
startService life cycle notification. If true the Schedul er starts on its startup. If false, an
explicit st art Schedul e operation must be invoked on the Schedul er to begin.

* SchedulePeriod: The interval between scheduled calls in milliseconds. This value must be
bigger than 0.

« SchedulableClass: The fully qualified class name of the
org.j boss. vari a. schedul er. Schedul abl e interface implementation that is to be used by
the Schedul er . The Schedul abl eAr gunent s and Schedul abl eAr gument Types must be
populated to correspond to the constructor of the Schedul abl e implementation.

« SchedulableArguments: A comma separated list of arguments for the Schedul abl e
implementation class constructor. Only primitive data types, Stri ng and classes with a

363

Chapter 11. Additional Services

constructor that accepts a St ri ng as its sole argument are supported.

» SchedulableArgumentTypes: A comma separated list of argument types for the
Schedul abl e implementation class constructor. This will be used to find the correct
constructor via reflection. Only primitive data types, St ri ng and classes with a constructor
that accepts a St ri ng as its sole argument are supported.

» SchedulableMBean: Specifies the fully qualified JIMX Qbj ect Name name of the schedulable
MBean to be called. If the MBean is not available it will not be called but the remaining
repetitions will be decremented. When using Schedul abl eMBean the
Schedul abl eMBeanMet hod must also be specified.

» SchedulableMBeanMethod: Specifies the operation name to be called on the schedulable
MBean. It can optionally be followed by an opening bracket, a comma separated list of
parameter keywords, and a closing bracket. The supported parameter keywords include:

* NOTI FI CATI ON which will be replaced by the timers notification instance
(javax.management.Notification)

» DATE which will be replaced by the date of the notification call (java.util.Date)
» REPETI TI ONS which will be replaced by the number of remaining repetitions (long)
» SCHEDULER_NAME which will be replaced by the Obj ect Nane of the Schedul er

» Any fully qualified class name which the Schedul er will set to null.

A given Scheduler instance only support a single schedulable instance. If you need to configure
multiple scheduled events you would use multiple Schedul er instances, each with a unique

(bj ect Nane. The following is an example of configuring a Schedul er to call a Schedul abl e
implementation as well as a configuration for calling a MBean.

<server >

<nmbean code="org. | boss. vari a. schedul er. Schedul er"
nane="j boss. docs: servi ce=Schedul er" >

<attribute name="StartAtStartup">true</attribute>
<attribute

name="Schedul abl eCl ass" >or g. j boss. book. m sc. ex2. ExSchedul abl e</ attri but e>
<attribute nane="Schedul abl eAr gunent s" >TheNane, 123456789</ attri but e>
<attribute

nanme="Schedul abl eAr gunent Types" >j ava. | ang. Stri ng, | ong</attri but e>

<attribute nane="Initial StartDate">NOM/attribute>

<attribute nane="Schedul ePeri od">60000</attri bute>

<attribute name="Initial Repetitions">-1</attri bute>
</ mbean>

</ server >

364

org.jboss.varia.scheduler.Scheduler

The Schedul abl ed assor g. j boss. book. nmi sc. ex2. ExSchedul abl e example class is given
below.

package org.j boss. book. m sc. ex2;

i mport java.util.Date;
i mport org.jboss. varia.schedul er. Schedul abl e;

i mport org.apache. | og4j. Logger;

/**
* A sinple Schedul abl e exanpl e.

* @ut hor Scott. Stark@ boss. org
* @ersion $Revision: 1.1 $

*/
publ i c class ExSchedul abl e i npl enents Schedul abl e
{
private static final Logger |og = Logger.getLogger (ExSchedul abl e. cl ass);
private String nane;
private | ong val ue;
publ i ¢ ExSchedul abl e(String name, |ong val ue)
{
t hi s. name = nane;
this.val ue = val ue;
log.info("ctor, name: " + nane + ", value: " + value);
}
public void perforn(Date now, |ong renaini ngRepetitions)
{
| og.info("perform now " + now +
", remaini ngRepetitions: " + renanini ngRepetitions +
", nane: " + nane + ", value: " + value);
}
}

Deploy the timer SAR by running:

[exanpl es] $ ant -Dchap=ni sc - Dex=2 run-exanpl e

The server console shows the following which includes the first two timer invocations, separated
by 60 seconds:

21:09: 27,716 I NFO [ExSchedul abl e] ctor, name: TheNane, val ue: 123456789
21:09: 28,925 I NFO [ExSchedul abl e] perform now. Mn Dec 20 21: 09: 28 CST
2004,

renmmi ni ngRepetitions: -1, nane: TheNane, val ue: 123456789
21:10: 28,899 I NFO [ExSchedul abl e] perform now. Mn Dec 20 21:10: 28 CST
2004,

remai ni ngRepetitions: -1, nane: TheName, value: 123456789
21:11: 28,897 INFO [ExSchedul abl e] perform now. Mn Dec 20 21:11:28 CST
2004,

365

Chapter 11. Additional Services

remai ni ngRepetitions: -1, nane: TheNane, val ue: 123456789

8. The Timer Service

The JMX standard defines a timer MBean (j avax. managenent . ti ner. Ti mer) which can send
notifications at predetermined times. The a timer MBean can be instantiated within JBoss as
any other MBean.

<nmbean code="j avax. managenent.ti mer. Ti ner"
nanme="j boss. noni t or : name=Heart beat , t ype=Ti ner"/ >

A standard JMX timer doesn't produce any timer events unless it is asked to. To aid in the
configuration of the timer MBean, JBoss provides a complementary Ti mer Ser vi ce MBean. It
interacts with the timer MBean to configure timer events at regular intervals and to transform
them into JMX notifications more suitable for other services. The Ti mer Ser vi ce MBean takes
the following attributes:

* NotificationType: This is the type of the notification to be generated.

* NotificationMessage: This is the message that should be associated with the generated
notification.

e TimerPeriod: This is the time period between notification. The time period is in milliseconds,
unless otherwise specified with a unit like "30min" or "4h". Valid time suffixes are msec, sec,
m n and h.

» Repeatitions: This is the number of times the alert should be generated. A value of 0
indicates the alert should repeat indefinitely.

« TimerMbean: This is the Coj ect Narme of the time MBean that this Ti mer Ser vi ce instance
should configure notifications for.

The following sample illustrates the the use of the Ti mer Ser vi ce MBean.

