WrapITK: Enhanced languages support
for the Insight Toolkit

Release 0.2.2

Gaétan Lehmann?, Zachary Pincus? and Benoit Regrain3

May 18, 2010

IINRA, UMR 1198; ENVA; CNRS, FRE 2857, Biologie du Développent et Reproduction, Jouy en

Josas, F-78350, France

2Program in Biomedical Informatics and Department of Biounfstry, Stanford University School of
Medicine, Stanford, California

SCREATIS, CNRS UMR 5515, Inserm U630, Univ. Lyonl, INSA Lyd@9621 Villeurbanne, France

Abstract

ITK [1] is a huge image analysis library, which contains lots ofestsf the art algorithms implemen-
tations. However, using it in C++ can be difficult and is pgatited for prototyping. WrapITK aims
to allow classes from ITK (and custom, classes that intendttt ITK) to be "wrapped” for use with

languages like Pythorg], Tcl [3], and Java{].

Contents

| Introduction 4

Il Supported languages and plateforms 6

Il Performance and memory usage 7

IV User guide 8

1 Installation 8
1.1 Getthesoftware sources e e 8
1.2 ITK o e e 8
1.3 CableSwig e 8
1.4 Python. e e 8
1.5 Tcl. . e 9

1.6 JAVA e e e 9

Contents

VI

1.7 Buildoptions e e e e
1.8 Install WraplTK oruseitinthebuildtree
1.9 Binarypackages. e

Python usage

2.1 Configuring python and importing the libraries
2.2 Templateusage e e e
2.3 TheNew()method e
2.4 Pythonsequencesand ITK. e
2.5 Python specific functions intligk module.
2.6 Advanced Features e
2.7 Full pythonscriptexamples.

TCL usage

Java usage

Developer guide

WrapITK description

5.1 Creating a CMakeLists.txt file forawrapperlibrary.

5.2 Creating wrapXXX.cmake filestowrapclasses
A simple example: MedianlmageFilter.
WrapITK predifined lists.
WraplITK predifined variables and naming consistency.
WraplTKmacros. e e e e e

Extending or customizing WrapITK

External projects

7.1 Why external projects? e e e e e e e

7.2 Building e e
7.3 USAQe. o e e
7.4 Installation

7.5 Top-level CMakelLists for external projects
7.6 Examples. e
7.7 BufferConversion: an example of extension foronelaggu
7.8 ItkVtkGlue: an example of extension for all languages|uding C++.

Extending language support and adding more languages
8.1 Generatingtargetlanguagecode L e
8.2 tYPEMAPS e e e e

Contributing to WraplITK

Known bugs

Contents 3
VIl Acknowledgments 33
VIl Conclusion 34

Part |

Introduction

WrapITK is a project designed to allow classes from ITK (andtom classes that interact with ITK) to be
"wrapped” for use with languages like Pythd?],[Tcl [3], and Java4].

Note that ITK already has a wrapping infrastructure, and ¥WeaplITK is based on it, and use the same
tools: CMake 5], GCC-XML [6] and CableSwi§[8]. This project aims to address the following deficits of
the existing wrappers (and others):

ITK is a huge library, but only a small number of classes ar@lable in target languages. This
quickly becomes frustrating for the user, especially wherhas to spend lot of time to extend the
current set of classes. Even if it is not yet complete, thepNnd's set of classes have been highly
extended. Moreover, the user can choose at build time wipgstand which dimensions he wants to
wrap. With 202 wrapped filters, WrapITK covers 63% of the klae filters.

The template argument set is poorly chosen, sometimes makinpossible to create a pipeline. In

WraplITK, most of the filters have the same input and outputsypnd only a few filters are allowed to

change type. This make the types manipulated by filters nmmsistent, and the user should always
be able to build his pipeline.

Many types returned by ITK object's methods are not usablarget languages. For example, the
GetPixel) method of the clasitk::lmage returns a string describing a pointer, but does not return
the pixel value. In WrapITK, most types used in the classeswailable in target languages.

Names in target languages are inconsistent. WraplTK usg&areaming convention which should
make it easier to identify the template arguments.

The ITK wrapping system is difficult to understand and mamt&VraplTK was written - and thor-
oughly documented - to be as easy as possible to understaimtaim, and extend.

Itis non-trivial to add wrappers for different ITK classedte system. In WraplTK, adding a wrapper
can be as simple as adding a single file containing a few veglinchented cmake macros.

It is difficult if not impossible to add original-style ITK vappers for external C++ classes that interact
with ITK. WraplTK provides explicit hooks for external C+asses to be wrapped and even installed
in the WraplITK tree so they interact seamlessly with the oiivapped classes.

The python’dnsightToolkit module is only structured as a big list of names which makesatly
unusable in the python interpreter. WraplTK comes with a,neell-designed python module that
is easy to use with the interpreter, and which provides mme-iookup of templated types - things
which can’t be easily done in C++. Additionally, WrapITK emss thatSmartPointer s are always
returned and acceptable as input, so no bare pointers arex@@sed to Python. This is not the case
in the standard ITK wrappers.

ITK was broken on MacOS X9 with Python and Java.

Loading python modules can take lot of time. With WrapITK, dgfault, only the modules really
used are loaded, so the loading time is much shorter in consitations.

1cableSwig is based on a now quite old version of SWI [

The article you're reading is not yet complete, but it seemgartant for us to release our work and to get
feedback as soon as possible. The article will continue dbvewvith WraplTK.

Part I
Supported languages and plateforms

Java, Tcl and Python build properly and are fully usable. e\mv, Java and Tcl don’t yet have the extended
features added to Pythéin

WrapITK is mainly developed on Mandriva Linud@] and MacOS X 9] and therefore is well tested on
these platforms. It also builds on windowsl], but more testing is required to be sure everything works as
it should. See below for details about how to report bugs amtribute patches.

Several tests are availaBléor Python, Tcl and Java. They ensure the high quality of WiFpThey can
be run with thectest command.

2Any help to extend Java and Tcl support would be higly apptedi
3There is currently 67 tests with the default configuration.

Part I
Performance and memory usage

WrapITK provides an interface to some C++ compiled code,x&T@ion times are very similar to pure
C++ programs in most of cases.

The major difference comes from the memory usage: while af@egram will produce a binary executable
containing only the required code, the WrapITK binary cordall the wrapped classes. So, WrapITK can
take a significant amount of memory.

Some convenient features, like sequence management iarpytan be quite inefficient and should not be
used in a loop.

Part IV
User guide

1 Installation

1.1 Get the software sources

A tarball archive is submitted with the article.

The latest version can be obtained from the developmentsitepp with darcs 12]. The command is

darcs get --partial http://voxel.jouy.inra.fr/darcs/co ntrib-itk/WrapITK/ 4.

For the user who does not want to use darcslZ][but still wants
the last development version, a nightly updated archive isvailable at
http://voxel.jouy.inra.fr/darcs/contrib-itk/WrapI TK /WraplTK.tar.gz or
http://voxel.jouy.inra.fr/darcs/contrib-itk/WrapI TK /WrapITK.zip

1.2 ITK

WrapITK will work properly with the ITK 2.8.1 release.

There are some optional patches to the ITK sourc&raplTK/patches/optional which can be applied
to version 2.8.1. These optional patches provide bettgustifior python by providing some methods like
__str__, or methods for standard python sequence interface (se@)el

Some required patches may appear in the development veifsWwnapITK. Those patches are required for
the last stable version of ITK, and should be already integran the last CVS version of ITK.

