Font Creation with FontForge

George Williams

Abstract

FontForge is an open source program which allows the the creation and modifi-
cation of fonts in many standard formats. This article will start with the basic
problem of converting a picture of a letter into an outline image (used in most
computer fonts). Then I shall describe the automatic creation of accented char-
acters, and how to add ligatures and kerning pairs to a font, and other advanced
features. Finally I shall present a few tools for detecting common problems in

font design.

Introduction

FontForge creates fonts, allows you to edit existing
fonts, and can convert from one font format to an-
other.

What is a font? Well a hundred years ago a font
was a collection of little pieces of metal with the
same height and one design each for the letters of the
alphabet and some extra symbols like punctuation.

But the world has changed. Fonts are more
abstract, they are described by data in a computer’s
memory. There are three main types of computer
font in use today.

Figure 1: bitmap, stroked and outline fonts

The simplest font type is a bitmap font each
character (actually each glyph) in the font is a tiny
little picture of that character expressed on a rectan-
gular grid of pixels. This format can provide the best
quality font possible with each glyph perfectly de-
signed, but there are two main disadvantages: there
needs to be a different design for each size of the
font, and these little pictures end up requiring a
large amount of memory.

The other two formats avoid these problems,
but often require some reduction in output quality.

A stroked font expresses each glyph as a set
of stems, with a line drawn down the center of the

FontForge Tutorial

stem, and then the line is drawn (stroked) with a
pen of a certain width.

The final type is an outline font. Each glyph
is expressed as a set of contours, and the computer
darkens the area between the contours. This format
is a compromise between the above two: it takes
much less space than the bitmap format, but more
space than the stroked format, and it can provide
better looking glyphs than the stroked format but
not as nice as the bitmap format. It makes greater

demands on the computer, however, as we shall see
when we discuss [hintd later.

What is a character? and a glyph? A character
is an abstract concept, the letter “A” is a character,
while any particular drawing of that character is a
glyph. In many cases there is one glyph for each
character and one character for each glyph, but not
always.

The glyph used for the latin letter “A” may also
be used for the greek letter “Alpha,” while in arabic
writing most arabic letters have at least four differ-
ent glyphs (often vastly more) depending on what
other letters are around them.

What is a contour? Each glyph is composed of
contours, and a contour is just a closed path. Usu-
ally this path is composed of several curved segments
called splines. FEach spline is defined by two end
points and either 0, 1 or 2 control points which de-
termine how the spline curves. The more control
points a spline has, the more flexible it can be.

Figure 2: splines with 0, 1 and 2 control points

George Williams

Font creation

You may create an empty font either by invoking
FontForge with the -new argument on the command
line

$ fontforge -new
or by invoking the New item from the File menu.

In either case you should end up with a window like
this:

Figure 3: A newly created blank font

File Edit Element Hints View Metric Window
g |alelclp|ElFr (s |7 || |m|n|o |-
PIO|IR|S[T|U|V | W |X[YT]E [Y] B I
alb|le|ldle|flalh|li]lijl|lk|[l]|n|n e
rlglr|le |t |ulv|w]|x z | { S
-]

Such a font will have no useful name as yet,
and will be encoded with the default encoding (usu-
ally Latinl). Use the Element -> Font Info menu
item to correct these deficiencies. This dialog has
several tabbed sub-dialogs, the first one allows you
to set the font’s various names.

e the family name (most fonts are part of a family
of similar fonts)

e the font name, a name for PostScript, usually
containing the family name and any style mod-
ifiers

e and finally a name that is meaningful to humans

If you wish to change the encoding (to TEX Base
or Adobe Standard perhaps) the Encoding tab will
present you with a pulldown list of known encodings.
If you are making a TrueType font then you should
also go to the General tab and select an em-size of
2048 (the default coordinate system for TrueType is
a little different from that of PostScript).

Character creation

Once you have done that you are ready to start edit-
ing characters; for the sake of example, let’s create a
capital ‘C’. Double click on the entry for “C” in the
font view above. You should now have an empty
Outline Character window:

The outline character window contains two pal-
ettes snuggled up on the left side of the window. The
top palette contains a set of editing tools, and the
bottom palette controls which layers of the window
are visible or editable.