<nmbean code="org.j boss. nonitor.services. Ti mer Servi ce"
nanme="j boss. noni t or : nane=Hear t beat , t ype=Ti ner Ser vi ce" >
<attribute nanme="Notificati onType">j boss. nonitor. heartbeat</attribute>
<attribute nanme="Notificati onMessage">JBoss is alivel</attribute>
<attribute name="Ti nerPeri od">60sec</attribute>
<depends optional -attri bute-nane="Ti ner MBean" >
j boss. noni t or : nane=Hear t beat , t ype=Ti ner
</ depends>
</ mbean>

This MBean configuration configures the j boss. noni t or : nanme=Hear t beat , t ype=Ti ner timer
to generate a j boss. noni t or. hear t beat notification every 60 seconds. Any service that that

366

The Timer Service

wants to receive this periodic notifications can subscribe to the notification.

As an example, JBoss provides a simple Not i fi cati onLi st ener MBean that can listen for a
particular notification and log a log message when an event is generated. This MBean is very
useful for debugging or manually observing notifications. The following MBean definition listens
for any events generated by the heartbeat timer used in the previous examples.

<mbean code="or(g.jboss. nonitor.services.NotificationListener"
nane="j boss. moni t or: servi ce=Noti fi cati onLi st ener">
<attribute nane="SubscriptionList">
<subscription-1list>
<nbean nane="j boss. noni t or : name=Hear t beat , t ype=Ti ner" />
</ subscription-|ist>
</attribute>
</ mbean>

The subscri ption-1ist element lists which MBeans the listener should listen to. Notice that
the MBean we are listening to is the name of the actual timer MBean and not the Ti ner Ser vi ce
MBean. Because the timer might generate multiple events, configured by multiple

Ti mer Ser vi ce instances, you may need to filter by notification type. The fi |l t er element can
be used to create notification filters that select only the notification types desired. The following
listing shows how we can limit notifications to only the j boss. noni t or . heart beat type the
timer service configured.

<mbean code="or(g.jboss. nonitor.services.NotificationListener"
nanme="j boss. noni t or: servi ce=Not i fi cati onLi st ener">
<attribute nane="SubscriptionList">
<subscription-1list>
<mbean nane="j boss. noni t or: name=Hear t beat , t ype=Ti mer " >
<filter factory="NotificationFilterSupportFactory">
<enabl e type="j boss. nonitor. heartbeat"/>
</filter>
</ mbean>
</ subscription-|ist>
</attribute>
</ mbean>

As an example of a slightly more interesting listener, we'll look at the ScriptingListener. This
listener listens for particular events and then executes a specified script when events are
received. The script can be written in any bean shell scripting language. The ScriptingListener
accepts has the following parameters.

» ScriptLanguage: This is the language the script is written in. This should be beanshel | ,
unless you have loaded libraries for another beanshell compatible language.

« Script: This is the text of the script to evaluate. It is good practice to enclose the script in a
CDATA section to minimize conflicts between scripting language syntax and XML syntax.

« SubscriptionList: This is the list of MBeans that this MBean will listen to for events that will

367

Chapter 11. Additional Services

trigger the script.

The following example illustrates the use of the Scri pti ngLi st ener. When the previously
configured timer generates a heartbeat notification, the beanshell script will execute, printing the
current memory values to STDOUT. (This output will be redirected to the log files) Notice that
the beanshell script has a reference to the MBean server and can execute operations against
other MBeans.

<nmbean code="org.jboss. nonitor.services. ScriptingListener"
nanme="j boss. noni t or: servi ce=Scri pti ngLi st ener" >
<attribute nanme="SubscriptionList">
<subscription-1list>
<nmbean nane="j boss. noni t or: name=Heart beat , t ype=Ti ner"/ >
</ subscription-1list>
</attribute>
<attribute nane="Scri ptLanguage">beanshel | </ attri but e>
<attribute name="Script">
<! [CDATA[
i nport javax. managenent. Cbj ect Nane;

/* poll free menory and thread count */
oj ect Nane target = new Obj ect Name("j boss. system type=Serverlnfo");

long freeMenory = server.getAttribute(target, "FreeMenory");
| ong threadCount = server.getAttribute(target, "ActiveThreadCount");

|l og.info("freeMenory" + freeMenory + ", threadCount" + threadCount);
11>

</attribute>
</ nbean>

Of course, you are not limited to these JBoss-provided notification listeners. Other services such
as the barrier service (see Section 9, “The BarrierController Service”) receive and act on
notifications that could be generated from a timer. Additionally, any MBean can be coded to
listen for timer-generated notifications.

9. The BarrierController Service

Expressing dependencies between services using the <depends> tag is a convenient way to
make the lifecycle of one service depend on the lifecycle of another. For example, when
servi ceA depends on ser vi ceB JBoss will ensure the servi ceB. creat e() is called before
servi ceA. create() and servi ceB. start () is called before servi ceA. start ().

However, there are cases where services do not conform to the JBoss lifecycle model, i.e. they
don't expose create/start/stop/destroy lifecycle methods). This is the case for

j boss. syst em t ype=Server MBean, which represents the JBoss server itself. No lifecycle
operations are exposed so you cannot simply express a dependency like: if JBoss is fully
started then start my own service.

368

The BarrierController Service

Or, even if they do conform to the JBoss lifecycle model, the completion of a lifecycle method
(e.g. the st art method) may not be sufficient to describe a dependency. For example the

j boss. web: servi ce=WebSer ver MBean that wraps the embedded Tomcat server in JBoss
does not start the Tomcat connectors until after the server is fully started. So putting a
dependency on this MBean, if we want to hit a webpage through Tomcat, will do no good.

Resolving such non-trivial dependencies is currently performed using JMX notifications. For
example the j boss. syst em t ype=Ser ver MBean emits a notification of type

org. j boss. system server. st art ed when it has completed startup, and a notification of type
org. j boss. system server. st opped when it shuts down. Similarly,

j boss. web: servi ce=\WebSer ver emits a notification of type

j boss. tontat. connect ors. st art ed when it starts up. Services can subscribe to those
notifications in order to implement more complex dependencies. This technique has been
generalized with the barrier controller service.

The barrier controller is a relatively simple MBean service that extends

Li st ener Ser vi ceMBeanSupport and thus can subscribe to any notification in the system. It
uses the received notifications to control the lifecycle of a dynamically created MBean called the
barrier.

The barrier is instantiated, registered and brought to the create state when the barrier controller
is deployed. After that, the barrier is started and stopped when matching notifications are
received. Thus, other services need only depend on the barrier MBean using the usual
<depends> tag, without having to worry about complex lifecycle issues. They will be started and
stopped in tandem with the Barrier. When the barrier controller is undeployed the barrier is
destroyed.

The notifications of interest are configured in the barrier controller using the Subscri pti onLi st
attribute. In order to identify the starting and stopping notifications we associate with each
subscription a handback string object. Handback objects, if specified, are passed back along
with the delivered notifications at reception time (i.e. when handl eNot i fi cati on() is called) to
qualify the received notifications, so that you can identify quickly from which subscription a
notification is originating (because your listener can have many active subscriptions).

