
Tachyon User’s Guide

UNDER DEVELOPMENT

John E. Stone
E-Mail john.stone@gmail.com

Abstract

This document contains information on using Tachyon to create ray
traced images, and animations. Information on the parallel raytracing
engine and its use as an external rendering library is contained in
other documents. Corrections and suggestions should be mailed to the
author at john.stone@gmail.com

1

Contents

1 Introduction 4
1.1 Tachyon Feature List . 4

2 Compiling Tachyon From Source Code 5

3 Running Tachyon 6
3.1 General command line options 6
3.2 Command line shading controls 7
3.3 Command line image format options 8
3.4 Tips for running MPI versions 9
3.5 Interactive ray tracing . 9

4 Scene Description Files 9
4.1 Basic Scene Requirements . 9
4.2 Camera and viewing parameters 10

4.2.1 Camera projection modes 10
4.2.2 Common camera parameters 11
4.2.3 Viewing frustum . 12

4.3 Including Files . 13
4.4 Scene File Comments . 13
4.5 Lights . 13
4.6 Atmospheric effects . 15

4.6.1 Fog . 15
4.7 Objects . 15

4.7.1 Spheres . 15
4.7.2 Triangles . 16
4.7.3 Smoothed Triangles 16
4.7.4 Infinite Planes . 16
4.7.5 Rings . 17
4.7.6 Infinite Cylinders . 17
4.7.7 Finite Cylinders . 18
4.7.8 Axis Aligned Boxes . 18
4.7.9 Fractal Landscapes . 18
4.7.10 Arbitrary Quadric Surfaces 19
4.7.11 Volume Rendered Scalar Voxels 19

4.8 Texture and Color . 20
4.8.1 Simple Texture Characteristics 20
4.8.2 Texture Declaration and Aliasing 20

2

4.8.3 Image Maps and Procedural Textures 21

Index 23

3

1 Introduction

Tachyon is designed to be a very fast renderer, based on ray tracing, and
employing parallel processing to achieve high performance.

At the present time, Tachyon and its scene description language are fairly
primitive, this will be remedied as time passes. For now I’m going to skip
the “intro to ray tracing” and related things that should probably go here,
they are better addressed by the numerous books on the subject written by
others. This document is designed to serve the needs of sophisticated users
that are already experienced with ray tracing and basic graphics concepts,
rather than catering to beginners. If you have suggestions for improving this
manual, I’ll be glad to address them as time permits.

Until this document is finished and all-inclusive, the best way to learn
how Tachyon works is to examine some of the sample scenes that I’ve in-
cluded in the Tachyon distribution. Although they are all very simple, each
of the scenes tries to show something slightly different Tachyon can do. Since
Tachyon is rapidly changing to accommodate new rendering primitives and
speed optimizations, the scene description language is likely to change to
some degree as well.

1.1 Tachyon Feature List

Although Tachyon is a relatively simple renderer, it does have enough fea-
tures that they bear some discussion.

• Parallel execution using MPI.

• Parallel execution using POSIX or Unix-International threads libraries.

• Automatic grid-based spatial decomposition scheme for greatly in-
creased rendering speeds.

• Simple antialiasing based on psuedo-random supersampling.

• Linear, exponential, and exponential-squared fog.

• Perspective, orthographic, and depth-of-field camera projection modes,
with eye-space frustum controls.

• Positional, directional, and spot lights, with optional attenuation.

• Provides many useful geometric objects including Spheres, Planes, Tri-
angles, Cylinders, Quadrics, and Rings

4

• Texture mapping, with automatic MIP-map generation

• Supports rendering of volumetric data sets

2 Compiling Tachyon From Source Code

In order to use Tachyon you may need to compile it from source code, since
it is normally distributed in source code form. Building Tachyon binaries is
a fairly straightforward process. Download the Tachyon distribution from
the web/ftp server. Once you have downloaded the distribution, unpack
the distribution using gunzip and tar. Once the distribution is unpacked,
cd into the ’tachyon’ directory, and then into the ’unix’ directory. Once in
the ’unix’ directory, type ’make’ to see the list of configurations that are
currently supported.

johns:/disk5/users/johns/graphics % gunzip tachyon.tar.gz
johns:/disk5/users/johns/graphics % tar -xvf tachyon.tar.gz
johns:/disk5/users/johns/graphics % cd tachyon
johns:/disk5/users/johns/graphics/tachyon % cd unix
johns:/disk5/users/johns/graphics/tachyon/unix % make
Choose one of the architectures specified below.