Figure 4: Font name information

[*]Ell Font Infornation for Anbrosia 1 H

Comment 1 Anchor Classes]

TTF Yalues TTF Mames Panose
Mames 1 Encoding] General 1 PS5 Private]
Fontname: anmbrosia-Medium I
Farmily Marne: ambrosia

Mame For Humans; ambrosia Medium

Weight Medium
Eersign: 001,000
Copyright:

Copyright (o) 2001,2003 by George [
Williams|

Ok Cancel

Figure 5: An empty character

EEl € at 67 from Untitledl LATIMN CAPTITELEN
File Edit Point Element Hints *.”~
266,526 ol | rat
N e P VL L VR R T
1 1ol |
2 LN
[0 W]
§ ek
1]
£E2h1
5 —
FRAN
lsu__:-q: Lt
[I_ +—
L1074 |
"Iv E Layer
] ~ Fore
m * Back n
4+ Guide b
] DB

The foreground layer contains the outline that
will become part of the font. The background layer
can contain images or line drawings that help you

FontForge Tutorial

draw this particular character. The guide layer con-
tains lines that are useful on a font-wide basis (such
as a line at the x-height). Currently all layers are
empty.

This window also shows the character’s internal
coordinate system with the x and y axes drawn in
light grey. A line representing the character’s ad-
vance width is drawn in black at the right edge of
the window. FontForge assigns a default advance
width of one em (in PostScript that will usually be
1000 units) to the advance width of a new character.

Select the File -> Import menu command to
import an image of the character you are creating,
assuming that you have one. It will be scaled so that
it is as high as the em-square. In this case that’s too
big and we must rescale the image.

Figure 6: Background image

Make the background layer editable (by select-
ing the Back checkbox in the layers palette), move
the mouse pointer to one of the edges of the image,
hold down the shift key (to constrain the rescale to
the same proportion in both dimensions), depress
and drag the corner until the image is a reasonable
size. Next move the mouse pointer onto the dark
part of the image, depress the mouse and drag the
image to the correct position.

If you have downloaded the potrace or auto-
trace program you can invoke Element -> Auto-
Trace to generate an outline from the image (You
should follow this by Element -> Add Extrema and
Element -> Simplify). But I suggest you refrain
from autotracing, and trace the character yourself
(results will be better).

Change the active layer back to foreground (in
the layers palette), and select the curve point tool
from the tools palette. Then move the pointer to
the edge of the image and add a point. I find that
it is best to add points at places where the curve is
horizontal or vertical, at corners, or where the curve
changes inflection (A change of inflection occurs in
a curve like “S” where the curve changes from being

FontForge Tutorial

Font Creation with FontForge

open to the left to being open on the right. If you
follow these rules hinting will work better.

Figure 7: Tracing 1

It is best to enter a curve in a clockwise fash-
ion, so the next point should be added up at the top
of the image on the flat section. Because the shape
becomes flat here, a curve point is not appropriate,
rather a tangent point is (this looks like a little tri-
angle on the tools palette). A tangent point makes a
nice transition from curves to straight lines because
the curve leaves the point with the same slope the
line had when it entered.

Figure 8: Tracing 2

At the moment this “curve” doesn’t match the
image at all, don’t worry about that we’ll fix it later,
and anyway it will change on its own as we continue.
Note that we now have a control point attached
to the tangent point (the little blue x). The next
point needs to go where the image changes direction
abruptly. Neither a curve nor a tangent point is ap-
propriate here, instead we must use a corner point
(one of the little squares on the tools palette).

George Williams

Figure 9: Tracing 3

As you see the curve now starts to follow the
image a bit more closely. We continue adding points
until we are ready to close the path.

Figure 10: Tracing 4

Then we close the path just by adding a new
point on top of the old start point

Figure 11: Tracing 5

Now we must make the curve track the image
more closely, to do this we must adjust the con-
trol points (the blue “x”es). To make all the control
points visible select the pointer tool and double-click
on the curve. Then move the control points around
until the curve looks right.

Figure 12: Tracing 6

Finally we set the advance width. Again with
the pointer tool, move the mouse to the width line
on the right edge of the screen, depress and drag the
line back to a reasonable location.

And we are done with this character.

Navigating to characters

The font view provides one way of navigating around
the characters in a font. Simple scroll around it un-
til you find the character you need and then double
click on it to open a window looking at that charac-
ter.

Typing a character will move to that character.

But some fonts are huge (Chinese, Japanese and
Korean fonts have thousands or even tens of thou-
sands of characters) and scrolling around the font
view is a an inefficient way of finding your charac-
ter. View->Goto provides a simple dialog which will
allow you to move directly to any character for which
you know the name (or encoding). If your font is a
Unicode font, then this dialog will also allow you to
find characters by block name (e.g. There is a pull-
down list from which you may select Hebrew rather
than Alef).

The simplest way to navigate is just to go to
the next or previous glyph. And View->Next Glyph
and View->Prev Glyph will do exactly that.

Loading background images better

In the background image of the previous example
the bitmap of the letter filled the canvas of the image
(with no white borders around it). When FontForge
imported the image it needed to be scaled once in
the program. But usually when you create the im-
age of the letter you have some idea of how much
white space there should be around it. If your im-
ages are exactly one em high then FontForge will
automatically scale them to be the right size. So in
the following examples all the images have exactly
the right amount of white space around them to fit
perfectly in an em.