So we tag the subscriptions that produce the starting/stopping notifications of interest using any
handback strings, and we configure this same string to the St ar t Bar ri er Handback (and

St opBar ri er Handback correspondingly) attribute of the barrier controller. Thus we can have
more than one notifications triggering the starting or stopping of the barrier.

The following example shows a service that depends on the Tomcat connectors. In fact, this is a
very common pattern for services that want to hit a servlet inside tomcat. The service that
depends on the Barrier in the example, is a simple memory monitor that creates a background
thread and monitors the memory usage, emitting notifications when thresholds get crossed, but
it could be anything. We've used this because it prints out to the console starting and stopping
messages, so we know when the service gets activated/deactivated.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<l-- $Id: J2EE Additional _Services.xm ,v 1.1 2007/11/09 07: 30: 09 vreni sh Exp
$-->

369

Chapter 11. Additional Services

<server >
<l--
In this exanple we have the BarrierController controlling a Barrier
that is started when we receive the "jboss.tontat. connectors. started"
notification fromthe Tontat nmbean, and stopped when we receive the
"org.jboss. system server. stopped" notification fromthe server nbean

The dependent services need only define a dependency on the Barrier
nbean!
-->
<nbean code="org.j boss.system BarrierController"
nane="j boss: servi ce=BarrierControl | er">

<!-- \Wether to have the Barrier initially started or not -->
<attri bute nane="Barri er Enabl edOnSt artup">fal se</attri bute>

<I-- \Wether to subscribe for notifications after startup -->
<attribute nane="Dynam cSubscriptions">true</attri bute>

<I-- Dependent services will depend on this nbean -->
<attribute
name="Bar ri er Cbj ect Nane" >j boss: name=Tontat Connect or, type=Barrier</attri bute>

<l-- The notification subscription handback that starts the barrier -->
<attribute nane="StartBarrierHandback">start</attri but e>

<I-- The notification subscription handback that stops the barrier -->
<attribute nane="StopBarri er Handback" >st op</attri but e>

<l-- The notifications to subscribe for, along with their handbacks -->
<attribute nane="SubscriptionList">
<subscription-1list>
<nbean nane="j boss. web: servi ce=\WebServer" handback="start">
<filter factory="NotificationFilterSupportFactory">
<enabl e type="j boss.tontat.connectors.started"/>
</filter>
</ mbean>
<mbean nane="j boss. system type=Server" handback="st op">
<filter factory="NotificationFilterSupportFactory">
<enabl e type="org.j boss. system server. st opped"/ >
</filter>
</ mbean>
</ subscription-|ist>
</attribute>
</ mbean>

<I--
An exanpl e service that depends on the Barrier we decl ared above
Thi s services creates a background thread and nonitors the nenory
usage. When it exceeds the defined thresholds it enmits notifications
-->
<mbean code="or(g.j boss. nonitor.services. MenoryMonitor"
nane="j boss. nmoni t or : servi ce=Menor yMoni t or ">

<attribute nane="FreeMenor yWar ni ngThr eshol d">20nx/ attri but e>
<attribute nanme="FreeMenoryCritical Threshol d">15nx/attri bute>

370

Exposing MBean Events via SNMP

<l-- The BarrierObjectNanme configured in the BarrierController -->
<depends>j boss: name=Tontat Connect or, t ype=Barri er </ depends>
</ nbean>
</ server >

If you hot-deploy this on a running server the Barrier will be stopped because by the time the
barrier controller is deployed the starting notification is already seen. (There are ways to
overcome this.) However, if you re-start the server, the barrier will be started just after the
Tomcat connectors get activated. You can also manually start or stop the barrier by using the
startBarrier() and stopBarrier() operations on the barrier controller. The attribute
Barrier St at eStri ng indicates the status of the barrier.

10. Exposing MBean Events via SNMP

JBoss has an SNMP adaptor service that can be used to intercept JMX notifications emitted by
MBeans, convert them to traps and send them to SNMP managers. In this respect the
snmp-adaptor acts as a SNMP agent. Future versions may offer support for full agent get/set
functionality that maps onto MBean attributes or operations.

This service can be used to integrate JBoss with higher order system/network management
platforms (HP OpenView, for example), making the MBeans visible to those systems. The
MBean developer can instrument the MBeans by producing notifications for any significant
event (e.g. server coldstart), and adaptor can then be configured to intercept the notification and
map it onto an SNMP traps. The adaptor uses the JoeSNMP package from OpenNMS as the
SNMP engine.

The SNMP service is configured in snnp- adapt or . sar. This service is only available in the al |
configuration, so you'll need to copy it to your configuration if you want to use it. Inside the
snmp-adaptor.sar directory, there are two configuration files that control the SNMP service.

« managers.xml: configures where to send traps. The content model for this file is shown in
Figure 11.2, “The schema for the SNMP managers file”.

« notifications.xml: specifies the exact mapping of each notification type to a corresponding
SNMP trap. The content model for this file is shown in Figure 11.3, “The schema for the
notification to trap mapping file”.

The SNVPAgent Ser vi ce MBean is configured in
snnp- adapt or . sar/ META- | NF/ j boss- servi ce. xm . The configurable parameters are:

» HeartBeatPeriod: The period in seconds at which heartbeat notifications are generated.

* ManagersResName: Specifies the resource name of the nanagers. xni file.

371

Chapter 11. Additional Services

« NotificationMapResName: Specifies the resource name of the not i cati ons. xm file.

* TrapFactoryClassName: The or g. j boss. j nx. adapt or. snnp. agent . Tr apFact ory
implementation class that takes care of translation of IMX Notifications into SNMP V1 and V2
traps.

e TimerName: Specifies the JMX ObjectName of the JMX timer service to use for heartbeat
notifications.

» SubscriptionList: Specifies which MBeans and notifications to listen for.

+ addmss%

string

» pnnﬁ
integer

+ Inl:al-address%

string

* manager-listz) # manager

+ local-port
integer

+ versinnq
integer

Figure 11.2. The schema for the SNMP managers file

* nntiﬁtaﬁnn-type%

string

+ genericy
integer

+ specificy

integer

+ notification-map-listg 3 * mappingg | + gn[erprisg%
strin

wrapper-classg

.string
=L
* var-bind-listz | ¢ var-bindg St”"_
». md%
strin

Figure 11.3. The schema for the notification to trap mapping file

TrapdSer vi ce is a simple MBean that acts as an SNMP Manager. It listens to a configurable
port for incoming traps and logs them as DEBUG messages using the system logger. You can
modify the log4j configuration to redirect the log output to a file. SnnpAgent Ser vi ce and

372

Exposing MBean Events via SNMP

Tr apdSer vi ce are not dependent on each other.