Parallel Versions

paragon-thr-mpi - Intel Paragon (MPI + Threads + Thread I/O)
paragon-mp-mpi - Intel Paragon (MPI + Threads + Reg I/O)

paragon-mpi - Intel Paragon (MPI)
ipsc860-mpi - Intel iPSC/860 (MPI)

sp2-mpi - IBM SP2 (MPI)
solaris-mpi - Sun Solaris 2.x (MPI)
irix5-mpi - SGI Irix 5.x (MPI)

solaris-thr - Sun Solaris 2.x Threads
solaris-c4-thr - Sun Solaris 2.x Threads (Sun C 4.x)

Sequential Versions

solaris-v9 - Sun Solaris 2.5 (Sun C 4.x)
solaris-c4 - Sun Solaris 2.[345] (Sun C 4.x)
solaris-c3 - Sun Solaris 2.[345] (Sun C 3.x)

sunos4 - SunOS 4.1.x

5

irix5 - SGI Irix 5.x (32 bit, R4000)
irix6 - SGI Irix 6.x (64 bit, R8000)
aix - IBM AIX 3.x (Generic RS/6000)

aix-ppc - IBM AIX 3.x (PPC 601)
hpux - HP/UX 9.x and 10.x
linux - Linux (on a little endian machine
bsd - BSD (on a little endian machine

clean - Remove .o .a and executables

Type: ’make arch’ to build for an architecture listed above.

johns:/disk5/users/johns/graphics/ray/unix % make solaris-thr

[lots of make output ommitted]

Hopefully once you’ve run ’make’ to build the ray tracer for your ma-
chine, everything went well and you now have a binary to run. If you
are building an MPI version, you may need to edit the make-config file
to edit the locations of libraries and header files as they are listed there.
If you have trouble, for now the best way to go is to send me email, at
john.stone@gmail.com As I have time I’ll improve this document and give
more detailed instructions on building.

3 Running Tachyon

Since Tachyon runs on a wide variety of platforms, the exact commands
required to run it vary substantially. The easiest way to get started using
Tachyon is to try running one of the non-parallel, uniprocessor versions first.
Tachyon includes a built-in help page describing all available command line
options with very brief text, this help page is displayed when Tachyon is run
with the -help option.

3.1 General command line options

Several command line options are available to tune Tachyon performance,
display built-in help text, and set output verbosity.

• -nobounding: disable automatic generation of hierarchical grid-based
acceleration data structures

6

• -boundthresh object count: override default threshold for subdivid-
ing grid cells with a new grid

• -numthreads thread count: command line override for the number of
threads to spawn during the ray tracing process. When this options
is not specified, Tachyon determines the number of threads to spawn
based on the number of CPUs available on a given node.

• +V: enable verbose status messages, including reporting of overall node
and processor count.

• -nosave: disable saving of output images to disk files. This feature
is normally only used when benchmarking, or when using one of the
OpenGL-enabled Tachyon configurations which provide runtime dis-
play of rendered images.

• -camfile filename: run a fly-through animation from the named cam-
era file.

3.2 Command line shading controls

Tachyon supports a number of command line parameters which affect the
quality and algorithms used to render scene files. The parameters select
one of several quality levels, which implement various compromises between
rendering speed and quality. Along with the overall shading quality controls,
several specific options provide control over individual rendering algorithms
within Tachyon.

• -fullshade: enables the highest quality rendering mode

• -mediumshade: disables computation of shadows, ambient occlusion

• -lowshade: minmalistic shading, using texture colors only

• -lowestshade: solid colors only

• -aasamples sample count: command line override for the number of
antialiasing supersamples computed for each pixel. A value of zero dis-
ables antialiasing. If this option is not used, the number of antialiasing
samples is determined by the contents of the scen file.