FontForge Tutorial

FontForge also has the ability to import an en-
tire bitmap font (for example a “pk” or “gf” font pro-
duced by METAFONT or the “bdf” format developed
by Adobe for bitmaps) to provide properly scaled
background images for all characters in a font.

Creating the letter “o” — consistent
directions

Let us turn our attention to the letter “o” which has
a hole (or counter) in the middle. Open the out-
line view for the letter “0” and import a background
image into it.

Figure 13: Tracing o

Notice that the first outline is drawn clockwise
and the second counter-clockwise. This change in
drawing direction is important. Both PostScript and
TrueType require that the outer boundary of a char-
acter be drawn in a certain direction (they happen to
be opposite from each other, which is a mild annoy-
ance), within FontForge all outer boundaries must
be drawn clockwise, while all inner boundaries must
be drawn counter-clockwise.

If you fail to alternate directions between outer
and inner boundaries you may get results like the

one on the left ' | u If you fail to draw the outer
contour in a clockwise fashion the errors are more
subtle, but will generally result in a less pleasing
result once the character has been rasterized.

TECHNICAL AND CONFUSING: the exact
behavior of rasterizers varies. Early PostScript ras-
terizers used a “non-zero winding number rule” while
more recent ones use an “even-odd” rule. TrueType
uses the “non-zero” rule. The example given above
is for the “non-zero” rule. The “even-odd” rule would
fill the “0” correctly no matter which way the paths
were drawn (though there would probably be subtle
problems with hinting).

To determine whether a pixel should be set us-
ing the even-odd rule draw a line from that pixel to
infinity (in any direction) and count the number of
contour crossings. If this number is even the pixel is

FontForge Tutorial

Font Creation with FontForge

not filled. If the number is odd the pixel is filled. Us-
ing the non-zero winding number rule the same line
is drawn, contour crossings in a clockwise direction
add 1 to the crossing count, while counter-clockwise
contours subtract 1. If the result is 0 the pixel is not
filled, any other result will fill it.

The command Element->Correct Direction
will look at each selected contour, figure out whether
it qualifies as an outer or inner contour and will
reverse the drawing direction when the contour is
drawn incorrectly.

Creating letters with consistent stem
widths, serifs and heights.

Many Latin (Greek, Cyrillic) fonts have serifs, spe-
cial terminators at the end of stems. And in almost
all LGC fonts there should only be a small number
of stem widths used (ie. the vertical stem of "1" and
"i" should probably be the same).

FontForge does not have a good way to enforce
consistency, but it does have various commands to
help you check for it, and to find discrepancies.

Let us start with the letter "1" and go through
the familiar process of importing a bitmap and defin-
ing it’s outline.

Figure 14: Beginning “1”

Use the magnify tool to examine the bottom
serif, and note that it is symmetric left to right.

Figure 15: Magnified ‘1"

Trace the outline of the right half of the serif

George Williams

Figure 16: Half traced “1”

Select the outline, invoke Edit -> Copy, then
Edit -> Paste, and Element -> Transform and
select Flip (from the pull down list) and check
Horizontal

Figure 17: Pasted “1”

Drag the flipped serif over to the left until it
snuggles up against the left edge of the character

Figure 18: Dragged “1”

Deselect the path, and select one end point and
drag it until it is on top of the end point of the other
half.

Figure 19: Joining “1”

Finish off the character.

Figure 20: Finished “1”

But there are two more things we should do.
First let’s measure the stem width, and second let’s
mark the height of the “1.”

Select the ruler tool from the tool palette, and
drag it from one edge of the stem to the other. A
little window pops up showing the width is 58 units,
the drag direction is 180 degrees, and the drag was
-58 units horizontally, and 0 units vertically.

Figure 21: Measuring stem width

58 180° (-58,0)

Go to the layers palette and select the Guide ra-
dio box (this makes the guide layer editable). Then
draw a line at the top of the "1", this line will be
visible in all characters and marks the ascent height
of this font.

FontForge Tutorial

Figure 22: Making a guideline

The “1” glyph looks very much like a short “1”
with a dot on top. So let’s copy the “l” into the
“;” this will automatically give us the right stem
width and the correct advance width. The copy may
be done either from the font view (by selecting the
square with the “1” in it and pressing Edit -> Copy)
or from the outline view (by Edit -> Select All
and Edit -> Copy). Similarly the Paste may be
done either in the font view (by selecting the “4”
square and pressing Edit -> Paste) or the outline
view (by opening the “i” character and pressing Edit
-> Paste).

Import the

glyph.