373

374

Part Ill. Clustering Configuration

Chapter 12.

Quick Tutorial to Setup a Clustered
Web Application

Web server clustering is to use multiple JBoss AS server instances to serve the same web
address (e.g., http://lwww.jboss.com/). It is one of the most common clustering architectures
JBoss AS users deploy. In this tutorial, we discuss the basic architecture of a web cluster and
give step-by-step instructions on how to setup the cluster. A very simple web cluster looks like
Figure 12.1, “A very simple web cluster”.

JBoss AS (Servlet,
EJB etc.)
Apache []
mod_jk JBoss AS (Serviet, d':tﬁgs'“a
Internet load EJB etc.) cerver
balancer | |
JBoss AS (Servlet,
EJB etc.)
Firewall

Figure 12.1. A very simple web cluster

A lightweight web server, known as the load balancer, receives all HTTP requests from that web
address and dispatches them to JBoss AS nodes in the cluster. The JBoss AS node does the
heavy lifting of processing the request and generating the response. All the JBoss AS nodes
share the same database server for persistent data in the application. Notice that each node
contains the entire JBoss AS stack, including the web server, servlet container, EJB container,
persistence manager etc. Breaking the JBoss AS stack to different physical servers would
substantially complicate the architecture but without much scalability benefit.

1. Setup the simple web cluster

In our simple cluster depicted in Figure 12.1, “A very simple web cluster”, every JBoss AS node
is independent of each other. The load balancer "remembers" the user sessions and always
forwards requests from the same session to the same JBoss AS node (a.k.a sticky session). So,
each JBoss AS node stores its own set of HTTP session data. There is no information sharing
between JBoss AS nodes, besides the persistent data in the shared database.

377

Chapter 12. Quick Tutorial to Setup a Clustered Web Application

Assuming that the load balancer and the shared database are not performance bottlenecks, this
cluster can scale linearly with the number of JBoss AS nodes. Of course, the simplicity and
scalability has their price. The most obvious shortcomings of the this simple architecture are the
lack of support for failover and database cache. We will look at solutions for those problems in
Section 2.2, “Database cache”.

1.1. Setup the load balancer

The easiest way to setup a load balancer is to use the Apache web server with the mod_jk
module to interact with JBoss AS. After installing the Apache web server, you should download
the mod_jk 1.2.x binary from http://WWW.apache.org/dist/jakarta/tomcat-connectors/jk/binaries/l.
Rename the downloaded file to mod_jk.so and copy it under APACHE_HOME/modules/
directory.

Use mod_jk 1.2.x

We strongly advise you to use mod_jk 1.2.x, as both mod_jk and mod_jk2 are
deprecated, unsupported and no further developments are going on in the
community.

Note

Aside from loading balancing, using Apache mod_jk to front JBoss AS servers
have other benefits. The most important one is that Apache serves static content
(e.g., images) much faster than Tomcat (i.e., the embedded servlet server in
JBoss AS). Apache also handles SSL and keep-alive connections much more
efficiently than Tomcat. In addition, Apache provides modules for access control,
URL rewriting, CGI/PHP execution. So, we recommend fronting JBoss AS with
Apache mod_jk even if you have only one JBoss AS node.

To tell the Apache server to use mod_jk, you need to add the following line to the
APACHE_HOME!/conf/httpd.conf file.

Include mod_j k's specific configuration file
I ncl ude conf/nod_j k. conf

Example 12.1. Add this to the httpd.conf file

1 http://www.apache.org/dist/jakarta/tomcat-connectors/jk/binaries/

378

http://www.apache.org/dist/jakarta/tomcat-connectors/jk/binaries/
http://www.apache.org/dist/jakarta/tomcat-connectors/jk/binaries/

Setup the load balancer

Next, you should configure the interaction between Apache server and mod_jk by creating the
APACHE_HOME/conf/mod_jk.conf file as follows. The LoadModule directive must reference the
mod_jk library you have downloaded in the previous section. You must indicate the exact same
name with the "modules” file path prefix. The JkMount directive tells Apache which URLs it
should forward to the mod_jk module (and, in turn, to the JBoss AS instances). In the above file,
all requests with URL path /application/* are sent to the mod_jk load-balancer. This way, you
can configure Apache to server static contents (or PHP contents) directly and only use the
loadbalancer for Java applications. If you only use mod_jk as a loadbalancer, you can also
forward all URLs (i.e., /*) to mod_jk.

Load nod_j k nodul e
Specify the filename of the nod jk lib
LoadModul e j k_nodul e nodul es/ nod_j k. so

Where to find workers. properties
JkWor ker sFi |l e conf/workers. properties

Where to put jk |ogs
JkLogFil e | ogs/ nod_j k. | og

Set the jk log | evel [debug/error/info]
JkLogLevel info

Select the |og fornat
JkLogSt anpFormat "[% % % % %Vt %S %] "

JkRequest LogFor mat
JkRequest LogFor mat " %w %/ %@

Mount your applications
JkMount /application/* | oadbal ancer

Add shared nenory.

This directive is present with 1.2.10 and
later versions of nod_jk, and is needed for
for |oad bal ancing to work properly
JkShnFile | ogs/jk.shm

Add j kstatus for managi ng runtine data
<Location /j kst at us/>

JkMount st at us

O der deny, al | ow

Deny from al |

Al low from 127.0.0. 1
</ Locat i on>

Example 12.2. The mod_jk.conf file

379

Chapter 12. Quick Tutorial to Setup a Clustered Web Application

Then, you need to configure mod_jk itself to load balance the JBoss AS cluster. The workers file
conf/workers.properties specifies the locations of JBoss AS server nodes and how calls should
be load-balanced across them. For a two nodes setup, the file could look like the following.