• -rescale lights scalefactor: rescale all light intensity values by the
specified factor. (performed before other lighting overrides take effect)

7

• -auto skylight aofactor: force the use of ambient occlusion lighting,
automatically rescaling all other light sources to compensate for the
additional illumination from the ambient occlusion lighting.

• -add skylight aofactor: force the use of ambient occlusion lighting,
existing lights must be rescaled manually using the -rescale lights
flag.

• -skylight samples samplecount: number of samples to use for am-
bient occlusion lighting shadow tests.

• -shade phong: use traditional phong shading for specular highlights.

• -shade blinn: use Blinn’s equation for specular highlights.

• -shade blinn fast: use a fast approximation to Blinn-style specular
highlights.

• -shade nullphong: entirely disables computation of specular high-
lights by registering a no-op function pointer.

• -trans orig: use original Tachyon transparency mode.

• -trans vmd: a special transparency mode designed for use with VMD.
The resulting color is multiplied by opacity, giving results similar to
what one would see with screen-door transparency in OpenGL.

3.3 Command line image format options

Tachyon optionally supports several image file formats for output. The
output format is specified by the -format formatname command line pa-
rameter. Several of these formats are only available if Tachyon has been
compiled with optional features enabled.

• -res Xresolution Yresolution: override the scene-defined output im-
age resolution parameters.

• TARGA: uncompressed 24-bit Targa file

• BMP: uncompressed 24-bit Windows bitmap

• PPM: uncompressed 24-bit NetPBM portable pixmap (PPM) file

• RGB: uncompressed 24-bit Silicon Graphics RGB file

8

• JPEG: compressed 24-bit JPEG file

• PNG: uncompressed 24-bit PNG file

3.4 Tips for running MPI versions

Tachyon support the use of MPI for distributed memory rendering of com-
plex scenes. Most commercial supercomputers and cluster vendors provide
their own custom-tuned implementations of MPI which perform optimally
on their hardware. Homegrown clusters typically use either the LAM or
MPICH implementation of MPI. While Tachyon will work with any comfor-
mant implementation of MPI, some implementations perform much better
than others. In the author’s experience, the LAM implementation of MPI
gives the best performance when used with Tachyon.

3.5 Interactive ray tracing

Tachyon is fast enough to support ray tracing at interactive rates when run
on a large enough parallel computer, or with a simple enough scene. To
this end, Tachyon can be optionally compiled with support for the Space-
ball 6DOF motion control device. Using the Spaceball, one can fly around
in an otherwise static scene. This is accomplished with the -spaceball
serial port device command line parameters.

4 Scene Description Files

At the present time, scene description files are very simple. The parser can’t
handle multiple file scene descriptions, although they may be added in the
future. Most of the objects and their scene description are closely related
to the Tachyon API (See the API docs for additional info.)

4.1 Basic Scene Requirements

Unlike some other ray tracers out there, Tachyon requires that you specify
most of the scene parameters in the scene description file itself. If users
would rather specify some of these parameters at the command line, then
I may add that feature in the future. A scene description file contains
keywords, and values associated or grouped with a keyword. All keywords
can be in caps, lower case, or mixed case for the convenience of the user.
File names and texture names are normally case-sensitive, although the
behavior for file names is operating system-dependent. All values are either

9

character strings, or floating point numbers. In some cases, the presence of
one keyword will require additional keyword / value pairs.

At the moment there are several keywords with values, that must ap-
pear in every scene description file. Every scene description file must be-
gin with the BEGIN SCENE keyword, and end with the END SCENE
keyword. All definitions and declarations of any kind must be inside the
BEGIN SCENE, END SCENE pair. The RESOLUTION keyword is
followed by an x resolution and a y resolution in terms of pixels on each axis.
There are currently no limits placed on the resolution of an output image
other than the computer’s available memory and reasonable execution time.
An example of a simple scene description skeleton is show below:

BEGIN_SCENE
RESOLUTION 1024 1024

...

... Camera definition..

...

... Other objects, etc..

...

END_SCENE

4.2 Camera and viewing parameters

One of the most important parts of any scene, is the camera position and
orientation. Having a good angle on a scene can make the difference be-
tween an average looking scene and a strikingly interesting one. There may
be multiple camera definitions in a scene file, but the last camera defini-
tion overrides all previous definitions. There are several parameters that
control the camera in Tachyon, PROJECTION, ZOOM, ASPECTRA-
TIO, ANTIALIASING, CENTER, RAYDEPTH, VIEWDIR, and
UPDIR.