‘” image, and copy and paste the

“177

@
1

Figure 23: Import

Select the top serif of the outline of the 1 and
drag it down to the right height

@
1

Figure 24: Correcting

¢
"

FontForge Tutorial

Font Creation with FontForge

Go to the guide layer and add a line at the x-
height

Figure 25: Making another guideline

ET

Looking briefly back at the "o" we built before,
you may notice that the "o" reaches a little above
the guide line we put in to mark the x-height (and
a little below the baseline). This is called overshoot
and is an attempt to remedy an optical illusion. A
curve actually needs to rise about 3% (of its diam-
eter) above the x-height for it to appear on the x-
height.

Figure 26: Comparing “0” to guidelines

Continuing in this manner we can produce all
the base glyphs of a font.

Hints

At small point sizes on display screens, computers
often have a hard time figuring out how to convert
a glyph’s outline into a pleasing bitmap to display.
The font designer can help the computer out here
by providing what are called “Hints.”

Basically every horizontal and vertical stem in
the font should be hinted. FontForge has a com-
mand Element -> Autohint which should do this
automatically. Or you can create hints manually —

George Williams

the easiest way is to select two points on oposite
sides of a stem and then invoke Hints->Add HHint
or Hints->Add VHint respectively for horizontal or
vertical stems.

Figure 27: “0” with hints

=i

Accented letters

Latin, Greek and Cyrillic all have a large comple-
ment of accented characters. FontForge provides
several ways to build accented characters out of base
characters.

The most obvious mechanism is simple copy
and paste: Copy the letter “A” and Paste it to “A”
then Copy the tilde accent and Paste it Into “A”
(N.B. Paste Into is subtly different from Paste.
Paste clears out the character before pasting, while
Paste Into merges the clipboard into the character,
retaining the old contents). Then you open up “A"
and position the accent so that it appears properly
centered over the A.

This mechanism is not particularly efficient, if
you change the shape of the letter “A” you will need
to regenerate all the accented characters built from
it. FontForge has the concept of a Reference to a
character. So you can Copy a Reference to “A”
and Paste it, the Copy a Reference to tilde and
Paste it Into, and then again adjust the position
of the accent over the A.

Then if you change the shape of the A the shape
of the A in “A” will be updated automagically — as
will the width of “A”.

But FontForge knows that “A” is built out of
“A” and the tilde accent, and it can easily create
your accented characters itself by placing the refer-
ences in “A” and then positioning the accent over

the “A”. (Unicode provides a database which lists
the components of every accented character (in Uni-
code)). Select “A.” then apply Element -> Build
-> Build Accented and FontForge will create the
character by pasting references to the two compo-
nents and positioning them appropriately.

FontForge has a heuristic for positioning ac-
cents — most accents are centered over the highest
point of the character — sometimes this will pro-
duce bad results (if the one of the two stems of “u”
is slightly taller than the other the accent will be
placed over it rather than being centered over the
character), so you should be prepared to look at
your accented characters after creating them. You
may need to adjust one or two (or you may need to
redesign your base characters slightly).

Ligatures

One of the great drawbacks of the standard Typel
fonts from Adobe is that none of them come with “ff”
ligatures. Lovers of fine typography tend to object
to this. FontForge can help you overcome this flaw
(whether it is legal to do so is a matter you must set-
tle by reading the license agreement for your font).
FontForge cannot create a nice ligature for you, but
what it can do is put all the components of the liga-
ture into the character with Element -> Build ->
Build Composite. This makes it slightly easier (at
least in latin) to design a ligature.

Use the Element -> Char Info dialogtoname
the character (in this case to “ffi”. This is a standard
name and FontForge recognizes it as a ligature con-
sisting of f, f and i). Apply Element -> Default
ATT -> Common Ligatures so that FontForge will
store the fact that it is a ligature. Then use Element
-> Build -> Build Composite to insert references
to the ligature components.

Figure 28: ffi made of references

:
b

FontForge Tutorial

Use Edit -> Unlink References to turn the
references into a set of contours.

Figure 29: fi without references

Adjust the components so that they will look
better together. Here the stem of the first f has
been lowered.

Figure 30: ffi adjusted

Use Element -> Remove Qverlap to clean up
the character.

Some word processors will allow the text editing
caret to be placed inside a ligature (with a caret po-
sition between each component of the ligature). This
means that the user of that word processor does not
need to know s/he is dealing with a ligature and sees
behavior very similar to what s/he would see if the
components were present. But if the word processor
is to be able to do this it must have some informa-
tion from the font designer giving the appropriate
locations of caret positions. As soon as FontForge
notices that a character is a ligature it will insert
enough caret location lines into it to fit between the
ligature’s components. FontForge places these on
the origin, if you leave them there FontForge will
ignore them. But once you have built your liga-

FontForge Tutorial

Font Creation with FontForge

Figure 31: ffi cleaned up

ture you might want to move the pointer tool over
to the origin line, press the button and move the
caret lines to their correct locations. (Only AAT
and OpenType support this).