1.3 CableSwig

WrapITK requires ITK and CableSwig 1] to have been previously down-
loaded and built. To get a development version of CableSwigimply run:
cvs -d:pserver.anonymous@public.kitware.com:/cvsroot /CableSwig co CableSwig (Note
that no cvs login is needed here.)

If you check out CableSwig into thiasight/Utilities directory, then it will be built as a part of ITK,
and will be automatically detected by WrapITK when ITK is fwol

1.4 Python

Python P] is required only to build python support. WrapITK is repeto work with python 2.3 and python
2.4. However, the test framework requires siabprocess module to be available, which is standard only
in python 2.4 and above. To run the python test with pythonyb8 have to instakubprocess .

“Note that the-partial option is required on systems with case insensitive filesystlike windows or Mac OS X.

http://voxel.jouy.inra.fr/darcs/contrib-itk/WrapITK/WrapITK.tar.gz
http://voxel.jouy.inra.fr/darcs/contrib-itk/WrapITK/WrapITK.zip

15 Tdl 9

15 Tcl

Tcl [3] is required only to build tcl support. WrapITK has been¢esivith Tcl 8.4.11.

1.6 Java

Java f] is required only to build java support. WraplTK has beenddswith javal.5.0 06-b05 and
142 11 .

1.7 Build options

After CableSwig and ITK have been (possibly patched) ant, luiilding WrapITK with cmake is simple.
Runccmake in a new directory with the path to the WraplTK source treenasfirst argument, and provide
the locations of the ITK and CableSwig build trees if ccmakerexquests. Build options are relatively
self-explanatory.

The project is provided with default build options which sltbbe OK for most users. However, for specific
needs, you might want to change these options:

e WRAP_TEMPLATE_IF_DIMSs the list of dimensions which will be available in the tadrignguages.
The dimensions must be separated by a semicolprBfy default dimensions 2 and 3 are available.

e WRAP_covariant_vector_double , OFF by default.
e WRAP_covariant_vector_float , ONby default.
e WRAP_double OFF, by default.

e WRAP float ON, by default. Note that float is the only signed type selectedédfault, so you will
have to use floats to manipulate signed values.

e WRAP rgb _unsigned_char , ONby default.

e WRAP _rgb_unsigned_short , OFFby default.
e WRAP _signed_char , OFFby default.

e WRAP_signed_long , OFFby default.

e WRAP_signed_short , OFFby default.

e WRAP _unsigned_char , OFFby default.

e WRAP _unsigned_long , OFFby default. Some filters, lik@/atershedimageFilter require this type.
Some filters to return to a wrapped type fronsigned long are provided, even if this option is set
to OFF

e WRAP _unsigned_short , ONby default.unsigned short isthe only integer type available by default.
This type has been choosen rather thasigned char to be able to manipulate 8-bits as well as 16-
bits images, and to be able to manipulate labeled images thane255 labels. It is still possible to
save images with thensigned char type, even ilWRAP_unsigned char is set toOFF.

1.8 Install WrapITK or use it in the build tree 10

e WRAP_vector_double , OFFby default.
e WRAP_vector_float , ONby default.

The user should modify these options carefully: activalt¢hel types, and/or adding many dimensions will

produce very large binary files which will take a lot of memonce loaded.

Note that each individual filter that is wrapped can declané&ckvdimensions it should be wrapped for, and
what image types it can accept. For example, a filter coultadethat it should only be wrapped for 3D
images with floating-point typed pixels. In this case, thappers will only be created if the user has chosen
to build 3-dimensional image wrappers and has selected onwre floating point types (e.g. double or
float) in ccmake. Thus, the ccmake configuration specifiegn@amum possible range of image and filter
types to be created, and each filter is wrapped for some sabttt range.

Projects should always be built outside the source dirgctomabuild directory for example.

Solaris users may have so problem to build WrapITK if theyehawecent version of gcc. A workaround
can be activated in WrapITK to fix that problem, by passingdpgon-DSUNOS_STDCXX_FIX:BOOL=0ONo
cmake or ccmake.

1.8 |Install WraplITK or use it in the build tree

Once built, WrapITK can be installed or used in place.

1.9 Binary packages

RPM packages for Mandriva Linux 2006 are availablétgt//voxel.jouy.inra.fr/mdk/mima2 . To
install WraplITK for Mandriva Linux 2006.0, just add a new needith the command

urpmi.addmedia mima2-2006.0 http://voxel.jouy.inra.fr Imdk/mima2/2006.0/i586/
and install the package you want with
urpmi python-itk

This media also contains several packages which may bel tseifse WrapITK, and which are not available
in mandriva linux 2006.0. Here is the full list:

e cmake
e darcs

itk-data

itk-doc

itk-examples

itkvtk-devel

http://voxel.jouy.inra.fr/mdk/mima2

11

o libitk

o libitk-devel

e libvtk

o libvtk-devel
e libvtk-gt

e python-itk

e python-itk-numarray
e python-itkvtk
e python-vtk

o tcl-itk

o tcl-vtk

e vik-data

e vik-doc

e vik-examples
e vik-test-suite

e wrapitk-devel

WrapITK is also available in cooker, the development vergsibmandriva.

2 Python usage

In this section, we detail python usage. Some of the exanspl@sn here are copied from the console which
shows the interpreter prompt:

2> 12+3
2> 15

3> result = 12+3

4>

In the example above,2+3 is what is written in the interpreter, ari® is the result.2>, 3>, 4> are the
prompts of the interpreter.

2.1 Configuring python and importing the libraries 12

2.1 Configuring python and importing the libraries

If WraplTK has been installed, then using it from within pgthis trivial: simply issue the command
import itk , and you are ready to go. This is because WrapITK installptha file in the python
site-packages directory so that python knows where to find the itk scripts.

On linux boxes however, the user must set e LIBRARY_PATHto point to libSwigRuntime.so. For
exampleexport LD_LIBRARY_PATH=/ust/lib/InsightToolkit/Wrapl TK/Python-SWIG . This step is
not required with the mandriva’s package.

If WrapITK has not been installed, then you will either needsét thePYTHONPATHnvironment variable
to contain the directorjpath-to-WrapITK-build/Python , add this path teys.paths within python, or
start python from that directory. After thispport itk will work properly.

2.2 Template usage

Most class in the itk python module are "template proxy aasshat encapsulate all of the template instan-
tiations that were created at build time. If three-dimenalainsigned char andunsigned short image
types were created, they can be accessed as follows:

o itk.Image[itk.UC, 3]

e itk.Image[itk.US, 3]

Note that the C typensigned char is given withitk UC , andunsigned short with itk.US
The template parameters can also be put in a variable, atatei@once in a script:
dm = 3

pixelType = itk. UC
imageType = itk.Image[pixelType, dim]

image = imageType.New()

This construction is similar to what is done in C++, and makessy to change the dimension used. For
example - it can even be changed at run-time.

A more convenient syntax for usage in the interpreter is alsdable:

e itk.Image.UC3
e itk.Image.US3

itk.Image.UC3 refers to the same classikslmage[itk. UC, 3] but has the advantage of allowing the
use of tab-completion in the interpreter, and lets the uasilyeknow which template arguments he can
use. However, this notation is more rigid than the one abodevaon’t let the user specify the type and the
dimension used in a single place. Therefor, this syntaxlghzeiused only in interpreter.

