GUIS - a GUI widget server

release 1.6 on Thu, 30 Dec 2004 14:14:05 +0100

prcsproj 1.62

Basile STARYNKEVITCH —-basile _NOSPAM@starynkevitch.net.invalid
http://www.starynkevitch.net/Basile/index en.html
8, rue de la Fencerie, 92340 Bourg La Reine, France

September 11, 2009

http://www.starynkevitch.net/Basile/index_en.html

Contents

@\lm@mmmmhw

Software Description |
Name | GUIS
License | GNU General Public Licens
Author | Basile SARYNKEVITCH
Version | 1.6
Development system | Linux/Debian/Sid x86
Programming Language | C
Software Dependencigs
GTK 2.4 (or 2.2)
and related libraries
(Glib, Pango, Atk)| required
Python 2.3 (or 2.2) recommended
PyGTK 2.2 | recommended
Ruby 1.8| recommended
Ryby-Gnome2 0.11.x recommended
Slang 1.4.x| optional
Slgtk 0.5.x| optional

[1°)

Please be nice to send niméile @starynkevitch.net) an email if you
use this information and this Guis software.
Guis is available (as a gnuzipped source tarball) fihdip://www.starynkevitch.net/Basile/guis-
and this document is dnttp://www.starynkevitch.net/Basile/guisdoc.html
See also my home page bitp://www.starynkevitch.net/Basile/
or Guis pagehttp://freshmeat.net/projects/quis/ on Freshmeat
for announcement of newer versions. Please feel free to sendsiayts, patches,
criticisms, etc...

1 Overview and usage

This section gives a short overview with the classical adder examplen fhiee
usage details are given.

1.1 Motivationsand related stuff

Guisis a small widget server. It is a gtk2 (skegp://www.gtk.org/) based
program listening on a pipe for widget requests (requests are PytihdRufwy]
scripts - seéhttp://www.python.org/ using the PyGTK 2.0 binding of
GTK2 to Python - sefttp://www.daa.com.au/ ~ james/software/pygtk/)
and outputting events or repli€uisis useful for programén particular, setuid pro-
grams or (ruby,ocaml,perl...) scriptshich do not want to link in a full widget toolkit
but prefer to delegate the user interface to another process.

The choice of the scripting language is not critical provided it does héwi a
Gtk2 binding. Porting Guis to another scripting language should be easy.

http://www.starynkevitch.net/Basile/guis-1.6.tar.gz
http://www.starynkevitch.net/Basile/guisdoc.html
http://www.starynkevitch.net/Basile/
http://freshmeat.net/projects/guis/
http://www.gtk.org/
http://www.python.org/
http://www.daa.com.au/~james/software/pygtk/

(Many years ago, | was a satisfied user of Sun OpenWindowsrsysiith its pro-
grammable NeWS [widget] server. | still miss that widget selfgee a message | posted in
october 1993 oifttp://www.zendo.com/vsta/mail/1/0146.htmi which is
copied orhttp://starynkevitch.net/Basile/NeWS descr oct 1993 .html)
| don’t understead why the NeWS team, which also probablygtesi Java, did not con-
sider to embed the JVM inside the X11 server, as a standaréXehsion, and embedding
a toolkit inside Java, like Swing does, is not an answer.)

A similar project isentity - seehttp://www.entity.cx/ . The major
difference betweepntity andguisis thatguisis a server (listening for orders on a
pipe...) whileentity is a script engine.

The IRAF widget server - sgdtp://iraf.noao.edu/iraf/web/projects/x11iraf/
had similar goals. And PicoGhittp://picogui.org/ is also server based.

The XUL system of mozilla (seattp://www.xulplanet.com/) also
describes an interface with XML.

The (previously Berlin, now) Fresco server should be a corbastameidgets
- which seems nearly dormant. g&#o://www.fresco.org/

1.2 Introduction

Guisis a graphical user interface program communication with a client application
(using separate protocols). The application send widget building reseeSuis

(so these requests are input féuis) and handles widget events sent fr@uis.
Usually Guis is started with a small Python initial script which defines common
functions and build some widgets. The requests are Python source lvoalesc
The replies (i.e. events sent back fr@uisto the application) are just some textual
lines sent (by some Python code calliggis _send).