Figure 32: ffi with ligature carets

Metrics

Once you have created all your glyphs, you should
probably examine them to see how they look to-
gether. There are three commands designed for this:

e Windows -> New Metrics View — will open a
window which displays several glyphs at a very
large size. You can change the advance width of
each glyph here to make a more pleasing image.

e File -> Print — will print a sample text using
the font, or all the glyphs of the font, or sev-
eral glyphs one per page, or several glyphs at a
waterfall of point sizes.

e File -> Display — will open a dialog which
allows you to display a sample text in this (or
indeed several) fonts.

George Williams

Kerning

Even in fonts with the most carefully designed met-
rics there are liable to be some character combina-
tions which look ugly. Some combinations are fixed
by building ligatures, but most are best approached
by kerning the inter-character spacing for that par-
ticular pair.

Figure 33: kerning in the Metrics view

[*]E]l Hetrics for Caliban[JE| |[#E] Hetrics for Caliban[]E]

File Edit Element .~ File Edit Element *.~
jie] To|

Mame: T 0 MName: T]

Width: |B51 63 Width: [651 663

LBearing: 153 47 LEearing: |13 47

REearing: |56 102 REearing: (56 102

Kem [0 [Kern: [-182

[| TR § £ | I

In the above example the left image shows the
unkerned text, the right shows the kerned text. To
create a kerned pair, select the two glyphs, then
use Windows -> New Metrics View and move the
mouse to the rightmost character of the pair and
click on it, the line (normally the horizontal ad-
vance) between the two should go green (and be-
comes the kerned advance). Drag this line around
until the spacing looks nice.

Checking a font for common problems

After you have finished making all the characters
in your font you should check it for inconsisten-
cies. FontForge has a command, Element -> Find
Problems which is designed to find many common
problems (as you might guess).

Simply select all the characters in the font and
then bring up the Find Problems dialog. Be warned
though: Not everything it reports as a problem is a
real problem, some may be an element of the font’s
design that FontForge does not expect.

The dialog can search for many types of prob-
lems:

e Stems which are close to but not exactly some
standard value

e Points which are close to but not exactly some
standard height

e Paths which are almost but not quite vertical
or horizontal

10

e Control points which are in unlikely places
e Points which are almost but not quite on a hint

e and more.

I find it best just to check for a few similar prob-
lems at a time, otherwise switching between differ-
ent types of problems can be distracting.

Generating a font

The penultimateﬂ stage of font creation is generating
a font. N.B.: FontForge ’s File -> Save command
will produce a format that is only understood by
FontForge and is not useful in the real world.

You should use File -> Generate to convert
your font into one of the standard font formats.
FontForge presents what looks like a vast array of
font formats, but in reality there are just several
variants on a few basic font formats: PostScript
Type 1, TrueType, OpenType (and for CJK fonts,
also CID-keyed fonts) and SVG.

OpenType advanced typography

In OpenType and Apple’s Advanced Typography
fonts it is possible for the font to know about certain
common glyph transformations and provide infor-
mation about these to a word processor using that
font (which presumably could then allow the user
access to that transformation).

Simple substitutions Suppose that we had a font
with several sets of digits: monospaced digits, pro-
portional digits and lower case (old style) digits.
One of these styles would be chosen to represent
the digits by default (say the monospaced digits).
Then we could link the default glyphs to their vari-
ant forms.

First we should name each glyph appropriately
(proportional digits should be named “zero.fitted,”
“one.fitted” and so forth, while oldstyle digits should
be named “zero.oldstyle,” “one.oldstyle” and so forth.
Use the Element-> Glyph Info command to name
them.

L The final stage of font creation would be installing the
font. This depends on what type of computer you use and I
shan’t attempt to describe all the possibilities here.

FontForge Tutorial

Figure 34: Naming a glyph
@ Glyph Infa far zero fitted

Ligature] Componentsl Counters
Stbs | AlSubs | Ml Subs
Unicode W Comment] Pos W Pair]

Unicode Name: zerc.fitted |ﬂ
Unicode Value: -1 |
Unicode Char: |

QT Glyph Class:

”Set From Ngmel HSst From Valgsl
[Cone]

i
{E

To link the glyphs together we invoke Element
-> Glyph Info again, this time on the default glyph
and select the Subs tab. This provides a list of all
simple substitutions defined for this glyph.