Filters templated on images can be similarly accessed:

e itk.ImageFileReader[itk.Imagelitk.UC,3]]

2.3 The New() method 13

e or itk.ImageFileReader[itk.Image.UC3]
e oritk.ImageFileReader.lUC3
e oritk.ImageFileReader[imageType]

e or even with an instance of the class used as a template paraitkdmageFileReader[image]

This makes it easy to write generic routines which can deti amny input image type. For example, a
function which takes an image as parameter and writes it fe a/fihout having to give the image type can
be:

def write(image, fileName) :
writer = itk.ImageFileWriter] image].New()
writer.SetFileName(fileName)
writer.Setlnput(image)
writer.Update()

2.3 The New() method

Many classes haveldew() method which returns a smart pointer to an object of thassclaspython, the
New() method has some additional features:

e Arguments to the new method are assumed to be filter inputgo&could write:
adder = itk.AddimageFilter[...].New()
adder.Setinputl(readerA.GetOutput())
adder.Setlnput2(readerB.GetOutput())
or you could write
adder = itk.AddimageFilter[...].New(readerA.GetOutput (), readerB.GetOutput())
or even

adder = itk.AddimageFilter[...].New(readerA, readerB)

In that caseNew() will use theGetOutput() method of the object, if it exists, to get the image and
set the inputs of the new filter.

e Additionally, keyword arguments are allowed . Keyword argunts cause the correspondideg...
method to be called, so you could write the following:

itk.ImageFileWriter[image].New(image, FileName="foo. tif")
or

itk.ImageFileWriter[image].New(Input=image, FileName ="foo.tif")

2.4 Python sequences and ITK 14

With that notation, thevrite function becomes more simple:

def write(image, fileName) :
writer = itk.ImageFileWriter[image].New(image, FileNam e=fileName)
writer.Update()

and, more importantly, most of the classes can be instedtiahd parameterized in one line, which make
ITK less verbose, and a lot more easy to use in the interpreter

2.4 Python sequences and ITK

To set the radius of KledianimageFilter object, for example, the user has to creaiza object and use
it as an argument of thgetRadius() method.

12> radius = itk.Size[2]()

13> radius.SetElement(0, 3)
14> radius.SetElement(1, 5)
15> median.SetRadius(radius)

Note that theSetElement() = method doesn’t check the bounds of the object, and thus iafeinsThe
following code is executed, and can lead to a segmentatigh fa

16> radius.SetElement(1000, 5)

A more safe and convenient way to do that, if you have ingtale optional patches, is to use the standard
python list interface.

17> radius[0] = 3

18> radius[1] = 5
This time, a bounds check is performed, and the user is nettahlse an invalid index.

20> radius[2] = 1

exceptions.IndexError Traceback (most recent call last)
/home/glehmann/src/contrib-itk/regionalExtrema/<ipy thon console>
/home/glehmann/src/contrib-itk/regionalExtremal/itkS ize.py in __ setitem__(*args)
IndexError: /usr/include/InsightToolkit/Common/itkSi ze.h:202:

itk::ERROR: Size: index out of range

2.4 Python sequences and ITK 15

Even if it is a safe method, it is still not really convenient.

Instead of usingpize object, it is possible to use python sequences, like lististaples.

21> median.SetRadius([3, 5])

22> median.SetRadius((3, 5))
Also, with the optional patches, some itk objects can be exead to python sequences.

22> median.GetRadius()
22> <C itk::Size<(2)> instance at _58b40f09 p itk SizeT 2_t>

23> list(median.GetRadius())
23> [3, 5]

24> tuple(median.GetRadius())
24> (3, 5)

To set the same radius for all dimensions, it is possible ¢otlis* python sequence operator - that way, it
is possible to write code independent of dimension.

25> median.SetRadius([3]*2)

Or a simple number can also be used.

26> median.SetRadius(3)

Here is the list of itk classes which can currently be sulbtt by python sequences:

e Array

e Continuousindex
e CovariantVector
e FixedArray

e Index

e Offset

e Size

e Vector

2.5 Python specific functions in the itk module 16

2.5 Python specific functions in the itk module

Some convenience functions are provided with the itk madUteey all begin with a lower case character
to clearly show they are not part of ITK.

e itk.image(object) try to return an image from the object given in parameterhéf object is an
image, it is returned without changes. If the object is arfiltee object returned b@etOutput()
method is returned. This function is used in most of the oty functions to allow the user to pass
an image or a filter, and is available here for the same usagmme custom fuctions.

e itk.range(object) returns the range of values of an image in a tuplgect can be an image or
a filter. In case of a filteritk.image() is used to get the output image of the filter. The function
updates the pipeline by callirigpdateOutputinformation) andUpdate()

This function is only a convenience function for a commork takile prototyping.
Example:

1> import itk

2> reader = itk.ImageFileReader.lUC2.New(FileName="cth eadl.png”)

3> itk.range(reader)

3> (0, 255)

e itk.size(object) return the size of an imageobject can be an image or a filter. In the case
of a filter, itk.image() is used to get the output image of the filter. The function tgslanly the
information of the pipeline, by callingypdateOutputinformation() , but does not trigger a full

update of the pipeline.
This function is only a convenience function for a commork takile prototyping.
Example:

4> itk.size(reader)
4> <C itk::Size<(2)> instance at _d40b8a09 p itk SizeT?2 b

5> print itk.size(reader)
<Size [256, 256]>

6> list(itk.size(reader))
6> [256, 256]

Note that commands 5 and 6 can be used only with the optiotethes
o itk.template(object) returns the template class and parameters of a class angestéthis class.

Example:

7> itk.template(reader)
7> (<itkTemplate itk::ImageFileReader>, (<class 'itkima ge.itkimageUC2'>))

2.5 Python specific functions in the itk module 17

o itk.write(object, fileName) write an image to a file, without having to pass the image type.
object can be an image or a filter. In the case of a filtérimage() is used to get the output
image of the filter. The function updates the pipeline byicglUpdateOutputinformation() and
Update()

This function is only a convenience function for a commork takile prototyping.

Example:
8> itk.write(reader, 'out.png’)

e itk.show() ,itk.show2D() anditk.show3D() are used to display imagetk.show2D() requires
that imview [L3] be installed.itk.show3D() requires Vtk for python, ItkVtkGlugfor python, PyQt
[14], and iPython 15] with the -gthread option.

itk.show() call the best viewer according to the image type.
itk.show2D() can be called with a 3D image as parameter to show the imagelsfislice.
itk.show3D() display a volumetric rendering of the image. See Fidure

~ |3 openoffice.org L 1«

Figure 1: A screenshot of WrapITK in action with python.

e itk.strel(d, s) is used to create a binary ball structuring of dimensiand sizes. Structuring
element support is quite bad currently in WraplTK and shathlange in the future. Usiriti.strel
rather than creating BinaryBallStructuringElement directly is recommended to have backward
compatibility when the structuring element type changes.

e itk.auto_progress(b) is used to automatically add a progress report to all theynerelated filters.
b must beTrue orFalse . If b is true, something like

9> median.Update()
itkMedianimageFilterIF2IF2: 0.109990

51tkVtkGlue can be found in thExternalProjectirectory of WraplTK

2.5 Python specific functions in the itk module 18

is displayed on the standard output. While prototypings & iconvenient way for the user to know if
the execution time will be short or if he can do something maeful® than waiting for the filter to
complete.

itk.auto_progress(True) also sets an import callback which show the module name wien t
module are imported.

e itk.class_(object) returns the class of an object. Theclass attribute is often not what the
user wants with ITKitk.class_ is a convenience function to get the class of an ITK object.

Note that it is calledtlass_ and nofclass , becauselass is a reserved word in python.
Example:

10> median._ class__
10> <class 'itkMedianimageFilter.itkMedianimageFilter IF2IF2_PointerPtr>

11> itk.class_(median)
11> <class 'itkMedianimageFilter.itkMedianimageFilter IF2IF2">

e itk.echo(object, file) is a convenience function to call theint() method of an ITK object
without the need to passsingStream object. This function is less useful with the optional patsh
the__str () method does a very similar job with better integration wiyithn.