The first and last keywords required in the definition of a camera are
the CAMERA and END CAMERA keywords. The PROJECTION
keyword is optional, the remaining camera keywords are required, and must
be written in the sequence they are listed in the examples in this section.

4.2.1 Camera projection modes

The PROJECTION keyword must be followed by one of the supported
camera projection mode identifiers PERSPECTIVE, PERSPECTIVE DOF,

10

ORTHOGRAPHIC, or FISHEYE. The FISHEYE projection mode re-
quires two extra parameters FOCALLENGTH and APERTURE which
precede the regular camera options.

Camera
projection perspective_dof
focallength 0.75
aperture 0.02
Zoom 0.666667
Aspectratio 1.000000
Antialiasing 128
Raydepth 30
Center 0.000000 0.000000 -2.000000
Viewdir -0.000000 -0.000000 2.000000
Updir 0.000000 1.000000 -0.000000

End_Camera

4.2.2 Common camera parameters

The ZOOM parameter controls the camera in a way similar to a telephoto
lens on a 35mm camera. A zoom value of 1.0 is standard, with a 90 degree
field of view. By changing the zoom factor to 2.0, the relative size of any
feature in the frame is twice as big, while the field of view is decreased
slightly. The zoom effect is implemented as a scaling factor on the height
and width of the image plane relative to the world.

The ASPECRATIO parameter controls the aspect ratio of the result-
ing image. By using the aspect ratio parameter, one can produce images
which look correct on any screen. Aspect ratio alters the relative width of
the image plane, while keeping the height of the image plane constant. In
general, most workstation displays have an aspect ratio of 1.0. To see what
aspect ratio your display has, you can render a simple sphere, at a resolution
of 512x512 and measure the ratio of its width to its height.

The ANTIALIASING parameter controls the maximum level of su-
persampling used to obtain higher image quality. The parameter given sets
the number of additional rays to trace per-pixel to attain higher image qual-
ity.

The RAYDEPTH parameter tells Tachyon what the maximum level of
reflections, refraction, or in general the maximum recursion depth to trace
rays to. A value between 4 and 12 is usually good. A value of 1 will disable
rendering of reflective or transmissive objects (they’ll be black).

11

The remaining three camera parameters are the most important, because
they define the coordinate system of the camera, and its position in the
scene. The CENTER parameter is an X, Y, Z coordinate defining the
center of the camera (also known as the Center of Projection). Once you
have determined where the camera will be placed in the scene, you need
to tell Tachyon what the camera should be looking at. The VIEWDIR
parameter is a vector indicating the direction the camera is facing. It may
be useful for me to add a ”Look At” type keyword in the future to make
camera aiming easier. If people want or need the ”Look At” style camera,
let me know. The last parameter needed to completely define a camera is
the ”up” direction. The UPDIR parameter is a vector which points in
the direction of the ”sky”. I wrote the camera so that VIEWDIR and
UPDIR don’t have to be perpendicular, and there shouldn’t be a need for
a ”right” vector although some other ray tracers require it. Here’s a snippet
of a camera definition:

CAMERA
ZOOM 1.0
ASPECTRATIO 1.0
ANTIALIASING 0
RAYDEPTH 12
CENTER 0.0 0.0 2.0
VIEWDIR 0 0 -1
UPDIR 0 1 0

END_CAMERA

4.2.3 Viewing frustum

An optional FRUSTUM parameter provides a means for rendering sub-
images in a larger frame, and correct stereoscopic images. The FRUSTUM
keyword must be followed by four floating parameters, which indicate the
top, bottom, left and right coordinates of the image plane in eye coordinates.
When the projection mode is set to FISHEYE, the frustum parameters
correspond to spherical coordinates specified in radians.