Define list of workers that will be used
for mappi ng requests
wor ker . | i st =| oadbal ancer, st at us

Define Nodel

nmodi fy the host as your host | P or DNS nane.
wor ker . nodel. port =8009

wor ker . nodel. host =nodel. mydonai n. com

wor ker . nodel. t ype=aj p13

wor ker . nodel. | bf act or =1

wor ker . nodel. cachesi ze=10

Define Node2

nmodi fy the host as your host |P or DNS nane
wor ker . node2. port =8009

wor ker . node2. host = node2. nydonai n. com

wor ker . node2. t ype=aj p13

wor ker . node2. | bf act or =1

wor ker . node2. cachesi ze=10

Load- bal anci ng behavi our

wor ker . | oadbal ancer. t ype=Il b

wor ker . | oadbal ancer . bal ance_wor ker s=nodel, node2
wor ker . | oadbal ancer . sti cky_sessi on=1

#wor ker . | i st =l oadbal ancer

Status worker for managi ng | oad bal ancer
wor ker . st at us. t ype=st at us

Example 12.3. The workers.properties file

The above file configures mod_jk to perform weighted round-robin load balancing between two
JBoss AS instances, nodel and node2, listening on port 8009. In the works.properties file, each
node is defined using the worker. XXX naming convention where XXX represents an arbitrary
name you choose for one of the target JBoss AS node. For each worker, you must give the host
name (or IP address) and port number of the AJP13 connector (the port 8009 is default). The
Ibfactor attribute is the load-balancing factor for this specific worker. It is used to define the
priority (or weight) a node should have over other nodes. The higher this number is, the more
HTTP requests it will receive. This setting can be used to differentiate servers with different
processing power. The cachesize attribute defines the size of the thread pools associated to the
JBoss AS node (i.e. the number of concurrent requests it will forward to the node). Make sure
this number does not outhnumber the number of threads configured on the AJP13 connector of
the node. The last part of the conf/workers.properties file defines the loadbalancer worker. The

380

Configure JBoss AS nodes

worker.loadbalancer.balanced_workers line must list all workers previously defined in the same
file, and then load-balancing will happen over these workers.

Sticky sessions

In mod_jk, you almost always configure the load balancer to use "sticky
sessions". With sticky sessions, mod_jk forwards requests in the same web
session to the same JBoss AS node. The sticky session ensures that the user is
always served by the JBoss AS instance that has the correct session state.
Sticky session is required for our simple cluster setup.

1.2. Configure JBoss AS nodes

The JBoss AS nodes in the cluster are almost identical to each other. They must run the same
version of JBoss AS, the same applications, and have the same configuration except for few
clustering related configuration options. In this section, we cover two JBoss AS configuration
options required for the web cluster. One of them is universal for all nodes and the other is
unigue for each node.

The clustering profile for JBoss AS

For this simple clustering architecture, you do not even need the "clustering"

profile of JBoss AS -- you can just use the default JBoss AS profile since there is
no communication (i.e., clustering) between JBoss AS nodes.

First, we must configure all JBoss AS nodes to add an "identifier" of itself to all HTTP session
IDs it serves. This way, the load balancer would know which JBoss AS node to forward each
request just by checking at the session ID of the request. To do that, edit the
JBOSS_HOME/server/all/deploy/jboss-web.deploy/META-INF/jboss-service.xml file (replace all
with your own server configuration name). Locate the <attribute> element with a name of
UseJK, and set its value to true as follows.

<attribute name="UseJK"'>true</attri bute>

Example 12.4. Configure jboss-service.xml to support JBoss AS node
identity in HTTP session IDs

Second, you need to actually give an identity to each JBoss AS node. On each clustered JBoss

381

Chapter 12. Quick Tutorial to Setup a Clustered Web Application

node, you need to name the node according to the name specified in workers.properties. For
instance, on JBoss instance nodel, edit the

JBOSS HOME/server/all/deploy/jboss-web.deployer/server.xml file (replace all with your own
server configuration name if necessary). Locate the <Engine> element and add an attribute
jvmRoute as follows.

<Engi ne nane="j boss. web"
def aul t Host ="l ocal host" j vimRout e=" nhodel" >

</ Engi ne>

Example 12.5. Add node information to the server.xml file

Each JBoss AS instance appends its own jymRoute value to its HTTP session IDs so that
mod_jk can route incoming requests. That's all you need on the JBoss AS node.

1.3. Shared Database

By default, JBoss AS uses an embedded HSQL database for persistence data storage. For a
web cluster to work properly, you must use a shared database for all server nodes. We
recommend you setup a separate MySQL database server and then configure it as the
DataSource for applications deployed on all nodes. Please see Appendix B, Use Alternative
Databases with JBoss AS for more information on how to setup external databases as
DataSources.

2. Optional improvements to the simple cluster

The simple web cluster we discussed above is simply a load balanced architecture for servers
that only share information at the database level. This architecture is highly scalable but it does
not provide crucial clustering features such as failover and distributed caching. With some
simple optional steps, you can easily add those features to your cluster.

Please note that you need to install a clustering enabled JBoss AS profile (i.e., the all or
ejb3-cluster profiles) on all your server nodes for the optional setups.

2.1. Failover support

The simple web cluster does not support failover if one of the server nodes crashes. Since each
JBoss AS node stores its own HTTP session state data -- the users on the crashed server
would lose their sessions when the load balancer forwards their requests to another node. The
solution is for each node in the cluster to replicate its HTTP session data to other nodes in the
cluster, so that when the node crashes, there is another node node to pick up all users it left off
without any session loss.

382

Database cache

When you start multiple clustering enabled JBoss AS instances on the same network, they
automatically form a cluster. Therefore, all you need to do is to enable HTTP session replication
in your web application. That is by adding a <distributable/> tag in your web.xml file.

<web-app ...>
<di stri but abl e/ >
S

</ web- app>

However, failover does not come free. Since extra object serialization (CPU intensive) and
communication between server nodes (network intensive) are required, the cluster can no
longer scale linearly with the number of nodes. With the default setup, the HTTP sessions on
each node are replicated to all other nodes in the cluster. So the clustering workload increases
geometrically with the number of server nodes. The cluster would not scale beyond 8 to 10
servers with the default setup. For a truly scalable failover solution, we need to setup buddy
replication in the cluster so that each node only replicates its HTTP session data to another
"buddy" failover node.

2.2. Database cache

Database cache is very useful for improving performance of ORM solutions like Hibernate and
EJB 3.0. It stores frequently accessed data objects in the application server's memory and
hence reduces the round trips to the database server. However, the challenge is to keep the
cache on all server nodes in sync. For instance, data object O might be cached on both server
nodes A and B. Now, node A updates object O and flushes the change back to the database. If
A and B are not correlated, there is no way for B to know that object O already has an updated
value in the database -- so users on server B would continue to access the expired value of O
and get errors.

The solution here is to use a distributed database cache. The cache is "shared" by all server
nodes. So, if one node adds / updates / removes, any object into / from the cache, all other
nodes get the updated cache instantly as well. Here we give an example configuration for EJB
3.0 entity bean, which is supported by Hibernate 3.2+.

The distributed database cache is supported out of the box in the ejb3-cluster profile of JBoss
AS. As the case with HTTP session replication, all you need is to enable this feature in your
application. First, you need to specify JBoss TreeCache as your database cache provider in
your persistence.xml file.