Example:

12> itk.echo(median)
MedianimageFilter (0x82c5b68)
RTTI typeinfo: itk::MedianimageFilter<itk::Image<unsi gned char, 3u>, itk::lmage<unsigned
Reference Count: 1
Modified Time: 10
Debug: Off
Observers:
none
Number Of Required Inputs: 1
Number Of Required Outputs: 1
Number Of Threads: 2
ReleaseDataFlag: Off
ReleaseDataBeforeUpdateFlag: Off
No Inputs
Output 0: (0x875da68)
AbortGenerateData: Off
Progress: 0
Multithreader:
RTTI typeinfo: itk::MultiThreader
Reference Count: 1
Modified Time: 2
Debug: Off
Observers:

Blike having a cup of tea

2.5 Python specific functions in the itk module 19
none
Thread Count: 2
Global Maximum Number Of Threads: 0
Radius: [1, 1, 1]
e itk.pipeline class let the developer easily create a custom pipelinehndsio then be manipulated

as a pure ITK filter. It provides several methods:

— __init_(self, input=None) is the constructor of the pipeline. The input of the pipeline
can be passed as parameter.

— connect(self, filter) connect a new filter to the pipeline. The output of the lagt(filh
the pipeline will be set as the input of the filter passed asarmpeter, and the filter passed as a
parameter will be added to the filter list.

— append(self, filter) add a filter to the pipeline’s filters list, but don’t connett The
connection must be done by the user. This method is likelyetaded with filters with several
inputs.

— clear(self) clear the filter list.

— GetOutput(self) return the output of the last filter in the pipeline. If anatlaitput is
needed, uspipeline[-1].GetAnotherOutput() instead of this method, or subclass pipeline
to implement anotheBetOutput() method.

— Setlnput(self, input) set the input of the first filter in the pipeline. If another s
needed, useipeline[0].SetAnotherintput() instead of this method, or subclass pipeline
to implement anothesetintput() method.

— Getlnput(self) return the input of the last filter in the pipeline. If anotlmgput is needed,
usepipeline[0].GetAnotherinput() instead of this method, or subclass the pipeline to im-
plement anotheGetinput() method.

— Update(self) update the pipeline by callingpdate() method on the last filter in the
pipeline.

— __getitem__(self, i) and__len_ (self) provide the common python list manipula-
tion interface to the pipeline object.

Example: ITK’s current implementation of morphologicalation, erosion, opening and closing can
be very inefficient with large structuring elements. Alsord®TK only gives access to ball struc-
turing element. The following class illustrates the usehafitk.pipeline class to implement an
efficient opening in 3 dimensions with a box structuring edain We take advantage of structuring el-
ement decomposition: a dilation (or erosion) by a box can beerafficiently computed by perfoming
3 dilations (or erosion) with line structuring element atied on each dimension. Thikepipeline
encapsulates the 6 filters needed to perform the efficientiogeand takes care of setting the struc-
turing elements for all the internal filters in ti8stkernel(self, x,y,z) , according to the size
wanted by the user.

class mkOpeningPipe (itk.pipeline):
def __init_(self, Input, x=1, y=1, z=1).
im = itk.image(Input)
itk.pipeline.__init__(self, im)
KernelType = itk.class_(itk.strel(3, 0))

2.6 Advanced Features 20

InType = itk.class_(im)

self.connect(itk. GrayscaleErodelmageFilter[InType, | nType, KernelType].New())
self.connect(itk. GrayscaleErodelmageFilter[InType, | nType, KernelType].New())
self.connect(itk. GrayscaleErodelmageFilter[InType, | nType, KernelType].New())
self.connect(itk.GrayscaleDilatelmageFilter[InType, InType, KernelType].New())
self.connect(itk.GrayscaleDilatelmageFilter[InType, InType, KernelType].New())
self.connect(itk.GrayscaleDilatelmageFilter[InType, InType, KernelType].New())

self.SetKernel(x,y,z)

def SetKernel(self, x.y,z):
self[0].SetKernel(itk.strel(3, (x,0,0)))
self[1].SetKernel(itk.strel(3, (0,y,0)))
self[2].SetKernel(itk.strel(3, (0,0,2)))
self[3].SetKernel(itk.strel(3, (x,0,0)))
self[4].SetKernel(itk.strel(3, (0,y,0)))
self[5].SetKernel(itk.strel(3, (0,0,2)))

ThemkOpeningPipe object can be used as a standard ITK filter:

reader = itk.ImageFileReader.lUC3.New(FileName="image Aif)
opening = mkOpeningPipe(reader)
ws = itk.MorphologicalWatershedimageFilter.I[UC3IUC3.N ew(opening)

itk.write(ws, "result.tif")

2.6 Advanced Features

As an extra bonus, it is possible to view the doxygen docuatiemt for each class as the python docstring.
This string is available as:

print itk.Image. _doc__
or even better (if you use iPython)
itk.Image?

Several steps are necessary to obtain this nirvana, howgr, when configuring the build in ccmake, you must set
DOXYGEN_MAN_PATH some directory where man pages for the ITK classes wilreated. Then, after the build, you
must runmake_doxygen_config.py from within thePython directory in the build directory, to collect information
about the wrapped classes and create a doxygen configuiibtitmmake these man pages. Finally, run doxygen with
that configuration file. After these three simple steps,sctiscstrings will contain the man page information. Note
that this is limited to systems which support the pytltommands module, and which havgroff in the path. This
basically means anything but windowasl] will work. (Cygwin should work too.)

In addition (as mentioned above), WrapITK by default ensuhat no bare pointers are ever returned to python:
instead, reference-countidgartPointer s are used. However, there may be times when extracting gbarer or
creating a nevdmartPointer is necessary. To get a bare pointer from a smart pointerhe§&etPointer() method,

as in ITK proper. To create a new smart pointer,$h&rtPointer template proxy class can be used just as above:

smartPtr = itk.SmartPointer|itk.Image[itk.US, 2]J(imag e.GetPointer())

2.7 Full python script examples 21

or just
smartPtr = itk.SmartPointer[image](image.GetPointer())

WraplITK modules can take very long to import. Titk€onfig module defines &mportCallback ~ method which
will be called when each sub module is imported in the impaortpssimportCallback can be customized to report
the progress status of the import process. It must be a fimttiat can take the name of the library being imported
as a parameter. Here is an example of a very basic callbackidarwhich displays the name of the submodule being
imported on the standard error output.

import sys, itkConfig
def stderr_callback(name, progress):
if progress == 0:
print >> sys.stderr, "Loading %s..." % name,
if progress == 1:
print >> sys.stderr, "done"
itkConfig.ImportCallback = stderr_callback
import itk

progress takes only the values 0 and 1, but may take values between D iarttie future.
It must be noted that usinigiport itk loads only python code, and doesn'’t load any C++ compiled cothis
feature is calledazy loading It implies some specific behaviors:

e import itk is donein a very short time

e a compiled module is loaded only when a class in that modulsésl. Thus, when a python program is run,
only the revelant modules are loaded in memory

e using a class in a program can block the program (for a shod)ti The user can choose to load the entire
library at once with the commariitt.force_load()

2.7 Full python script examples

This script is the exact transcription to python of the C+araple which can be found at Examples/Filtering/Gradi-
entMagnitudeRecursiveGaussianimageFilter.cxx in theddurce tree. More information about the filters used can
be found in the ITK Software Guid&§], section 6.4.2.

import itk
from sys import argv

InputPixelType = itk.F
OutputPixelType = itk.F

InputimageType = itk.Image[InputPixelType, 2]
OutputimageType = itk.Image[OutputPixelType, 2]

reader = itk.ImageFileReader[InputimageType].New(File Name=argv[1])
filter = itk.GradientMagnitudeRecursiveGaussianimageF ilter[InputimageType, OutputimageType].New(
reader,

Sigma=float(argv[3]))
filter.Update();

22

WritePixelType = itk.UC
WritelmageType = itk.Image[WritePixelType, 2]

rescaler = itk.RescalelntensitylmageFilter[Outputimag
OutputMinimum=0,
OutputMaximum=255)

writer = itk.ImageFileWriter[WritelmageType].New(resc

writer.Update();

More examples can be found in the direct8ghon/Tests

3 TCL usage

Some examples are availableTicl/Tests directory.
Write me.