CAMERA
ZOOM 1.0
ASPECTRATIO 1.0
ANTIALIASING 0
RAYDEPTH 4
CENTER 0.0 0.0 -6.0

12

VIEWDIR 0.0 0.0 1.0
UPDIR 0.0 1.0 0.0
FRUSTUM -0.5 0.5 -0.5 0.5

END_CAMERA

4.3 Including Files

The INCLUDE keyword is used anywhere after the camera description,
and is immediately followed by a valid filename, for a file containing ad-
ditional scene description information. The included file is opened, and
processing continues as if it were part of the current file, until the end of the
included file is reached. Parsing of the current file continues from where it
left off prior to the included file.

4.4 Scene File Comments

The # keyword is used anywhere after the camera description, and will
cause Tachyon to ignore all characters from the # to the end of the input
line. The # character must be surrounded by whitespace in order to be
recognized. A sequence such as ### will not be recognized as a comment.

4.5 Lights

The most frequently used type of lights provided by Tachyon are positional
point light sources. The lights are actually small spheres, which are visi-
ble. A point light is composed of three pieces of information, a center, a
radius (since its a sphere), and a color. To define a light, simply write the
LIGHT keyword, followed by its CENTER (a X, Y, Z coordinate), its
RAD (radius, a scalar), and its COLOR (a Red Green Blue triple). The
radius parameter will accept any value of 0.0 or greater. Lights of radius
0.0 will not be directly visible in the rendered scene, but contribute light to
the scene normally. For a light, the color values range from 0.0 to 1.0, any
values outside this range may yield unpredictable results. A simple light
definition looks like this:

LIGHT CENTER 4.0 3.0 2.0
RAD 0.2
COLOR 0.5 0.5 0.5

This light would be gray colored if seen directly, and would be 50% intensity
in each RGB color component.

13

Tachyon supports simple directional lighting, commonly used in CAD
and scientific visualization programs for its performance advantages over
positional lights. Directional lights cannot be seen directly in scenes ren-
dered by Tachyon, only their illumination contributes to the final image.

DIRECTIONAL_LIGHT
DIRECTION 0.0 -1.0 0.0
COLOR 1.0 0.0 0.0

Tachyon supports spotlights, which are described very similarly to a
point light, but they are attenuated by angle from the direction vector,
based on a “falloff start” angle and “falloff end”angle. Between the starting
and ending angles, the illumination is attenuated linearly. The syntax for a
spotlight description in a scene file is as follows.

SPOTLIGHT
CENTER 0.0 3.0 17.0
RAD 0.2
DIRECTION 0.0 -1.0 0.0
FALLOFF_START 20.0
FALLOFF_END 45.0

COLOR 1.0 0.0 0.0

The lighting system implemented by Tachyon provides various levels of
distance-based lighting attenuation. By default, a light is not attenuated
by distance. If the attenuation keywords is present immediately prior to
the light’s color, Tachyon will accept coefficients which are used to calculate
distance-based attenuation, which is applied the light by multiplying with
the resulting value. The attenuation factor is calculated from the equation

1
Kc + Kld + kqd2

(1)

This attenuation equation should be familiar to some as it is the same
lighting attenuation equation used by OpenGL. The constant, linear, and
quadratic terms are specified in a scene file as shown in the following exam-
ple.

LIGHT
CENTER -5.0 0.0 10.0
RAD 1.0
ATTENUATION CONSTANT 1.0 LINEAR 0.2 QUADRATIC 0.05
COLOR 1.0 0.0 0.0

14

4.6 Atmospheric effects

Tachyon currently only implements one atmospheric effect, simple distance-
based fog.

4.6.1 Fog

Tachyon provides a simple distance-based fog effect intended to provide
functionality similar to that found in OpenGL, for compatibility with soft-
ware that requires an OpenGL-like fog implementation. Much like OpenGL,
Tachyon provides linear, exponential, and exponential-squared fog.

FOG
LINEAR START 0.0 END 50.0 DENSITY 1.0 COLOR 1.0 1.0 1.0

FOG
EXP START 0.0 END 50.0 DENSITY 1.0 COLOR 1.0 1.0 1.0

FOG
EXP2 START 0.0 END 50.0 DENSITY 1.0 COLOR 1.0 1.0 1.0

4.7 Objects

4.7.1 Spheres

Spheres are the simplest object supported by Tachyon and they are also
the fastest object to render. Spheres are defined as one would expect, with
a CENTER, RAD (radius), and a texture. The texture may be defined
along with the object as discussed earlier, or it may be declared and as-
signed a name. Here’s a sphere definition using a previously defined ”Nitro-
genAtom” texture:

SPHERE CENTER 26.4 27.4 -2.4 RAD 1.0 NitrogenAtom

A sphere with an inline texture definition is declared like this:

Sphere center 1.0 0.0 10.0
Rad 1.0

Texture Ambient 0.2 Diffuse 0.8 Specular 0.0 Opacity 1.0
Color 1.0 0.0 0.5
TexFunc 0

Notice that in this example I used mixed case for the keywords, this is
allowable... Review the section on textures if the texture definitions are
confusing.