<l-- Custered cache with TreeCache -->
<property nane="cache. provi der _cl ass">

org.j boss. ej b3. entity. TreeCacheProvi der Hook
</ pr operty>

<property nane="treecache. mbean. obj ect _nane" >
j boss. cache: servi ce=EJB3Enti t yTr eeCache

383

Chapter 12. Quick Tutorial to Setup a Clustered Web Application

</ property>

The on each entity bean class you want to cache, add the @Cache annotation.

@ntity
@ache(usage=CacheConcurrencySt r at egy. TRANSACTI ONAL)
public class Product inplenments Serializable {

I

}

That's it. Now the Product data objects are cached in the shared cache across all JBoss AS
server nodes in the cluster.

3. Basic optimization

In this section, we will give a few optimization tips to improve the performance of the cluster.
Details of those optimization techniques will be covered later in this book.

The first tip is to balance the connection pools in JBoss AS server nodes and the load balancer.
The goal is to make the Apache connection poll 80% the size of the combined connection pools
of the JBoss AS nodes. In addition, to optimize thread performance in the load balancer, we
highly recommend you install the "worker" MPM for Apache on Unix / Linux servers and the
"winnt" MPM for Windows servers.

Second, we need to understand that HTTP session replication is very expensive and should be
minimized when possible. Choosing the right replication trigger and granularity is an important
step. For instance, setting the replication trigger to SET might require you to write more code to
push changed data back into the session. But it can drastically reduce the replication work load
for a mostly read-only application. Setting the granularity level to ATTRIBUTE would be much
more efficient than SESSION if the session size is large. However, setting the granularity level
to FIELD may not have a great benefit due to the AOP overhead associated with dirty checking
on fields.

In addition, as we discussed before, the default "replicate-to-all-nodes" approach for HTTP
session replication does scale for large clusters.

At the network level, it is important to make sure that you use an asynchronous communication
mechanism to replicate HTTP sessions. Since the replicated HTTP sessions are only used
when a rare failover happens, it is not essential for the failover node to always have the exact
same state as the primary node at real time.

It also worth noting that the choice of underlying network protocols for the inter-node
communication also affects performance. In general, on a small network (i.e., 4 or less nodes)

384

Basic optimization

the node-to-node TCP/IP protocol would out perform the broadcast-based UDP protocol. It is
the opposite when the cluster size grows larger.

385

386

Chapter 13.

JBossCache and JGroups Services

JGroups and JBossCache provide the underlying communication, node replication and caching
services, for JBoss AS clusters. Those services are configured as MBeans. There is a set of
JBossCache and JGroups MBeans for each type of clustering applications (e.g., the Stateful
Session EJBs, the distributed entity EJBs etc.).

The JBoss AS ships with a reasonable set of default JGroups and JBossCache MBean
configurations. Most applications just work out of the box with the default MBean configurations.
You only need to tweak them when you are deploying an application that has special network or
performance requirements.

1. JGroups Configuration

The JGroups framework provides services to enable peer-to-peer communications between
nodes in a cluster. It is built on top a stack of network communication protocols that provide
transport, discovery, reliability and failure detection, and cluster membership management
services. Figure 13.1, “Protocol stack in JGroups” shows the protocol stack in JGroups.

-

[Application] Application] [Application]
Building Building Building
Blocks Blocks Blocks
Channel Channel Channel
\ | A\ I \ I
GMS GMS GMS
UNICAST UNICAST UNICAST
NAKACK NAKACK NAKACK
FD FD FD
UDP UDP UDP
Network

Figure 13.1. Protocol stack in JGroups

JGroups configurations often appear as a nested attribute in cluster related MBean services,
such as the Parti ti onConfi g attribute in the d usterPartiti on MBean or the
Cl ust er Conf i g attribute in the Tr eeCache MBean. You can configure the behavior and

387

Chapter 13. JBossCache and JGroups Services

properties of each protocol in JGroups via those MBean attributes. Below is an example
JGroups configuration in the Cl ust er Parti ti on MBean.

<nmbean code="org. | boss. ha. framework. server.Cl usterPartition
nanme="j boss: servi ce=Defaul t Partition">

<attribute nanme="PartitionConfig">
<Confi g>
<UDP ntast _addr="228.1.2.3" ntast_port="45566"
ip_ttl="8" ip_nctast="true"
ncast _send_buf _si ze="800000" ntast_recv_buf _size="150000"
ucast _send_buf _si ze="800000" ucast_recv_buf _si ze="150000"
| oopback="fal se"/ >
<PI NG ti neout ="2000" num. nitial menmbers="3"
up_t hread="true" down_t hread="true"/>
<MERGE2 mi n_i nt erval ="10000" max_i nt erval ="20000"/ >
<FD shun="true" up_thread="true" down_thread="true"
ti meout ="2500" max_tries="5"/>
<VERI FY_SUSPECT t i neout =" 3000" num nsgs="3"
up_t hread="true" down_thread="true"/>
<pbcast . NAKACK gc_| ag="50"
retransmt _ti neout ="300, 600, 1200, 2400, 4800"
max_xmt_size="8192"
up_t hread="true" down_thread="true"/>
<UNI CAST ti neout =" 300, 600, 1200, 2400, 4800"
wi ndow_si ze="100" m n_t hreshol d="10"
down_t hread="true"/>
<pbcast . STABLE desired_avg_gossi p="20000"
up_t hread="true" down_thread="true"/>
<FRAG frag_si ze="8192"
down_t hread="true" up_thread="true"/>
<pbcast. GV5 j oi n_ti meout ="5000" join_retry_tineout="2000"
shun="true" print_|ocal _addr="true"/>
<pbcast . STATE_TRANSFER up_t hread="true" down_t hread="true"/>
</ Confi g>
</attribute>
</ mbean>

All the JGroups configuration data is contained in the <Conf i g> element under the JGroups
config MBean attribute. In the next several sections, we will dig into the options in the <Conf i g>
element and explain exactly what they mean.

1.1. Transport Protocols

The transport protocols send messages from one cluster node to another (unicast) or from
cluster node to all other nodes in the cluster (mcast). JGroups supports UDP, TCP, and
TUNNEL as transport protocols.

388

Transport Protocols

Note

The UDP, TCP, and TUNNEL elements are mutually exclusive. You can only have
one transport protocol in each JGroups Confi g element

1.1.1. UDP configuration

UDP is the preferred protocol for JGroups. UDP uses multicast or multiple unicasts to send and
receive messages. If you choose UDP as the transport protocol for your cluster service, you
need to configure it in the UDP sub-element in the JGroups Conf i g element. Here is an example.