4 Java usage

Some examples are availablelava/Tests directory.

Write me.

eType, WritelmageType].New(filter,

aler, FileName=argv[2])

23

Part V
Developer guide

What follows is a brief description of how the WrapITK builgstem works, how it can be extended, and how to write
external projects.

5 WrapITK description

5.1 Creating a CMakelLists.txt file for a wrapper library

Each WrapITK sub-library (e.gBase, or SpatialObject) lives in a sub-directory of the WraplITK project (within
theModules directory) with aCMakeLists.txt file that describes how that library and its language sugdpest(e.g.
python template definitions) is to be created. Moreover,extgrnal project will need a similar file to describe how to
create that library.

SeeSampleCMakeLists.txt in this directory for a description of each macro and optioat tan appear in such a
file. What follows is the usual set of commands that will appea

BEGIN_WRAPPER_LIBRARY("MySpatialObjectExtensions")
SET(WRAPPER_LIBRARY_DEPENDS SpatialObject Base)
SET(WRAPPER_LIBRARY_LINK_LIBRARIES ITKCommon)
WRAPPER_LIBRARY_CREATE_WRAP_FILES()
WRAPPER_LIBRARY_CREATE_LIBRARY()

e BEGIN_WRAPPER_LIBRARY()sets up the environment to wrap a set of classes into a livinya given name.
This macro is defined iBonfigureWrapping.cmake . WRAPPER_LIBRARY_ DEPENBS®ores the list of WrapITK
libraries on which the current library depends (e.g. whilcharies wrap classes likmage or SpatialObject
that are going to be used in the current library). Every mtogould at least depend 8ase.

o WRAPPER_LIBRARY_LINK_LIBRARIESstores a set of other libraries to add at link time. These eaBrb party
libraries that you will use (be sure to properly K _DIRECTORIES in this case), or more commonly, the
ITK libraries that need to be linked in, lik€KCommon ITKIO , etc.

e WRAPPER_LIBRARY_CREATE_WRAP_FILES@cans all of thewvrap_XXX.cmake files in the current directory
and uses the directives within to create CableSwig input fibe these classes. Information about template
instantiations is also recorded for the language suppex fthat are created next. This macro is defined in
CreateCableSwigInputs.cmake , and calls language support macros froreateLanguageSupport.cmake

e Finally, WRAPPER_LIBRARY_CREATE_LIBRARY(Ereates rules to parse the CableSwig inputs and compile a
wrapper library. This macro also causes various languagpastifiles to be created (currently only python)
which makes it easy to load that library in python, and whigfows about the template instances de-
fined. This macro is defined iGreateWrapperLibrary.cmake , and calls language support macros from
CreatelLanguageSupport.cmake

5.2 Creating wrap_XXX.cmake files to wrap classes

A wrap_XXX.cmake file defines a group of classes and/or template instant@tmbhe wrapped. Often one such file is
defined for each class wrapped, but this is not strictly reargs

Within such a file, directives are issued to wrap classes artitplar template instances.

WrapITK define several macros and variables designed to:

5.2 Creating wrap_XXX.cmake files to wrap classes 24

e make creation of wrappers easy. The syntax is simple endagtgsiickly.

e make the choice of template arguments explicit. It shoul@éd®y to understand the idea of the author of a
wrapper by reading the file.

e support mostly transparently the dimensions and typesachiog the user.

A simple example: MedianimageFilter

The most common case should be to create a new wrapper fopéesimeage filter, likeMedianimageFilter . Let’s
see that example in detail.

Here is theBasicFiltersB/wrap_itkMedianimageFilter.cmake file:

WRAP_CLASS("itk::MedianimageFilter" POINTER)
WRAP_IMAGE_FILTER_USIGN_INT(2)
WRAP_IMAGE_FILTER_SIGN_INT(2)
WRAP_IMAGE_FILTER_REAL(2)

END_WRAP_CLASS()

The file contains &/RAP_CLASSEND_WRAP_CLASSlock, which itself contains somM&RAP_IMAGE_FILTER_*macros.
WRAP_CLASS("itk::MedianimageFilter" POINTER) begins the wrapping of thit::MedianimageFilter tem-
plated class. The name of the class must be fully qualified.e @ption POINTER indicates that the object
of the class can be manipulated withSenartPointer , and that theSmartPointer ~ specialization for the class
itk::MedianimageFilter must be created.

Then, severalWRAP_IMAGE_FILTER *macros are called. They are convenient macro to create erdppclasses
which take only image types as template arguments. The teanhere?, give the number of required template
arguments. The two image types used as template parametbiessame.

WraplITK predifined lists

The main task of the developer is to define which templatemeters are valid for a given templated class, and
interesting for the user. He also have to take care abouwritiating some templated classes according to the options
selected by the user.

With WrapITK, the developer don't have to declare that a <l&s instantiated with the template parameters
unsigned char , unsigned short , andunsigned long , but rather declares that the templated classe can be in-
stantiated with all the unsigned integer types chooseddyser. To do that, WrapITK provides some already defined
list which are grouping the types chosen by the user. Thetsedan be used by the developer to create a wrappers but
mustneverbe modified.

e WRAP_ITK_DIMScontains all the dimensions selected by the user.

e WRAP_ITK_USIGN_INT contains all unsigned integer types selected by the user.
o WRAP_ITK_SIGN_INT contains all signed integer types selected by the user.

e WRAP_ITK_INT contains all signed and unsigned integral types selectedebyser.
e WRAP_ITK_REALcontains all the real types selected by the user.

e WRAP_ITK_SCALARcontains all the scalar types selected by the user.

o WRAP_ITK_RGRontains all theRGBtypes selected by the user.

e WRAP_ITK_VECTOR_REAtontains all thé&/ector types selected by the user.

5.2 Creating wrap_XXX.cmake files to wrap classes 25

e WRAP_ITK_COV_VECTOR_REAlontains all theCovariantVector types selected by the user.
e WRAP_ITK_VECTORonNtains all the/ector andCovariantVector types selected by the user.
e WRAP_ITK_ALL_TYPEScontains all the types selected by the user.

e SMALLER_THAN_[rontains all the types "smaller” thatouble selected by the user. This variable is useful
when a filter decrease the range of pixel value, BikeryThresholdimageFilter

e SMALLER_THAN_Ulcontains all the types "smaller” thamsigned long selected by the user.
e SMALLER_THAN_US$ontains all the types "smaller” thamsigned short selected by the user.
e SMALLER_THAN_Slcontains all the types "smaller” thaigned long selected by the user.

e SMALLER_THAN_S&ontains all the types "smaller” thaigned short selected by the user.

WraplITK predifined variables and naming consistency

WrapITK defines some pairs of variables for each basic typeléveloper may have to manipulate: the c++ type, and
its template parameter name. The name of the type is stot€kNh ???, and the c++ type ifiTKT_??? .