15

4.7.2 Triangles

Triangles are also fairly simple objects, constructed by listing the three ver-
tices of the triangle, and its texture. The order of the vertices isn’t impor-
tant, the triangle object is ”double sided”, so the surface normal is always
pointing back in the direction of the incident ray. The triangle vertices are
listed as V1, V2, and V3 each one is an X, Y, Z coordinate. An example
of a triangle is shown below:

TRI
V0 0.0 -4.0 12.0
V1 4.0 -4.0 8.0
V2 -4.0 -4.0 8.0
TEXTURE
AMBIENT 0.1 DIFFUSE 0.2 SPECULAR 0.7 OPACITY 1.0
COLOR 1.0 1.0 1.0
TEXFUNC 0

4.7.3 Smoothed Triangles

Smoothed triangles are just like regular triangles, except that the surface
normal for each of the three vertexes is used to determine the surface normal
across the triangle by linear interpolation. Smoothed triangles yield curved
looking objects and have nice reflections.

STRI
V0 1.4 0.0 2.4
V1 1.35 -0.37 2.4
V2 1.36 -0.32 2.45
N0 -0.9 -0.0 -0.4
N1 -0.8 0.23 -0.4
N2 -0.9 0.27 -0.15
TEXTURE
AMBIENT 0.1 DIFFUSE 0.2 SPECULAR 0.7 OPACITY 1.0
COLOR 1.0 1.0 1.0
TEXFUNC 0

4.7.4 Infinite Planes

Useful for things like desert floors, backgrounds, skies etc, the infinite plane
is pretty easy to use. An infinite plane only consists of two pieces of infor-
mation, the CENTER of the plane, and a NORMAL to the plane. The

16

center of the plane is just any point on the plane such that the point com-
bined with the surface normal define the equation for the plane. As with
triangles, planes are double sided. Here is an example of an infinite plane:

PLANE
CENTER 0.0 -5.0 0.0
NORMAL 0.0 1.0 0.0
TEXTURE
AMBIENT 0.1 DIFFUSE 0.9 SPECULAR 0.0 OPACITY 1.0
COLOR 1.0 1.0 1.0
TEXFUNC 1
CENTER 0.0 -5.0 0.0
ROTATE 0. 0.0 0.0
SCALE 1.0 1.0 1.0

4.7.5 Rings

Rings are a simple object, they are really a not-so-infinite plane. Rings are
simply an infinite plane cut into a washer shaped ring, infinitely thing just
like a plane. A ring only requires two more pieces of information than an
infinite plane does, an inner and outer radius. Here’s an example of a ring:

Ring
Center 1.0 1.0 1.0
Normal 0.0 1.0 0.0
Inner 1.0
Outer 5.0
MyNewRedTexture

4.7.6 Infinite Cylinders

Infinite cylinders are quite simple. They are defined by a center, an axis,
and a radius. An example of an infinite cylinder is:

Cylinder
Center 0.0 0.0 0.0
Axis 0.0 1.0 0.0
Rad 1.0
SomeRandomTexture

17

4.7.7 Finite Cylinders

Finite cylinders are almost the same as infinite ones, but the center and
length of the axis determine the extents of the cylinder. The finite cylinder
is also really a shell, it doesn’t have any caps. If you need to close off the
ends of the cylinder, use two ring objects, with the inner radius set to 0.0
and the normal set to be the axis of the cylinder. Finite cylinders are built
this way to enhance speed.