Actually, Guis is strongly dependent on GTK2, and depends less of Python.
The code is designed to makauis easily portab@ to any other scripting inter-
preter able to evaluate requests in textual strings, provided this interpisetea
binding to GTK2. The only reason | use Python here is the availability of dynea
complete binding of Python to GTK2. (I would prefer some other scripting lan-
guages). To remind th&uisis using Python its binary is callgmyguis

Since version 1.3Guisis also interfaced to Ruby. See secfidn 4 below.

To port Guis to another language you just have to ligguis.c with a file sim-
ilar to py_guis.c for your scripting language which provides the following functions

guis _initialize _interpreter(void) (called once to initialise the interpreter),
guis _load _initial _script(char * scripthame) (called once with either the initial
script name -a file path- or NULLpuis _interpret _request(char * request) (called for
every request), anduis _end _of _input _hook(int timeout) (called at end of input with a
timeout in milliseconds). These last 3 functions should return O if suftdess a static C string
describing the error.

http://www.zendo.com/vsta/mail/1/0146.html
http://starynkevitch.net/Basile/NeWS_descr_oct_1993.html
http://www.entity.cx/
http://iraf.noao.edu/iraf/web/projects/x11iraf/
http://picogui.org/
http://www.xulplanet.com/
http://www.fresco.org/

1.2.1 callbacks

The initial script (or the application) is responsible for installing appropgate
backs with theconnect primitive (or equivalent) of the scripting language (Python
or Ruby).

IMPORTANT callbacks in Guis should be robustllbacks cannot raise
uncaught exceptions (because they are run by tgtk _main _loop in Guis, out-
side of the (Python or Ruby...) interpreter. Applications should encapstdiite
backs with the appropriate mechanism (catch ...) in the scripts.

1.2.2 initial script

Usually, Guis runs an initial script (in Python or Ruby) which is interpreted by the
scripting language before entering itk _main _loop . This initial script usually
builds the widget and defines some application specific functions (to implengent th
protocol specific to your application).

The initial script is run once. It is specified with the option or with the
-scripter trick. See beloW 2]2 and the man page.

You might (if possible) end your initial script with a call ik _main _loop
as provided by the (Python or Ruby) GTK2 binding. Calling it will make the
request evaluation better under control and might permit exceptions irackdib
(see your documentation of the GTK binding you are using). Then yoa tav
exit explicitly Guis (by calling theexit primitive of Python or Ruby) or telGuis
(usingguis_main_loop_in_script) that you call the main loop.

| still strongly advise against uncaught exceptions in callbacks.

1.2.3 protocols

Every request sent from the applicationGais should end with two consecutive
newlin@ characters coded in C &3\n or with a formfeed (coded in C a$,
decimal 12).

Obviously requests cannot contain (inside) a double newline which isv@en
tion suitable for most scripting languages (including Python, Ruby, Ocanal, Lu
Rep-Lisp, Slang, ...).

A convenient way to debu@uis initial scripts is to runpyguis with an ex-
plicit FIFO input: make it withmkfifo /tmp/fifo and then rumpyguis -s
yourscript -i /tmp/fifo -0 - ; in another xterm, rupat >> /tmp/fifo
and don’t forget to end every request with a double newline (ie retivaacter.

Events or replies sent frofuisto the application are single lines (maybe very
long) ended with a newline. They should not contain any control charéete
newline or formfeed) inside. Requests and replies are asynchromogeguest can
be sent without any replies and vice versa).

2The newline is coded decimal 10 in ASCII or IsoLatinl

The driving idea ofGuis is that the input and output protocols are tailored to
your application. On the input side (requests from your applicatioBui) the
protocol is usually made of calls to specific functions defined in the initial scrip
On the output side (replies or events fr@uis to your application) the protocol
is defined by sending (thru an appropriate primitive, usugllis _send, of the
scripting language) arbitrary lines to your application from callbacks.

1.2.4 other toolkits (Qt3)?

It would be interesting to have a similar approach with QT3. | tried, and leave s
(bad, incomplete, not even compilable) C++ code undeb#te gt _stuff/ di-
rectory of thisGuis. Feel free to reuse this code (under a GNU license). My main
problem was lack of good binding to QT3 and threading problems (notalagdisr
are nearly incompatible with an embedded Python).