<UDP ntast _send_buf _si ze="32000"
ncast _port ="45566"
ucast _recv_buf _size="64000"
ntast _addr="228. 8. 8. 8"
bind_to_all _interfaces="true"
| oopback="tr ue"
ncast _recv_buf _size="64000"
max_bundl e_si ze="30000"
max_bundl e_ti neout =" 30"
use_i ncom ng_packet _handl er ="f al se"
use_out goi ng_packet _handl er="f al se"
ucast _send_buf _si ze="32000"
ip_ttl="32"
enabl e_bundl i ng="f al se"/>

The available attributes in the above JGroups configuration are listed below.

» ip_mcast specifies whether or not to use IP multicasting. The defaultis t r ue.

e mcast_addr specifies the multicast address (class D) for joining a group (i.e., the cluster).
The default is 228. 8. 8. 8.

* mcast_port specifies the multicast port number. The default is 45566.

* bind_addr specifies the interface on which to receive and send multicasts (uses the
bi nd. addr ess system property, if present). If you have a multihomed machine, set the
bi nd_addr attribute to the appropriate NIC IP address. Ignored if the i gnor e. bi nd. addr ess
property is true.

* bind_to_all_interfaces specifies whether this node should listen on all interfaces for
multicasts. The default is f al se. It overrides the bi nd_addr property for receiving multicasts.
However, bi nd_addr (if set) is still used to send multicasts.

* ip_ttl specifies the TTL for multicast packets.

389

Chapter 13. JBossCache and JGroups Services

e use_incoming_packet_handler specifies whether to use a separate thread to process
incoming messages.

e use_outgoing_packet_handler specifies whether to use a separate thread to process
outgoing messages.

« enable_bundling specifies whether to enable bundling. If it is t r ue, the node would queue
outgoing messages until max_bundl e_si ze bytes have accumulated, or max_bundl e_t i me
milliseconds have elapsed, whichever occurs first. Then bundle queued messages into a
large message and send it. The messages are unbundled at the receiver. The default is
fal se.

» loopback specifies whether to loop outgoing message back up the stack. In uni cast mode,
the messages are sent to self. In ncast mode, a copy of the mcast message is sent.

« discard_incompatibe_packets specifies whether to discard packets from different JGroups
versions. Each message in the cluster is tagged with a JGroups version. When a message
from a different version of JGroups is received, it will be discarded if set to true, otherwise a
warning will be logged.

e mcast_send_buf_size, mcast_recv_buf_size, ucast_send_buf_size,
ucast_recv_buf_size define receive and send buffer sizes. It is good to have a large receiver
buffer size, so packets are less likely to get dropped due to buffer overflow.

Note

On Windows 2000 machines, because of the media sense feature being broken

with multicast (even after disabling media sense), you need to set the UDP
protocol's | oopback attribute to t r ue.

1.1.2. TCP configuration

Alternatively, a JGroups-based cluster can also work over TCP connections. Compared with
UDP, TCP generates more network traffic when the cluster size increases but TCP is more
reliable. TCP is fundamentally a unicast protocol. To send multicast messages, JGroups uses
multiple TCP unicasts. To use TCP as a transport protocol, you should define a TCP element in
the JGroups Conf i g element. Here is an example of the TCP element.

<TCP start_port="7800"
bi nd_addr="192. 168. 5. 1"
| oopback="true"/>

Below are the attributes available in the TCP element.

390

Discovery Protocols

« bind_addr specifies the binding address. It can also be set with the - Dbi nd. addr ess
command line option at server startup.

« start_port, end_port define the range of TCP ports the server should bind to. The server
socket is bound to the first available port from start _port . If no available port is found (e.qg.,
because of a firewall) before the end_port , the server throws an exception.

» loopback specifies whether to loop outgoing message back up the stack. In uni cast mode,
the messages are sent to self. In ncast mode, a copy of the mcast message is sent.

e mcast_send_buf_size, mcast_recv_buf_size, ucast_send_buf_size,
ucast_recv_buf_size define receive and send buffer sizes. It is good to have a large receiver
buffer size, so packets are less likely to get dropped due to buffer overflow.

« conn_expire_time specifies the time (in milliseconds) after which a connection can be closed
by the reaper if no traffic has been received.

« reaper_interval specifies interval (in milliseconds) to run the reaper. If both values are 0, no
reaping will be done. If either value is > 0, reaping will be enabled.

1.1.3. TUNNEL configuration

The TUNNEL protocol uses an external router to send messages. The external router is known
as a Gossi pRout er . Each node has to register with the router. All messages are sent to the
router and forwarded on to their destinations. The TUNNEL approach can be used to setup
communication with nodes behind firewalls. A node can establish a TCP connection to the
GossipRouter through the firewall (you can use port 80). The same connection is used by the
router to send messages to nodes behind the firewall. The TUNNEL configuration is defined in
the TUNNEL element in the JGroups Conf i g element. Here is an example.

<TUNNEL router_port="12001"
router_host="192.168.5.1"/>

The available attributes in the TUNNEL element are listed below.

« router_host specifies the host on which the GossipRouter is running.
 router_port specifies the port on which the GossipRouter is listening.

» loopback specifies whether to loop messages back up the stack. The defaultis t r ue.

1.2. Discovery Protocols

The cluster need to maintain a list of current member nodes at all times so that the load
balancer and client interceptor know how to route their requests. The discovery protocols are

391

Chapter 13. JBossCache and JGroups Services

used to discover active nodes in the cluster. All initial nodes are discovered when the cluster
starts up. When a new node joins the cluster later, it is only discovered after the group
membership protocol (GMS, see Section 1.5.1, “Group Membership”) admits it into the group.

Since the discovery protocols sit on top of the transport protocol. You can choose to use
different discovery protocols based on your transport protocol. The discovery protocols are also
configured as sub-elements in the JGroups MBean Conf i g element.

1.2.1. PING

The PING discovery protocol normally sits on top of the UDP transport protocol. Each node
responds with a unicast UDP datagram back to the sender. Here is an example PING
configuration under the JGroups Conf i g element.

<PI NG ti meout =" 2000"
num.initial _menbers="2"/>

The available attributes in the Pl NG element are listed below.

 timeout specifies the maximum number of milliseconds to wait for any responses.

e num_initial_members specifies the maximum number of responses to wait for.

» gossip_host specifies the host on which the GossipRouter is running.

» gossip_port specifies the port on which the GossipRouter is listening on.

» gossip_refresh specifies the interval (in milliseconds) for the lease from the GossipRouter.
* initial_hosts is a comma-separated list of addresses (e.g., host 1[12345] , host 2[23456]),

which are pinged for discovery.

If both gossi p_host and gossi p_port are defined, the cluster uses the GossipRouter for the
initial discovery. If the i ni ti al _host s is specified, the cluster pings that static list of addresses
for discovery. Otherwise, the cluster uses IP multicasting for discovery.