For example, forunsigned char , ITKM_UC and ITKT _UC are defined, with${ITKM_UC} = "UC" and
${ITKM_UC} = "unsigned char"

WrapITK macros

All of the available directives are defined and documentetiéateCableSwiglnputs.cmake . The basics are pre-
sented here:

e WRAP_CLASS("fully_qualified::ClassName" [POINTER|POI NTER_WITH_SUPERCLASS]) causes a tem-
plated class to be wrapped. All namespaces must be includgtkiclass name, and note that no template
instantiation is given. Template instantiations are @@éatith various’VRARdirectives, described below, be-
tween invocations oVRAP_CLASS()andEND_WRAP_CLASS()

WRAP_CLASS("itk::ImageFilter") issues an implicit call toVRAP_INCLUDE("itkimageFilter.h") , SO
the header for the wrapped class itself does not need to beathaincluded. To disable this behavior, set
WRAPPER_AUTO_INCLUDE_HEADERSOFF.

The final optional parameter 8&WRAP_CLASSs POINTER or POINTER_WITH_SUPERCLASSIf no options are
passed, then the class is wrapped as-BOINTERIs passed, then the class and the typedgds::Pointer

type is wrapped. Glass::Pointer had better be &martPointer instantiation, or things won't work. This
is always the case for ITK-style code.) RDINTER_WITH_SUPERCLAS$® provided, thertlass::Pointer ,
class::Superclass andclass::Superclass::Pointer are all wrapped. (Again, this only works for ITK-
style code where the class has a typed8iigerclass , and the superclass h8slf andPointer typedefs).
POINTER_WITH_SUPERCLASE especially useful for wrapping classes whose supeesadspend on the tem-
plate definitions of the given filter. E.g. any of the functoiige filters, which define totally different superclass
template parameters depending on which functor is used.

e END WRAP_CLASS(} end a block of template instantiations for a particulassla

e WRAP_INCLUDE("header.n") . By default, itkMedianimageFilter.h is included when
itk::MedianimageFilter is wrapped, and this behavior is usually enough. If it notugig this
macro can be used to include some specific files.

e WRAPPER AUTO_INCLUDE_HEADER®is variable is set tONby default, but can be set OFF to disable the
auto include feature. This feature should be used whenaestasses to wrap come from the same header file.
WRAPPER_AUTO_INCLUDE_HEADERS3e-set tdONfor each newwrap_xxx.cmake ~file.

5.2 Creating wrap_XXX.cmake files to wrap classes 26

e WRAP_TEMPLATE("mangled_suffix" "template parameters") . When issued betweeWRAP_CLAS&nd
END_WRAP_CLASShis command causes a particular template instantiafitimeocurrent class to be wrapped.
The parametanangled_suffix is a suffix to append to the class’s name that uniquely idestifiis particular
template instantiation, and "template parameters” aretevlea should go between thke> template instantia-
tion brackets. (Do not include the brackets.) If you are \piag a filter, there are simpler macros to use, which
are defined at the bottom GfeateCableSwiglnputs and described below.

e WRAP_NON_TEMPLATE_CLASS("fully_qualified::ClassName " [POINTER|POINTER_WITH_SUPERCLASS]) .
Same asWRAP_CLASSbut creates a wrapper for a non-templated classEND WRAP_CLASS()is necessary
after this macro because there is no block of template itiatarg commands to close.

WrapITK provides some macros to manipulate those list aed tleem to create the wrappers. Most of those macros
are there to fill a lack of features to manipulate lists in Cklagnd should be replaced by some CMake native com-
mands in the future.

e UNIQUE(var list) creates a new list calledr composed of the same elements as the onést in without
duplicates. This macro is useful to impose a type even if $nttebeen selected by the user. The following
line for example, fronModules/IO/wrap_itkimageFileReader.cmake , forces the unsigned char type to be
wrapped:

UNIQUE(image_types "UC;${WRAP_ITK_ALL_TYPES}")

e SORT(var list) creates a new list calla@r which contains the same elementdigis , sorted lexicographi-

cally

e INTERSECTION(var listl list2) creates a new list calledyr which is the intersection of lististl and
list2

e REMOVE(var listl list2) removes elementsiist2 fromlistl and store the result var

e INCREMENT(var number) incrementsiumber by one and stores the resultiar
e DECREMENT(var number) decremenbumber by one an store the resultvwar

e FILTER_DIMS(var dimension_condition) processes dimension_condition and returns a list of the di-
mensions that (a) meet the condition, and (b) were seleotbd wrapped. Recall that the condition is either a
CMake list of dimensions, or a string of the form "n+” wheresrainumber.

Some convenient macros are available to wrap image filters.

These macros often take an optional second parameter vehéctdimensionality condition” to restrict the dimensions
that the filter will be instantiated for. The condition canher be a single number indicating the one dimension
allowed, a list of dimensions that are allowed (either asglst delimited string or just a set of separate parameters),
or something of the formn+ (wheren is a number) indicating that instantiations are alloweddimnension n and
above.

e WRAP_IMAGE_FILTER_type(size) .type can be one of:

USIGN_INT to select all the image types with unsigned integral pixpetyselected by the user

SIGN_INT to select all the image types with signed integral pixel ypelected by the user

INT to select all the image types with signed and unsigned iatg@ixel types selected by the user
— REALto select all the image types with real pixel types seleciethb user
— VECTOR_REALo select all the image types witkector pixel types selected by the user

COV_VECTOR_REAi0 select all the image types wiGovariantVector pixel types selected by the user

RGBto select all the image types wiRGBPixel pixel types selected by the user

27

— SCALARto select all the image types with scalar pixel types setElotethe user
— VECTOROo select all the image types witlector andCovariantVector pixel types selected by the user
— ALL_TYPESto select all the image types selected by the user.

This macro creates a template instantiation wsike itk::image parameters of the given pixel
type. So if you are wrapping a filter which should take two iesgvith integral pixel types, write
WRAP_IMAGE_FILTER_USIGN_INT(2). The specific integral data type(sjhér , long , or short in the
WRAP_IMAGE_FILTER_USIGN_INT case) will be determined by the user-selected build pammefe.g.
WRAP_long, andWRAP_short).

e WRAP_IMAGE_FILTER(param_types param_count) is a more general macro for wrapping image filters that
need one or more image parameters of the same type. The fiash@ter to this macro is a list of image pixel
types for which filter instantiations should be created. $&eond is @aram_count parameter which controls
how many image template parameters are created. The olptiinlgparameter is a dimensionality condition.

E.g. WRAP_IMAGE_FILTER("${WRAP_ITK_ALL}" 2) will create template instantiations of the filter for every
pixel type that the user has selected.

e WRAP_IMAGE_FILTER_TYPES() Creates template instantiations of the current image fitteall the dimen-
sions selected by the user (or dimensions selected by théhageneet the optional dimensionality condition).
This macro takes a variable number of arguments, which ghoardrespond to the image pixel types of the
images in the filter’'s template parameter list. The optiai@ensionality condition should be placed as the last
parameter.

e WRAP_IMAGE_FILTER_COMBINATIONS() takes a variable number of parameters. Each parame-
ter is a list of image pixel types. Filter instantiations areeated for every combination of dif-
ferent pixel types in different parameters. A dimensidgalcondition may be optionally spec-

ified as the first parameter. E.g. WRAP_IMAGE_FILTER_COMBINATIONS("UC;US" "UC;US")
will create: filter<itk::Image<unsigned char, d>, itk::Image<unsign ed char, d> > |,
filter<itk::lmage<unsigned char, d>, itk::Image<unsign ed short, d> >

filter<itk::lmage<unsigned short, d>, itk::Image<unsig ned char, d> > , and
filter<itk::lmage<unsigned short, d>, itk::Image<unsig ned short, d> > where d is the

image dimension, for each selected image dimension.