1.3 Small example

For illustration purpose, suppose we have an application which computesrthe
of 2 integers, and we want to give it a nice graphical interface contaitwog
(editable) textual entry widgets, a quit button, and a label widget displahiag
sum.

g Guls Demo P [

Guis demio
walcarns from pid 21638

l-I'.'l

'f’l‘i'

T+2= 16

Guik

Figure 1: Simple example demo window

1.3.1 protocols

We have to think first about the messages sent from the applicatiGoiso We
need firsttestart the interface (giving some nice title). We will need to display a
sum usinglisplaysum and to display an error message usiligplayerror
And we need to stop the demo, thretapdemo function. All these functions are
Python functions defined in the initial script file.

We also need to define the messages sent @araback to the application. We
will send a plainENDfor end, and a more complex message starting Wiiibto

6

ask the application to make an addition (displaying the result wiis@aysum
request. ThDDmessage should contain the textual content of the two entry wid-
gets. Since the textual content can be anything (it could even contairoccoimar-
acters like newlines) it should be encoded. We use a C like encodingraamve
so will usually sendADD "1" "3" -or evenADD "\t1" "3" if the first entry
starts with a tdh The application is in charge of checking that the entries contain
valid numbers.

The Guis server program buffers all input (python requests) and outpentev
replies), reading and writing as soon as possible.

A typical exchange between the application and Guis might be as follow; first
the application starts and sends

start("pid 1234")

ThenGuis shows the window and let the user interact with it. Some user inter-
action make$suis send back messages like

ADD lI2l| ll5l|

To which the application responds with
displaysum(2,5,7)

When the user closes the windd@lis send back
END

To which the application responds with
stopdemo()

and then exits.
When run with the-T flag, Guis opens a window to show the trace of all
requests and replies (this is useful for script and application debugging

1.3.2 initial Python script

We write a small Python initial script. A special trick {Buis is that if Guis is
invoked with a name (i.eargv[0] in C parlance) ending witkscripter then
the next (second) argument is the initial script name. Hence we can statipt
with

#1 lusr/bin/env pyguis-scripter
file guisdemo_script in - *- python - *-

3How to enter a tab character inside a Gtk entry widget is left as an exerdise teader.

W LS TrRee T B e 4

Trace Dabug

ryguis-scripter guisdeme_ncript pid294%0 on hecter. lasosrs
complled an Sep 3 2007381 9:13:25
2003 Sep 03 @ 1914 ems | FACE WINDOW =
aputis= 100 e Python £.2.0 (# L Sayg 29 2000, 19:39:50)
[GEE B0F 2@ Rl ? [Debish prevuleiie]]
iae hitp:/ [atarmk avitch, nell Badile/ guiidec html or freihmeatnell projectal gurd
input requasts shown like this & output rephes showsn e that

T84T ¢l Finital start

w Lt r"-'-ll:mll- T |:ll||:|: Ia ﬁ.i":
1040302 *1 ADD "2 "f"
18:14:30.5FF #7 dgood sum
displaysurm (2,5, 7)

TR I4r4S 78T 72 ADD *1" "A"
148 r2e &3 l‘p-u-l:l-l:l FLITH
displaysum(3,8,11)
10450, 79F ¥ A0DD “hadinput™ ©
181450790 &8 wbhad Irgeiil
aisplayerror] vy alid mputi™]
PR 1457553 74 400 " 24"

19 14T 5098 88 #good sum

=

alisplayswm (6, 24,30) e
1901507707 23 ADD "I2° "-47

19:1%:@8T.7TR0 ¥b J’gﬁlﬁd LA

cisplaysum {12, 4,8 |

Figure 2: Protocol trace window

With such a trick, our initial script can be invoked by giyguis-scripter
found in our$PATH We make it a symbolic link to theyguis executable.

We need to tell python to use tlggk module (provided by pygtk) and the
guis module (builtin insidgyguis).

import gtk
import guis

Next, we need to define a callback used by dhi button; it just sends back
the ENDstring to the application

def end_cb(=*args):
guis.guis_send("END")

We also define a callback used when text entries are updated. It uses the
guis.to _guis primitive to convert a C string to its textual representation but
we could have used Pythoapr function.