FCylinder
Center 0.0 0.0 0.0
Axis 0.0 9.0 0.0
Rad 1.0
SomeRandomTexture

This defines a finite cylinder with radius 1.0, going from 0.0 0.0 0.0, to 0.0
9.0 0.0 along the Y axis. The main difference between an infinite cylinder
and a finite cylinder is in the interpretation of the AXIS parameter. In
the case of the infinite cylinder, the length of the axis vector is ignored. In
the case of the finite cylinder, the axis parameter is used to determine the
length of the overall cylinder.

4.7.8 Axis Aligned Boxes

Axis aligned boxes are fast, but of limited usefulness. As such, I’m not
going to waste much time explaining ’em. An axis aligned box is defined by
a MIN point, and a MAX point. The volume between the min and max
points is the box. Here’s a simple box:

BOX
MIN -1.0 -1.0 -1.0
MAX 1.0 1.0 1.0
Boxtexture1

4.7.9 Fractal Landscapes

Currently fractal landscapes are a built-in function. In the near future
I’ll allow the user to load an image map for use as a heightfield. Fractal
landscapes are currently forced to be axis aligned. Any suggestion on how
to make them more appealing to users is welcome. A fractal landscape is
defined by its ”resolution” which is the number of grid points along each

18

axis, and by its scale and center. The ”scale” is how large the landscape is
along the X, and Y axes in world coordinates. Here’s a simple landscape:

SCAPE
RES 30 30
SCALE 80.0 80.0
CENTER 0.0 -4.0 20.0
TEXTURE
AMBIENT 0.1 DIFFUSE 0.9 SPECULAR 0.0 OPACITY 1.0
COLOR 1.0 1.0 1.0
TEXFUNC 0

The landscape shown above generates a square landscape made of 1,800
triangles. When time permits, the heightfield code will be rewritten to be
more general and to increase rendering speed.

4.7.10 Arbitrary Quadric Surfaces

Docs soon. I need to add these into the parser, must have forgotten before
;-)

4.7.11 Volume Rendered Scalar Voxels

These are a little trickier than the average object :-) These are likely to
change substantially in the very near future so I’m not going to get too
detailed yet. A volume rendered data set is described by its axis aligned
bounding box, and its resolution along each axis. The final parameter is
the voxel data file. If you are seriously interested in messing with these, get
hold of me and I’ll give you more info. Here’s a quick example:

SCALARVOL
MIN -1.0 -1.0 -0.4
MAX 1.0 1.0 0.4
DIM 256 256 100
FILE /cfs/johns/vol/engine.256x256x110
TEXTURE

AMBIENT 1.0 DIFFUSE 0.0 SPECULAR 0.0 OPACITY 8.1
COLOR 1.0 1.0 1.0
TEXFUNC 0

19

4.8 Texture and Color

4.8.1 Simple Texture Characteristics

The surface textures applied to an object drastically alter its overall ap-
pearance, making textures and color one of the most important topics in
this manual. As with many other renderers, textures can be declared and
associated with a name so that they may be used over and over again in
a scene definition with less typing. If a texture is only need once, or it is
unique to a particular object in the scene, then it may be declared along
with the object it is applied to, and does not need a name.

The simplest texture definition is a solid color with no image mapping or
procedural texture mapping. A solid color texture is defined by the AMBI-
ENT, DIFFUSE, SPECULAR, OPACITY and COLOR parameters.
The AMBIENT parameter defines the ambient lighting coefficient to be
used when shading the object. Similarly, the DIFFUSE parameter is the
relative contribution of the diffuse shading to the surface appearance. The
SPECULAR parameter is the contribution from perfectly reflected rays,
as if on a mirrored surface. OPACITY defines how transparent a surface
is. An OPACITY value of 0.0 renders the object completely invisible.
An OPACITY value of 1.0 makes the object completely solid, and non-
transmissive. In general, the values for the ambient, diffuse, and specular
parameters should add up to 1.0, if they don’t then pixels may be over or
underexposed quite easily. These parameters function in a manner similar
to that of other ray tracers. The COLOR parameter is an RGB triple
with each value ranging from 0.0 to 1.0 inclusive. If the RGB values stray
from 0.0 to 1.0, results are undefined. In the case of solid textures, a final
parameter, TEXFUNC is set to zero (integer).