6 Extending or customizing WraplTK

To minimize build times and library size, it is possible tormmally prevent various classes from being wrapped.
WraplTK is divided into several sub-libraries, each with @b<lirectory: Algorithms , BasicFiltersJABC] ,
Common[AB], 10, Numerics , SpatialObject , and VXLNumerics . Within these directories are sets or
wrap_XXX.cmake files, whereXXXis the name of the class (or set of classes) to be wrapped. elemtrone of
these classes from being wrapped, simply rename the fileytihiag that doesot start withwrap_ and end with
cmake. (E.g. appendotwrapped to the name.) (This is probably unsafe to do in @wnmon Numerics , or 10
directories.)

To add classes to be wrapped, it is recommended that yoleaesimpleExternal Projectdescribed below. If this
is out of the question, you could create additiomedp_XXX.cmake files in the appropriate directory. (Read on for
instructions as to what to put in these files.)

28

7 External projects

7.1 Why external projects?

External projects let the developer access some custoswldsthe target languages and is a powerful way to extend
WraplITK, test new wrapper, wrap more types, etc. A nice sftkeceof wrappers, for contributiofisfor example, to
build all the methods of the wrapped classes, and so to be sure ewgritiilds as it shoul8. In WrapITK, we used
them to avoid managing switches if some dependencies afeurad: the project must find its dependencies or fail.

External projects are not yet supported for Tcl and Java. 99eecontribute external project support for those lan-
guages.

7.2 Building

To build an external project, first ensure that WrapITK hasrbgroperly built. Then useemake to configure a build
directory for the external project. If WrapITK has not beastalled, you will have to manually enter the path to the
WrapITK build directory.

By default, the build options are the same than the one usdxifiding WrapITK, but can be modified in the advanced
options.

7.3 Usage

Once an external project has been built, it can be testedctljirérom the build tree. Start python in
the external project build directory’s Python subdiregtoand run the commandnport ProjectConfig (or
import ProjectConfig-[Debug|Release|...] if you are using an IDE, depending on which build configunmatio
was set from the IDE). This command sets up the search patipenly so that WraplTK and the newly-created li-
brary files can be found. Then tyjeport ... (where... is replaced with the name of the external project; e.g.
import BufferConversion), and use the project.

7.4 Installation

Simply typemake install (or run your IDE’s install step) to install the external pdj into the WraplTK tree
(provided WraplITK has already been installed). Now the mekproject can be used just like any of the other
WraplITK libraries, and it will be imported into th&k namespace when thimport itk command is issued from
Python.

7.5 Top-level CMakelLists for external projects

In addition to having a set ofrap_XXX.cmake files and the proper commands to read in these files and create a
library (all described above), an external project's CMagkss file needs at least one additional command to start it
out: FIND_PACKAGE(WraplTK REQUIRED)

This command will cause cmake to try to find the WraplITK buildiall directory. If WrapITK has been installed,
this will work on the first try. Otherwise, you will have to ggtithin ccmake, or in the CMakelLists if you prefer) the
variableWraplTK_DIR to contain the path to the WrapITK build directory.

’A nice template for contributions to the Insight Journdl6][which include the template code to build wrap-
pers is available ahttp://voxel.jouy.inra.fr/darcs/contrib-itk/templat e/ . Just use the commandarcs get
http://voxel.jouy.inra.fr/darcs/contrib-itk/tempktcontribNameand edit the project name in ti@&MakeLists.txfile to begin your
new contribution.

8We have found and fixed a number of bugs in ITK while adding nutaeses to WraplTK

http://voxel.jouy.inra.fr/darcs/contrib-itk/template/

7.6 Examples 29

7.6 Examples

In WrapITK/ExternalProjects there are several sample "External Projects” that can Hetbyirovide additional
functionality to WrapITK and to serve as a demonstratiorhfow to create your own such projects. One project is an
ITK-VTK[17] bridge, and the other is a Python class to allow conversmmNumeric/Numarray/numpytB, 19, 20]
matrices to ITK images (and vice-versa).

More examples can be found in the contributions to the Insiglournal [L6], or directly at
http://voxel jouy.inra.fr/darcs/contrib-itk/

7.7 BufferConversion: an example of extension for one language

This project is a python only project. It requires you to halameric, Numarray or numpy installed on your system,
and will let the user convert ITK images to python matricas] aython matrices to ITK images. It thus provide a
bridge between ITK and other great python tools like S&Pyand a lot of others).

Once installed, the function are directly available in itke module - there is nothing special to import. A
PyBuffer template let you choose the type to convert, exactly likenwlite ITK classes. You can then use the
GetArrayFromimage() andGetimageFromArray() ~ method to convert an array to an ITK image, and an ITK image
to an array respectively. There is no need to instanti®@Baffer object: the methods astatic

1> import itk

2> reader = itk.ImageFileReader.lUS2.New(FileName="cth eadl.png’)
3> array = itk.PyBuffer.lUS2.GetArrayFromimage(reader. GetOutput()
4> array

4>

array([[0, 0, 0, .., 0, 0, 0],

[0, 0,0, .., 0,0, 0]
[0, 0,0, .., 0,0, 0]

[, 0,0, ... 0, 0, 0,
[0, 0,0, .., 0,0, 0]
[0, 0, 0, .., 0, 0, O], type=UInt16)

o

5> image = itk.PyBuffer.lUS2.GetimageFromArray(array)

6> image
6> <C itk:SmartPointer<(itk::lImage<(unsigned short,2) >)> instance at 50684208 p_itk__SmartPointerTitk_

Because PyBuffer is a python only external project, itsalogy structure is very simple - there is no subdirectory.
This external project should be used as an example for alatigpiages specific external projects.

7.8 ltkVtkGlue: an example of extension for all languages, including C++

ItkVtkGlue wraps the classes used to convert data from ITKT& [17] and from VTK to ITK. Those classes comes
from the InsightApplications]], and make the conversion as simple in python as in C++. Ibkas tested with VTK
5.0.0.

With python lazy loading, the classes are not loaded by diefand thus avoid loading the entire vtk code in memory.
The classes are directly available in itke module, and the underlying code is loaded only when thossetaare
used.

http://voxel.jouy.inra.fr/darcs/contrib-itk/

30

Example:

1> import itk

2> reader = itk.ImageFileReader.lUC3.New()

3> converter = itk.ImageToVTKImageFilter.lJUC3.New(read er)

4> converter.GetOutput()
4> <libvtkFilteringPython.vtkimageData vtkobject at Oxb 7675b60>

Theitk.show3D class uses the claksageToVTKImageFilter ~ to create the volume rendering shown in Figlire

This project provides new features for all the languagesuding C++. Its directory structure reflects this.

CMakelLists.txt
Wrapping
-- CMakelLists.txt

|-- CMakeLists.txt

|-- Tests

| |- CMakeLists.txt

| |- CannyEdgeDetectionimageFilter.py
|

-- simpleltkVtkPipeline.py
-- itkvtk.py

-- wrap_itkimageToVTKImageFilter.cmake
-- wrap_itkVTKImageTolmageFilter.cmake
images
‘- ctheadl.png
-~ SIC

|-- itkimageToVTKImageFilter.h

|-- itkimageToVTKImageFilter.txx

|-- itkVTKImageTolmageFilter.h

‘- itkVTKImageTolmageFilter.txx

‘

The C++ source files are in directory src, while the files ndefidle WraplTK are in Wrapping. The CMake-
Lists.txt file in the root of the project includes the Wrappsub directory only if the user ask for it with the option
BUILD "WRAPPERS. Some python specific code can be found in Wragpytigén directory, and some python tests
in Wrapping/Python/Tests. The itkvtk.swg file contains tyygemaps required to return vtk objects. The images di-
rectory contains the images used for the tests. Puttingithgés in this directory rather than in the root of the project
prevents overriding the reference files during the testchvimight occur if the build is done in the source tree. The
project should also provide C++ tests - it is not done yet.