8

We need to define thstart function, invoked by the application in its first
request, to build the graphical widgets and connect them to callbackst tdilds
a window and its contained vertical box (using GTK2 calls in Python):

def start(welcomsg):
global window, xent, yent, sumlab
window = gtk.Window(gtk. WINDOW_TOPLEVEL)
window.set_title("Guis Demo")
vbox = gtk.VBox(gtk.FALSE,?2)
window.add(vbox)

Then it builds the other widgets (details deleted here, see the sougasdémo _script
file). At last, it makes theuit button, connect it to thend _cb callback, add it
into vbox and show all of thevindow :

..

quitbut = gtk.Button("quit")
quitbut.connect("clicked", end_cb)
vbox.add(quitbut)
window.show_all()

We need to define thdisplaysum function

def displaysum(x,y,sum):
sumlab.set_markup(('<i>%d</i> + <i>%d</i>" % (X,y))
+ (= <big>%d</big>" % sum))

We need to define thdisplayerror function. To avoid messing the Gtk2
(pango provided) XML-like markup, we convert the message to its XMkasgn-
tation (i.e. usingklt; for < etc...) using thguis.xml _coded primitive.

def displayerror(message):
sumlab.set_markup(ERROR:
+ (guis.xml_coded(message)))

A stopdemo function is also needed (see the source file).

1.3.3 client application

We suppose the client application is written in C. You can code it in any lamguag
able to communicate on channels in a textual way. We comment here parts of the
file guisdemo _client.c . You don't need to link anguis specific library to it!

We declare a big line buffer, and the requests and replies files. We dsold a
use theglibc specificgetline function which dynamically allocates the line
buffer.

char linbuf[{1024];
FILE =toguis = stdout;
FILE =*fromguis = stdin;

At first, we want to send a request liktart("guis demo")
Requests may start with a comment used to help identify them in error mé‘},sages

fprintf (toguis, "#initial start\n"
"start(\"pid %d\")\n\n",
(int) getpid ());
fflush (toguis);

Never forget to flush your request channel very often, and to eeiy eequest
with two newlines.

Of course we need a loop to read events (or replies) message&tismeach
of them is a single (sometimes very long) line ended with a single newline.

while (!feof (fromguis)) {
fgets (linbuf, sizeof (linbuf) - 1, fromguis);

if the reply line starts witPADDwe scan it appropriately and ask to display a
fancy line like 2 + 3= 5" otherwise (bad scan because of non-numeric entries) we
display ‘invalid input”

if (Istrncmp (linbuf, "ADD", 3)) {
int x=0, y=0, pos=0;
if (sscanf (linbuf, "ADD \"%d\" \"%d\" %n",
&x, &y, &pos) > 0 && pos > 0) {
fprintf (toguis, "#good sum\n”
"displaysum(%d,%d,%d)\n\n",
X, ¥, X +y);
} else {
fprintf (toguis, "#bad input\n”
"displayerror(\"bad input\")\n\n");
}

If the reply isENDwe stop gently (by sending stopdemo() request and
exiting):

} else if (Istrncmp (linbuf, "END", 3)) {
fprintf (toguis, "#stop\n" "stopdemo()\n\n");
fflush (toguis);
sleep (1);
exit (0);

}

“Actually requests are identified by their first line in error messages.

10

After warning against unexpected input lines, we flush the requeshehand
end the loop.

fflush (toguis);
}; // end of while feof

Normally the while loop should never be ended, since our guis python script
should signal termination witBND(handled above).

2 Reference

2.1 ingtalling Guis

You need Python (2.2.x or 2.3.y frchitp://www.python.org/), GTK (2.2
or better fromhttp://www.gtk.org/) and PyGTK (1.99.18 or 2.0 or better
from|http://www.daa.com.au/ ~ James/software/pygtk/) to build pyguis

(the Python version dguis). You need Ruby (1.8.x) froittp://www.ruby-lang.org/
and ruby-gnome 0.9.1 or later framttp://ruby-gnome2.sourcetorge.jp/

to build ruguis (the Ruby version ofsuis). | built a thread-less Python-EZ
which works with Guis. | am using GNU gcc (3.3) and GNU make (3.80). Yoy ma
add a locallocal.mk file containing definitions for your installation, such as
PREFIX=/usr ,CC=gcc-3.3 ,PYTHONCFLAGS=-I/usr/include/python2.2

or PYTHONLDFLAGS=-Ipython2.2 RUBY=ruby etc... you may even edit the
Makefile.

First configure, either witmake config or with the./Configure script.
Run it with-help to get usage information.

Then runmake thenmake install (which usually requires to be root).

You may build only the Ruby version witimake ruguis or only the Python
version withmake pyguis .

To run the demo, you probably need to adar the Guis source directory to
your$PATHbefore runningyuis _demo.sh oryou can run thguisdemo _script
-p guisdemo _client -T command. usguisdemo _rubyscript to run
the Ruby version.