4.8.2 Texture Declaration and Aliasing

To define a simple texture for use on several objects in a scene, the TEXDEF
keyword is used. The TEXDEF keyword is followed by a case sensitive tex-
ture name, which will subsequently be used while defining objects. If many
objects in a scene use the same texture through texture definition, a signifi-
cant amount of memory may be saved since only one copy of the texture is
present in memory, and its shared by all of the objects. Here is an example
of a solid texture definition:

TEXDEF MyNewRedTexture
AMBIENT 0.1 DIFFUSE 0.9 SPECULAR 0.0 OPACITY 1.0
COLOR 1.0 0.0 0.0 TEXFUNC 0

20

When this texture is used in an object definition, it is referenced only by
name. Be careful not to use one of the other keywords as a defined texture,
this will probably cause the parser to explode, as I don’t check for use of
keywords as texture names.

When a texture is declared within an object definition, it appears in an
identical format to the TEXDEF declaration, but the TEXTURE key-
word is used instead of TEXDEF. If it is useful to have several names for
the same texture (when you are too lazy to actually finish defining different
variations of a wood texture for example, and just want to be approximately
correct for example) aliases can be constructed using the TEXALIAS key-
word, along with the alias name, and the original name. An example of a
texture alias is:

TEXALIAS MyNewestRedTexture MyNewRedTexture

This line would alias MyNewestRedTexture to be the same thing as the
previously declared MyNewRedTexture. Note that the source texture must
be declared before any aliases that use it.

4.8.3 Image Maps and Procedural Textures

Image maps and procedural textures very useful in making realistic looking
scenes. A good image map can do as much for the realism of a wooden
table as any amount of sophisticated geometry or lighting. Image maps are
made by wrapping an image on to an object in one of three ways, a spherical
map, a cylindrical map, and a planar map. Procedural textures are used in
a way similar to the image maps, but they are on the fly and do not use
much memory compared to the image maps. The main disadvantage of the
procedural maps is that they must be hard-coded into Tachyon when it is
compiled.

The syntax used for all texture maps is fairly simple to learn. The biggest
problem with the way that the parser is written now is that the different
mappings are selected by an integer, which is not very user friendly. I expect
to rewrite this section of the parser sometime in the near future to alleviate
this problem. When I rewrite the parser, I may also end up altering the
parameters that are used to describe a texture map, and some of them may
become optional rather than required.

21

Texture Mapping Functions
Value for TEXFUNC Mapping and Texture Description

0 No special texture, plain shading
1 3D checkerboard function, like a rubik’s cube
2 Grit Texture, randomized surface color
3 3D marble texture, uses object’s base color
4 3D wood texture, light and dark brown, not very good yet
5 3D gradient noise function (can’t remember what it look like
6 Don’t remember
7 Cylindrical Image Map, requires ppm filename
8 Spherical Image Map, requires ppm filename
9 Planar Image Map, requires ppm filename

Here’s an example of a sphere, with a spherical image map applied to its
surface:

SPHERE
CENTER 2.0 0.0 5.0
RAD 2.0
TEXTURE
AMBIENT 0.4 DIFFUSE 0.8 SPECULAR 0.0 OPACITY 1.0
COLOR 1.0 1.0 1.0
TEXFUNC 7 /cfs/johns/imaps/fire644.ppm
CENTER 2.0 0.0 5.0
ROTATE 0.0 0.0 0.0
SCALE 2.0 -2.0 1.0

Basically, the image maps require the center, rotate and scale parameters
so that you can position the image map on the object properly

22

Index

camera, 10
antialiasing, 11
aspect ratio, 11
maximum ray depth, 11
orientation, 11
projection, 10
viewing frustum, 12
zoom, 11

command line parameters, 6
compiling on Unix systems, 5

fog, 15

include files, 13
interactive ray tracing, 9

lighting, 13
attenuation, 14
directional lights, 13
point lights, 13
spotlights, 14

objects, 15
arbitrary quadrics, 19
axis-aligned boxes, 18
finite cylinders, 18
fractal landscapes, 18
grids of scalar voxels, 19
infinite cylinders, 17
planes, 16
rings, 17
smoothed triangles, 16
spheres, 15
triangles, 16

running, 6
running with MPI, 9

scene description files, 9
scene file comments, 13

23