Figure 35: Providing substitutions

Unicode W Comment } Pos] Palr }
Ligature W Components] Counters]
Sbs]AnSuhs] Mut Subs |

onum 0 zero.oldstyl

pnun 0 zero.fitted
New.. | Delete Edit.,
Lopy Paste |

[l

=
| §i|
] I
S
3

Pressing the [New] button will allow you to add
a substitution

Figure 36: Editing substitutions
[®][0] it supstiution varia[X]FT]

Components
zero.oldstyle| I
Tag

onun | =

Script & Languages

T

I~ Right To Left

I™ Ignore Base Glyphs

I~ Ignore Ligatures

I~ Ignore Combining Marks

|

FontForge Tutorial

Font Creation with FontForge

Each substitution must contain: the name of
a glyph to which it is to be mapped, a four char-
acter OpenType tag used to identify this mapping
and a script and language in which this substitution
is active. There is a pulldown menu which you can
use to find standard tags for some common substi-
tutions (the tag for oldstyle digits is ‘onum’). This
substitution is for use in the latin script and for any
language, again there is a pulldown menu to help
chose this correctly.

Contextual substitutions OpenType and Apple
also provide contextual substitutions. These are
substitutions which only take place in a given con-
text and are essential for typesetting Indic and Ara-
bic scripts.

In OpenType a context is specified by a set of
patterns that are tested against the glyph stream of
a document. If a pattern matches then any substi-
tutions it defines will be applied.

Instead of an Indic example, let us take some-
thing I’'m more familiar with, the problem of type-
setting a latin script font where the letters “b,” “o,”
“v” and “w” join their following letter near the x-
height, while all other letters join near the baseline.

Thus we need two variants for each glyph, one
that joins (on the left) at the baseline (the default
variant) and one which joins at the x-height. Let us
call this second set of letters the “high” letters and
name them “a.high,” “b.high” and so forth.

Figure 37: Incorrect & correct script joins

fed bed

We divide the set of possible glyphs into three
classes: the letters “bovw”, all other letters, and all
other glyphs. We need to create two patterns, the
first will match a glyph in the “bovw” class followed
by a glyph in the “bovw” class, while the second will
match a glyph in the “bovw” class followed by any
other letter. If either of these matches the second
glyph should be transformed into its high variant.

The first thing we must do is create a simple
substitution mapping each low letter to its high vari-
ant. Let us call this substitution by the four char-
acter OpenType tag “high.” We use Element ->
Glyph Info as before except that here we use the
special “script / language” called “— Nested —” (an
option in the pulldown menu).

11

George Williams

The tricky part is defining the context. This is
done with the Contextual tab in the Element ->
Font Info dialog, revealing five different types of
contextual behavior, we are interested in contextual
chaining substitutions.

Figure 38: Font Info showing Contextual Subs
@ Font Information for FormaIS

TTF Walues] TTF Mamnes] Fanose] TeX]

Mames] Encoding] General] FS Private]
Maz | Ma: S

Comment] Anchar Classes Caontextual {

Mac Features]

Context Pos] Context Sub] Chain Pos]
Chain Sub Reverss Chain Sub |

Mew .. Delete I
[Estome]

Evdit... I

H
=

=

You can add a new entry by pressing the [New]
button. This brings up a series of dialogs, the first
requests a four character OpenType tag and a script
/ language (much as we saw earlier). The next di-
alog allows you to specify the overall format of the
substitution.

Figure 39: Tag & Script dialog and format of
contextual chaining substitution

m Edit Chaining Substitutio
[®][-1] s

OpenType Contextual or Chaining subtables may be in one
of three formats. The context may be specified either

- . . H
li‘ Edit Chal a5 a string of specific glyphs, a string of glyph classes,

Tag: ar a string of coverage tables.

Irn the first format you must specify a string of alyph-names
calt |ﬂ In the second format you must specify a string of class numbers.
Seript & Languages: In the third format you must specify a siring each element
of which may contain several glyph-names
I latn{FFid, dfit} Far chaining subtables vou may also specify backtrack and

Inckatiea lts.
¥ Right To Left okeheadlsts

M lgnore Base Glyphs
 lgnore Ligatures
M lgnore Combining Marks

i oog ! s Prev Mext > I

+ By Glyphs
+ By Classes
+ By Cowverage

LCancel I

The next dialog finally shows something inter-
esting. At the top are a series of patterns to match
and substitutions that will be applied if the string
matches. Underneath that are the glyph classes that
this substitution uses.

A contextual chaining dialog divides the glyph
stream into three categories: those glyphs before the
current glyph (these are called backtracking glyphs),
the current glyph itself (you may specify more than
one), and this (these) glyphs may have simple substi-

12

tutions applied to them, and finally glyphs after the
current glyph (these are called lookahead glyphs).