2.2 invoking Guis

See the man page in the source distribution for complete reference of immca
or invoke the binay with the-help option.

Guisis usually invoked apyguis command, or indirectly gsyguis-scripter
if started by its initial script.

Guis can be started in a slave fashion (after the application has started) by
specifing its input and output channels (thru the and-o options). You may
specify file descriptors or paths as channels.

5| passed the -disable-threads option to Python’s configure script

11

http://www.python.org/
http://www.gtk.org/
http://www.daa.com.au/~james/software/pygtk/
http://www.ruby-lang.org/
http://ruby-gnome2.sourceforge.jp/

Guis can also be started as a master, by giving the application command as
argument withp . You usually need to quote this argument (because of your shell)
unless the command has no spaces!

The-T option is interesting to show the exchange betwgn and its appli-
cation in a separate window. This is very useful to debug your initial soripour
application.

The-D option (disabled withDNDEBUGompile flag) show lots of debugging
information (to debugyguis itself).

The-L option writes all requests into a log file.

the-l or--input-enconding option set the input encoding (as supported
by GLib2 on input channels). Likewise fe© or --output-enconding

3 Guisfor Python

3.1 invocation

as usual, see sectibnP.2 above.

3.1.1 added Python primitives

In alphabetical order, here are the names wired imgthie builtin Python module.
You need of course to learn and use the modules providga/btk to actually
build any GTK2 widget! You should not explicitly cajitk _main _loop from
Python, since it is is already called pyguis

3.1.2 end_of_input_hook

With a callable argument, sets the hook called at end of input. Always retarn th
previous hook (even without any arguments). You probably also needttthe
end timeout usingnd _timeout below.

3.1.3 end_timeout

Get (without arguments) or set (with an integer argument) the timeout in millisec-
onds after whiclpyguis exits at end of input. Useful wittnd _of _input _hook
above.

3.14 qguissend

Send the string argument on the output channel to the application. The string
should not contain control characters (this is not checked) otherweseghli-
cation might have trouble scanning it. A newline is added if needed. (You s®y u
many Python packages to build the sent string; eg you could send XMI). stuff

12

3.1.5 main_oop_in_script

Get (without argument) or set (with a truth-value argument) the flag teCinig
that the main loogitk _main was called from the initial script.

3.1.6 nb.replies

Get (without arguments) the number of sent replies (event lines sentlioaton).
You might set this number with an integer argument (but | see no reasorth@ilo
3.1.7 nb_requests

Get the number of processed Python requests. You might set this nurnthemnw
integer argument (but | see no reason to do this).

3.1.8 pipe_check_period

Get (without arguments) or set (with an integer argument) the period in millisec-
onds (should be 0 or 50 to 10000) to check for application termination (in maste
mode). Useful withend _of _input _hook above.

3.1.9 to_guis

Convert an object (or many of them, considered as a tuple) to a stringldertd
the application using the following algorithm:

e if the object is string, represent it in C syntax (except that double qaotes
escaped ax) so they are only string delimiters in the converted string) , so
the string made of 4 characters (a, tabulation, double-quote, z) is tedver
to the 7 character strin@\t\Qz"

e if the object is an integer, represent it in decimal notation
¢ if the object is a double, represent it like in C witl#aprefiﬁ eg#3.14

e if the object is a tuple, convert each component using the sameuis
builtin function and catenate each substring with spaces for separation - if
any component fails to be converted, the entire tuple conversion fails.

e if the object has & _guis attribute, fetch it: if it is a string, return it, if it
is callable, apply it to the object.

o if the object has @#0 _guis method, call it (without any arguments except
the recieving object).

e otherwise, falil

®Distinguishing floating numbers from integers with a prefix should maksipgeasier for the
application.

13

3.1.10 xml_coded

Quickly convert a Python string or unicode to its XML representation (sd3the
characters string<b is converted to the 6 characters stria§lt;b), escaping
characters per XML requirements:

e &as&

e ' as'

e " as"

e < as<

e > asé>

e other strict ASCII printable characters are kept identical

¢ all other characters including control and IsoLatinl accentuated cieasa
like @ a are represented by a numerical entity (character number in decimal)
like ç for the lowercase c with cedilla

The result ofguis.xml _coded is a string with only ASCII printable charac-
ters (coded 32-126).