8 Extending language support and adding more languages
Write me.

8.1 Generating target language code

Write me.

8.2 typemaps 31

8.2 typemaps

Write me.

9 Contributing to WrapITK

WraplTK is an open source project, so all contributions aeécame. Here are some points which requires special
attention:

e Test it and report problem. That's the most important thinglo: we need feedback to enhance WraplTK
quality! Report all bugs you may find tdtp://voxel.jouy.inra.friroundup/wrapitk/ [271].

e Work on tcl, java, and others. We are not tcl or java develppand so are not able to complete the work for
those languages. Any help from tcl and java expert would bklhiappreciated. Also, there is no reason to be
limited to python, tcl and java, and WrapITK can be extendedther languages supported by swig like perl
[22], ruby [23], ocaml [24] and others.

e Add more classes. WrapITK adds many new classes comparke toitrent wrapping system, but there is still
a lot of work to do, especially to support more filters dedédabVector pixels.
darcs [12] allows you to easily contribute to WrapITK, by sending regs by email, while keeping credits for the
work you have done. Feel free to send patches; they will ledesnd integrated in the project.
The basic commands to know are:
e darcs get --partial http://voxel.jouy.inra.fr/darcs/co ntrib-itk/WrapITK/ to get a copy of
WraplITK repository.
e darcs whatsnew to display the changes you have made in your copy of the repgsi

e darcs record torecord the changes you have made in your copy of the reppsitarcs will ask you to select
some changes to record. It is better to create one patchdbrfeature or bug fix, rather than one big patch for
all your current changes.

e darcs send to send the patches you have recorded wétlas record by email. Please send your patches to
the WraplTK bugtracker (wrapitk-bugmaster@jouy.infj.go everyone will be able to find it easily.
Read theGetting startedsection of the darcs manudld] for more information.

A web interface 25] for the WraplITK’s darcs repository is availabletdtp://voxel.jouy.inra.fr/darcsweb/

9Note that you must have an account to be able to send somethingthe bug tracker. Visit
http://voxel.jouy.inra.friroundup/wrapitk/ to create one.

http://voxel.jouy.inra.fr/roundup/wrapitk/
http://voxel.jouy.inra.fr/darcsweb/
http://voxel.jouy.inra.fr/roundup/wrapitk/

32

Part VI
Known bugs

Seehttp://voxel.jouy.inra.friroundup/wrapitk/

http://voxel.jouy.inra.fr/roundup/wrapitk/

33

Part VII
Acknowledgments

| thank Dr Pierre Adenot and all tHembryon et Biotechnologteam for their patience during the long development
time before getting the tool really usable.

We would like to thank Charl P. Botha for is help to debug Wiidpbn the windows platform, and for the patches he
has contributed, as well as Richard Beare for his early@stan using itk with python, for his useful feedback, and
for his work on buffer conversions in python.

We thank André Bongers for his help debugging the java baildvindows.
We thank Brad King for his assistance during the developpertess.

Finally, we thank the ITK developers for the great tool whighTK, and for the previous work done on the wrapping
system - without it WrapITK would not exist.

34

Part VIII
Conclusion

ITK is a great library, with the drawback of being nearly uabile for prototyping, and having poor support for other
languages than C++. WrapITK addresses those issue and/fgiadls ITK a good support for python. Java and
Tcl, while not as complete as python, also benefit from thgdanumber of wrapped classes, and of the increase of
consistency in available types and names.

References

35

References

[1] http:/Awww.itk.org . (document)1.3, 7.8
[2] http:/iwww.python.org . (document)l, 1.4
[3] http:/Awww.tcl.tk . (document)l, 1.5

[4] http:/java.sun.com . (document)l, 1.6

[5] http:/Awww.cmake.org A

[6] http:/Aww.gcexml.org A

[7] http:/iwww.swig.org/ .1

[8] http:/Awww.itk.org/HTML/CableSwig.html A

[9] http:/www.apple.com/macosx L

[10] http://www.mandriva.com L

[11] http://www.microsoft.com/windows L, 2.6

[12] http://www.darcs.net .1.1,9

[13] http://www.cmis.csiro.au/Hugues. Talbot/imview/ .25
[14] http://www.riverbankcomputing.co.uk/pyqt .25

[15] http:/fipython.scipy.org . 2.5

[16] http://mww.insight-journal.org .7,7.6

[17] http:/www.vtk.org .7.67.8

[18] http://numeric.scipy.org . 7.6

[19] http://www.stsci.edu/resources/software _hardware/nu marray . 7.6

[20] http://www.numpy.org . 7.6

[21] http:/froundup.sourceforge.net .9

[22] http://www.perl.org .9

[23] http://www.ruby-lang.org .9

[24] http://caml.inria.fr .9

[25] http:/fauriga.wearlab.de/ ~ alb/darcsweb/ . 9

[26] L. Ibanez and W. Schroeder. The ITK Software Guide Kitware,
http://www.itk.org/ItkSoftwareGuide.pdf, 2002.7

Inc.

ISBN 1-930934-10-6,

http://www.itk.org
http://www.python.org
http://www.tcl.tk
http://java.sun.com
http://www.cmake.org
http://www.gccxml.org
http://www.swig.org/
http://www.itk.org/HTML/CableSwig.html
http://www.apple.com/macosx
http://www.mandriva.com
http://www.microsoft.com/windows
http://www.darcs.net
http://www.cmis.csiro.au/Hugues.Talbot/imview/
http://www.riverbankcomputing.co.uk/pyqt
http://ipython.scipy.org
http://www.insight-journal.org
http://www.vtk.org
http://numeric.scipy.org
http://www.stsci.edu/resources/software_hardware/numarray
http://www.numpy.org
http://roundup.sourceforge.net
http://www.perl.org
http://www.ruby-lang.org
http://caml.inria.fr
http://auriga.wearlab.de/~alb/darcsweb/

	I Introduction
	II Supported languages and plateforms
	III Performance and memory usage
	IV User guide
	Installation
	Get the software sources
	ITK
	CableSwig
	Python
	Tcl
	Java
	Build options
	Install WrapITK or use it in the build tree
	Binary packages

	Python usage
	Configuring python and importing the libraries
	Template usage
	The New() method
	Python sequences and ITK
	Python specific functions in the itk module
	Advanced Features
	Full python script examples

	TCL usage
	Java usage

	V Developer guide
	WrapITK description
	Creating a CMakeLists.txt file for a wrapper library
	Creating wrap_XXX.cmake files to wrap classes
	A simple example: MedianImageFilter
	WrapITK predifined lists
	WrapITK predifined variables and naming consistency
	WrapITK macros

	Extending or customizing WrapITK
	External projects
	Why external projects?
	Building
	Usage
	Installation
	Top-level CMakeLists for external projects
	Examples
	BufferConversion: an example of extension for one language
	ItkVtkGlue: an example of extension for all languages, including C++

	Extending language support and adding more languages
	Generating target language code
	typemaps

	Contributing to WrapITK

	VI Known bugs
	VII Acknowledgments
	VIII Conclusion