Each category of glyphs may divide glyphs into
a different set of classes, but in this example we use
the same classes for all categories (this makes it eas-
ier to convert the substitution to Apple’s format).

The first line (in the “List of lists” field) should
be read thus: If a backtracking glyph in class 1 is
followed by a match glyph in class 2, then location
0 in the match string (that is the first glyph) should
have simple substitution ‘high’ applied to it. If you
look at the glyph class definitions you will see that
class 1 includes those glyphs which must be followed
by a high variant, so this seems reasonable.

The second line is similar except that it matches
glyphs in class 1. Looking at the class definitions
we see that classes 1 & 2 include all the letters, so
these two lines mean that if any letter follows one of
“bovw” then that letter should be converted to its
‘high’ variant.

Figure 40: Overview of the contextual chaining
substitution
E‘ Edit Chaining Substitution

List of lists of class numbers
1 [2] = 0 high'
1 [1] =0 high'

[mew J i Ewt @ 0 Delete | ¥ p ¢ Down

Match Classes } Back Classes | Ahead Classes |

Classes (Lists of lists of glyph names)

{Ewerything Else}
b w bohigh ochigh v high w high ralt high ralt
acdefghiiklmnpgrstusyz

[w0 e IDelete I 0 Up i Down
0K | < Prev | et » Cancel |

To edit a glyph class simply double click on it.
To create a new one press the [New] button (under
the class list).

Figure 41: Editing glyph classes
E‘ Edit Chaining Substitution E‘
=]

acdefghijklnnpgrstuxya

iooK ICeprev | [[nexts]| ([canca]|

FontForge Tutorial

This produces another dialog showing all the
names of all the glyphs in the current class. Pressing
the [Select] button will set the selection in the font
window to match the glyphs in the class, while the
[Set] button will do the reverse and set the class
to the selection in the font window. These provide a
short cut to typing in a lot of glyph names. Pressing
the [Next] button defines the class and returns to
the overview dialog.

To edit a pattern double click on it, or to create
a new one press the [New] button (under the List of
lists).

Figure 42: Adding matches and substitutions
lE‘ Edit Chaining Substitution

Match } Backtrack | Lookahead |

List of class numbers
2

Claszes

{Everything Else}
ko w bhigh o high v high w hich ralt hich ralt
acdefghijkimnpogrstuxyz
<0 s
A ordered list of sequence positions and lookup tags lE‘ SequencefL DE
0 high' Secuence MNumber:
o
Tag
[hew | 0 Edit ZDelete & 5 Un @ i Down
Ok o] [] [Lor] oo]

Again the pattern string is divided into three
categories, those glyphs before the current one, the
current one itself, and any glyphs after the current
one. You choose which category of the pattern you
are editing with the tabs at the top of the dialog.
Underneath these is the subset of the pattern that
falls within the current category, the classes defined
for this category, and finally the substitutions for
the current glyph(s). Clicking on one of the classes
will add the class number to the pattern.

To edit a substitution double click on it, or to
create a new one press the [New] button (under
“An ordered list...”). The sequence number speci-
fies which glyph among the current glyphs should
be modified, and the tag specifies a four character
substitution name

Apple advanced typography

Some of Apple’s typographic features can be readily
interconverted into equivalent OpenType features,
while others cannot be.

Non-contextual ligatures, kerning and substitu-
tions can generally be converted from one format to
another. Apple uses a different naming convention
and defines a different set of features, but as long as

FontForge Tutorial

Font Creation with FontForge

a feature of these types is named in both systems
interconversion is possible.

Contextual substitutions Apple specifies a con-
text with a finite state machine, which is essentially
a tiny program that looks at the glyph stream and
decides what substitutions to apply.

Each state machine has a set of glyph class def-
initions (just as in the OpenType example), and a
set of states. The process begins in state 0 at the
start of the glyph stream. The computer determines
what class the current glyph is in and then looks at
the current state to see how it will behave when
given input from that class. The behavior includes
the ability to change to a different state, advancing
the input to the next glyph, applying a substitution
to either the current glyph or a previous one (the
“marked” glyph).

Using the same example of a latin script font...

We again need a simple substitution to convert
each letter into its high alternate. The process is the
same as it was for OpenType, and indeed we can use
the same substitution.

Again we divide the glyphs into three classes
(Apple gives us some extra classes whether we want
them or no, but conceptually we use the same three
classes as in the OpenType example). We want a
state machine with two states (again Apple gives
us an extra state for free, but we shall ignore that),
one is the start state (the base state — where nothing
changes), and the other is the state where we’ve just
read a glyph from the “bovw” class.

Figure 43: State machine

anything else

b.owvw

Gubstitute

no Cnanoe

Again we use the Element -> Font Info dia-
log and the Mac SM tag to look at the contextual sub-
stitutions available. Again there are several types of
contextual behavior, and we are interested in con-
textual substitutions.