4 Guiswith Ruby

Guis has been ported to Ruby 1.8. Staép://www.ruby-lang.org/ for

more on Ruby. The binary namerisguis (including theruguis-scripter

trick) and has the same invocation asplyguis (Python) version. The Ruby port

is in the fileru _gguis.c
This port uses theuby-gnome2 binding of GTK2. Sefttp://ruby-gnome2.sourceforge.jp/
The demo works in a Ruby way - it is in tlgalisdemo _rubyscript file

and can be runasiguis -T -D -s guisdemo_rubyscript -p guisdemo_client

(provided that is inside yourl$PATH)

4.1 open questions

I don’t know if a builtin module can have virtual variables (as defined by the
rb _define _virtual _variable C function of the Ruby runtime).

I would like to print more (e.g. the current environmentligbug _extra) but
| don’t know how to code it.

14

http://www.ruby-lang.org/
http://ruby-gnome2.sourceforge.jp/

4.2 Ruby API

There is a builtinGuis Ruby module. It contains thguis _send primitive to
send a string back to the application.

$guis _nbreq , $guis _nbsend and$guis _pipecheckperiod are (global)
virtual variables (implemented thmb _define _virtual _variable C func-
tion).

$guis _main _loop _in _script is a global variable which when setto a true
value avoid callinggtk _main after interpreting the initial script (which should
hence callGtk.main explicitly).

Conversion to XML notation is done by thhe _xml method added to the ex-
isting String class.

Conversion to a C-like notation (like _guis in Python above 3.719) is done
by theto _guis method with built-in implementations for arrays, strings, integers,
floats, symbols. The user could add other methods to existing classes ypgdtid
like

ExistingClass.class_eval {
def to_guis
return "result"
end

}

Then end of input hook is settable with

Guis::on_end_of input do |timeout|
user end input hook
done

To remove the end of input hook, just do

#removing end of input hook
Guis::on_end_of_input

5 experimental and incomplete Slang version of GUISus-

ing sigtk
Seehttp://s-lang.org/ for the Slang interpreter. Saép://space.mit.edu/cxc/software/slang/modules
for the Slgtk binding of Slang to GTK.

The GUIS port to Slang is incomplete and barely tested. See the source code
for details. Feedback is welcome.

15

http://s-lang.org/
http://space.mit.edu/cxc/software/slang/modules/slgtk

6 Feedback

6.1 Feedback welcome

Please send comments, criticisms, suggestions and patdiesito _NOSPAM@starynkevitch.net.invalid
(but remove theNOSPANMINd .invalid from the email) mentioninguis in

the subject line. Feel free to suggestion new features. Tell me abosuangss

stories (ie Guis use) in your applications!

6.2 Changelog

version 1.6 (december 30, 2004) - minor code clean.

version 1.5 (may 10, 2004) - ported to Gtk2.2, added Slang preliminary port (and
non-working port to Perl).

version 1.4 (september 5, 2003) bugfix (read buffer us&String) and added
guis_main_loop_in_script), with both Python2.2 and Python2.3
support.

version 1.3 (september 2, 2003) contains the experimental Ruby port (and warns
against exception in callbacks).

e 1.3.1 added word wrap in trace window,

e 1.3.2 added logfiles withL with the Gtk.init requirement in user scripts for
Ruby

o 1.3.3(september 3, 2005hows the versions info in trace window

e 1.3.4 (september 4, 2002j)emoved the Gtk.init requirement in the user initial
script

version 1.2 (august 31, 2003) minor fixes: just added thgis.xml _coded
primitive and updated the demo and the documentation.

version 1.1 (august 30, 2003) made a major switch to Python using PyGTK pre-
vious versions used Lua).

versions <= 0.3 (march 22, 2003) and older was Lua bageith a Gtk binding to
Lua generated by a CommonLisp script)

16

	Overview and usage
	Motivations and related stuff
	Introduction
	callbacks
	initial script
	protocols
	other toolkits (Qt3)?

	Small example
	protocols
	initial Python script
	client application

	Reference
	installing Guis
	invoking Guis

	Guis for Python
	invocation
	added Python primitives
	end_of_input_hook
	end_timeout
	guis_send
	main_loop_in_script
	nb_replies
	nb_requests
	pipe_check_period
	to_guis
	xml_coded

	Guis with Ruby
	open questions
	Ruby API

	experimental and incomplete Slang version of GUIS using slgtk
	Feedback
	Feedback welcome
	Change log