Note

The discovery phase returns when the ti neout ms have elapsed or the
num i ni ti al _menber s responses have been received.

1.2.2. TCPGOSSIP

392

Discovery Protocols

The TCPGOSSIP protocol only works with a GossipRouter. It works essentially the same way
as the PING protocol configuration with valid gossi p_host and gossi p_port attributes. It works
on top of both UDP and TCP transport protocols. Here is an example.

<PI NG ti meout =" 2000"
initial_hosts="192.168.5. 1] 12000], 192. 168. 0. 2[12000] "
num.initial nenbers="3"/>

The available attributes in the TCPGOSSI P element are listed below.

 timeout specifies the maximum number of milliseconds to wait for any responses.
e num_initial_members specifies the maximum number of responses to wait for.

« initial_hosts is a comma-separated list of addresses (e.g., host 1[12345] , host 2[23456])
for GossipRouters to register with.

1.2.3. TCPPING

The TCPPING protocol takes a set of known members and ping them for discovery. This is
essentially a static configuration. It works on top of TCP. Here is an example of the TCPPI NG
configuration element in the JGroups Confi g element.

<TCPPI NG t i neout =" 2000"
initial_hosts="192.168.5. 1[7800] , 192. 168. 0. 2[7800] "
port _range="2"
num.initial _nenbers="3"/>

The available attributes in the TCPPI NG element are listed below.

 timeout specifies the maximum number of milliseconds to wait for any responses.
e num_linitial_members specifies the maximum number of responses to wait for.

« initial_hosts is a comma-separated list of addresses (e.g., host 1[12345] , host 2[23456])
for pinging.

e port_range specifies the range of ports to ping on each host inthe i ni ti al _host s list. That
is because multiple nodes can run on the same host. In the above example, the cluster would
ping ports 7800, 7801, and 7802 on both hosts.

1.2.4. MPING

393

Chapter 13. JBossCache and JGroups Services

The MPING protocol is a multicast ping over TCP. It works almost the same way as PING works
on UDP. It does not require external processes (GossipRouter) or static configuration (initial
host list). Here is an example of the MPI NG configuration element in the JGroups Confi g
element.

<MPI NG t i meout =" 2000"
bind to all _interfaces="true"
ncast _addr="228. 8. 8. 8"
ncast _port="7500"
ip_ttl="8"
numinitial menbers="3"/>

The available attributes in the MPI NG element are listed below.

 timeout specifies the maximum number of milliseconds to wait for any responses.

e num_initial_members specifies the maximum number of responses to wait for.

« bind_addr specifies the interface on which to send and receive multicast packets.

* bind_to_all_interfaces overrides the bi nd_addr and uses all interfaces in multihome nodes.

e mcast_addr, mcast_port, ip_ttl attributes are the same as related attributes in the UDP
protocol configuration.

1.3. Failure Detection Protocols

The failure detection protocols are used to detect failed nodes. Once a failed node is detected,
the cluster updates its view so that the load balancer and client interceptors know to avoid the
dead node. The failure detection protocols are configured as sub-elements in the JGroups
MBean Conf i g element.

1.3.1. FD

The FD discovery protocol requires each node periodically sends are-you-alive messages to its
neighbor. If the neighbor fails to respond, the calling node sends a SUSPECT message to the
cluster. The current group coordinator double checks that the suspect node is indeed dead and
updates the cluster's view. Here is an example FD configuration.

<FD ti neout =" 2000"
max_tries="3"
shun="true"/>

394

Failure Detection Protocols

The available attributes in the FD element are listed below.
 timeout specifies the maximum number of milliseconds to wait for the responses to the
are-you-alive messages.

e max_tries specifies the number of missed are-you-alive messages from a node before the
node is suspected.

» shun specifies whether a failed node will be shunned. Once shunned, the node will be
expelled from the cluster even if it comes back later. The shunned node would have to re-join
the cluster through the discovery process.

Note

Regular traffic from a node counts as if it is a live. So, the are-you-alive
messages are only sent when there is no regular traffic to the node for sometime.

1.3.2. FD_SOCK

The are-you-alive messages in the FD protocol could increase the network load when there are
many nodes. It could also produce false suspicions. For instance, if the network is too busy and
the timeout is too short, nodes could be falsely suspected. Also, if one node is suspended in a
debugger or profiler, it could also be suspected and shunned. The FD_SOCK protocol
addresses the above issues by suspecting node failures only when a regular TCP connection to
the node fails. However, the problem with such passive detection is that hung nodes will not be
detected until it is accessed and the TCP timeouts after several minutes. FD_SOCK works best
in high load networks where all nodes are frequently accessed. The simplest FD_SOCK
configuration does not take any attribute. You can just declare an empty FD_SOCK element in
JGroups's Confi g element.

<FD_SOCK/ >

There is only one optional attribute in the FD_SOCK element.

» srv_sock_bind_addr specifies the interface to which the server socket should bind to. If it is
omitted, the - D bi nd. addr ess property from the server startup command line is used.

1.3.3. FD_SIMPLE

The FD_SIMPLE protocol is a more tolerant (less false suspicions) protocol based on
are-you-alive messages. Each node periodically sends are-you-alive messages to a randomly

395

Chapter 13. JBossCache and JGroups Services

chosen node and wait for a response. If a response has not been received within a certain
timeout time, a counter associated with that node will be incremented. If the counter exceeds a
certain value, that node will be suspected. When a response to an are-you-alive message is
received, the counter resets to zero. Here is an example configuration for the FD_SI MPLE
protocol.

<FD_SI MPLE ti neout =" 2000"
max_m ssed_hbs="10"/>

The available attributes in the FD_SI MPLE element are listed below.
 timeout specifies the timeout (in milliseconds) for the are-you-alive message. If a response is
not received within timeout, the counter for the target node is increased.

* max_missed_hbs specifies maximum number of are-you-alive messages (i.e., the counter
value) a node can miss before it is suspected failure.

1.4. Reliable Delivery Protocols

The reliable delivery protocols in the JGroups stack ensure that data pockets are actually
delivered in the right order (FIFO) to the destination node. The basis for reliable message
delivery is positive and negative delivery acknowledgments (ACK and NAK). In the ACK mode,
the sender resends the message until the acknowledgment is received from the receiver. In the
NAK mode, the receiver requests retransmission when it discovers a gap.

1.4.1. UNICAST

The UNICAST protocol is used for unicast messages. It uses ACK. It is configured as a
sub-element under the JGroups Confi g element. Here is an example configuration for the
UNI CAST protocol.

<UNI CAST ti meout =" 100, 200, 400, 800"/ >

There is only one configurable attribute in the UNI CAST element.

» timeout specif