13

George Williams

Figure 44: Font Info showing State Machines
|§| Font Infarmation for Furmalsg

Cormment] Anchor Classes] Contextual]
TTF "alues] TTF Mames] Panose] TeX]
Nlames] Encoding] General] F3 Frivate]

tac] Iac Features Iac S
Context Ins] kerning

Inclic Cotitext Sub

<2,2% Curgive

[Few . J| & Delete i Edit.

Corwvert from DpenType...I

o] ==

Double clicking on a state machine, or pressing
the [New] button provides an overview of the given
state machine. At the top of the dialog we see a field
specifying the feature / setting of the machine, this
is Apple’s equivalent of the OpenType 4 character
tag. Under this is a set of class definitions, and at
the bottom is a representation of the state machine
itself.

Figure 45: Overview of a State Machine

[®][<0] Esit Contextual Substitutio

Feature, Setting:

e ||

¥ Right To Left
B iertical Only

Class 0: {End of Text}

Class 1: {Everything Else}

Class 2: {Deleted Glyph}

Class 3: {End of Line}

Class 4: b o v w b high ohigh v high w high r.alt high ralt
Class S:acdefghiiklmnpgrstuxyz

H tew || |[Eoit]| |[Delete |

Flaz=zfCla=z=zClaszClass
2 2 1)
= 1 1] 2 [i]]
£ n n n n
1 .|
2 2 a 2 a j
£ n n n n
2 high |high |5
£l ool e

Double clicking on a class brings up a dialog
similar to that used in OpenType:

14

Figure 46: Editing Apple glyph classes

[®][=0] Edit Comextual Substitution © E]
set_]| [oeket]

acdefghijklmnpgrstuxyz

Clicking on a transition in the state machine
(there is a transition for each state / class combina-
tion) produces a transition dialog.

This controls how the state machine behaves
when it is in a given state and receives a glyph in a
given class. In this example it is in state 2 (which
means it has already read a “bovw” glyph), and it
has received a glyph in class 4 (which is another
“bovw” glyph). In this case the next state will be
state 2 again (we will have just read a new “bovw”
glyph), read another glyph and apply the “high” sub-
stitution to the current glyph.

At the bottom of the dialog are a series of but-
tons that allow you to navigate through the transi-
tions of the state machine.

Figure 47: Transition dialog
[@][-0] Eai state Transif>]]

State 2, Class 4: b o v w bhigh o.hig
Mext Gtate: z

2 Advance To Mext Glyph
B Mark Current Glyph

Mark Subs: j
Current Subs: high j

=

Pressing [0K] many times will extract you from
this chain of dialogs and add a new state machine
to your font.

FontForge Tutorial

Appendix: Additional features

FontForge provides many more features, further de-
scriptions of which may be found at

http://fontforge.sf.net/overview.html

Here is a list of some of the more useful of them:

Users may edit characters composed of either
third order Bézier splines (for PostScript fonts)
or second order Béziers (for TrueType fonts)
and may convert from one format to another.

FontForge will retain both PostScript and True-
Type hints, and can automatically hint Post-
Script fonts.

FontForge allows you to modify most features of
OpenType’s GSUB, GPOS and GDEF tables,
and most features of Apple’s morx, kern, lcar
and prop tables. Moreover it can often convert
from one format to another.

FontForge has support for Apple’s font formats.
It can read and generate Apple font files both
on and off a Macintosh. It can generate the
FOND resource needed for the Mac to place a
set of fonts together as one family.

FontForge allows you to manipulate strikes of
bitmap fonts as well as outline fonts. It has
support for many formats of bitmap fonts (in-
cluding TrueType’s embedded bitmap — both
the format prescribed by Apple and that spec-
ified by MicroSoft).

FontForge can interpolate between two fonts
(subject to certain constraints) to yield a third
font between the two (or even beyond). For in-
stance given a “Regular” and a “Bold” variant it
could produce a “DemiBold” or even a “Black”
variant.

FontForge also has a command (which often
fails miserably) which attempts to change the
weight of a font.

FontForge can automatically guess at widths for
characters, and even produce kerning pairs au-
tomatically.

FontForge has some support for fonts with ver-
tical metrics (in Japanese, Chinese and Korean
fonts), and some support for right to left fonts
(Arabic, Hebrew, Linear-B, etc.).

FontForge has some support for PostScript (and
pdf) type3 fonts. Allowing for glyphs with dif-
ferent strokes and fill and images.

FontForge has a scripting language which allows
batch processing of many fonts at once.

FontForge Tutorial

Font Creation with FontForge

15

http://fontforge.sf.net/overview.html

