
ownCloud Client Manual
Release

The ownCloud developers

November 23, 2014

CONTENTS

1 Introduction 1

2 Installing the Synchronization Client 3

3 Setting up an Account 5

4 Using the Synchronization Client 7
4.1 Using the Desktop Client Menu . 7
4.2 Using the Account Settings Window . 8
4.3 Using the Activity Settings Window . 10
4.4 Using the General Settings Window . 10
4.5 Using the Network Settings Window . 10
4.6 Using the Ignored Files Editor . 11

5 Advanced Usage 13
5.1 Options . 13
5.2 Config File . 13
5.3 ownCloud Commandline Client . 14

6 The Automatic Updater 17
6.1 Basic Workflow . 17
6.2 Preventing Automatic Updates . 18

7 Appendix A: Building the Client 21
7.1 Linux . 21
7.2 Mac OS X . 21
7.3 Windows (Cross-Compile) . 22
7.4 Generic Build Instructions . 23

8 Appendix B: History and Architecture 25
8.1 The Synchronization Process . 25
8.2 Synchronization by Time versus ETag . 25
8.3 Comparison and Conflict Cases . 26
8.4 Ignored Files . 27
8.5 The Sync Journal . 27

9 Appendix C: Troubleshooting 29
9.1 Identifying Basic Functionality Problems . 29
9.2 Isolating other issues . 30
9.3 Log Files . 30
9.4 Core Dumps . 33

i

10 FAQ 35

11 Glossary 37

Index 39

ii

CHAPTER

ONE

INTRODUCTION

Available for Windows, MAC OS X, and various Linux distributions, the ownCloud Sync client is a desktop program
installed on your computer. The client enables you to:

• Specify one or more directories on your computer that you want to synchronize to the ownCloud server.

• Always have the latest files synchronized, wherever they are located.

Changes made to any synchronized file on the computer are automatically made to the files on the ownCloud server
using the sync client.

1

ownCloud Client Manual, Release

2 Chapter 1. Introduction

CHAPTER

TWO

INSTALLING THE SYNCHRONIZATION CLIENT

The latest version of the ownCloud Synchronization Client can be obtained from the ownCloud Website. You can
download and install the client on Windows, MAC OSX, and various Linux software distrubutions. The following
sections describe specific support and installation procedures for the different software platforms:

• installing-windows

• installing-macosx

• installing-linux

3

http://www.owncloud.com

ownCloud Client Manual, Release

4 Chapter 2. Installing the Synchronization Client

CHAPTER

THREE

SETTING UP AN ACCOUNT

If no account has been configured, the ownCloud Client automatically assist in connecting to your ownCloud server
after the application has been started.

To set up an account:

1. Specify the URL to your Server. This is the same address that is used in the browser.

Note: Make sure to use https:// if the server supports it. Otherwise, your password and all data will be transferred
to the server unencrypted. This makes it easy for third parties to intercept your communication, and getting hold of
your password!

2. Enter the username and password. These are the same credentials used to log into the web interface.

3. Choose the folder with which you want the ownCloud Client to synchronize the contents of your ownCloud
account. By default, this is a folder called ownCloud. This folder is created in the home directory.

5

ownCloud Client Manual, Release

When selecting a local folder that already contains data, you can choose from two options:

• Keep local data: When selected, the files in the local folder on the client are synchronized to the ownCloud
server.

• Start a clean sync: When selected, all files in the local folder on the client are deleted. These files are not
syncrhonized to the ownCloud server.

6 Chapter 3. Setting up an Account

CHAPTER

FOUR

USING THE SYNCHRONIZATION CLIENT

The ownCloud Client remains in the background and is visible as an icon in the system tray (Windows, KDE), status
bar (MAC OS X), or notification area (Ubuntu).

ownCloud Desktop Client icon

4.1 Using the Desktop Client Menu

A right click on the icon (left click on Ubuntu and Mac OS X) provides the following menu:

ownCloud Desktop Client menu

The Desktop Client menu provides the following options:

• Open ownCloud in browser: Launches the ownCloud WEB interface.

• Open folder ’ownCloud’: Opens the ownCloud local folder. If you have defined multiple synchroniza-
tion targets, the window displays each local folder.

7

ownCloud Client Manual, Release

• Disk space indicator: Indicates the amount of space currently used on the server.

• Operation indicator: Displays the status of the current synchronization process or indicates Up to date if the
server and client are in sync.

• Recent Changes: Displays the last six files modified by the synchronization operations and provides access to
the current synchronization status listing all changes since the last restart of the ownCloud client.

• Settings...: Provides access to the settings menu.

• Help: Opens a browser to display ownCloud Desktop Client Guide.

• Sign out: Disables the client from continued synchronizations.

• Quit ownCloud: Quits the ownCloud Client, ending any currently running synchronizations.

4.2 Using the Account Settings Window

The Account window provides a summary for general settings associated with the ownCloud account. This window
enalbes you to manage any synchronized folders in the account and enables you to modify them.

To access and modify the account settings:

The fields and options in this window include:

• Connected to <ownCloud instance> as <user> field: Indicates the ownCloud server to which
the client is synchronizing and the user account on that server.

• Add Folder... button: Provides the ability to add another folder to the synchronization process (see
Adding a Folder).

• Pause/Resume button: Pauses the current sync (or prevents the client from starting a new sync) or resumes
the sync process.

• Remove button: Removes the selected folder from the sync process. This button is used when you want to
synchronize only a few folders and not the root folder. If only the root folder is available, you must first remove
the root from the synchronization and then add individual folders that you want to synchronize as desired.

• Storage Usage field: Indicates the storage utilization on the ownCloud server.

• Edit Ignored Files button: Launches the Ignored Files Editor.

• Modify Account button: Enables you to change the ownCloud server to which you are synchronizing. This
option launches the Setting up an Account windows (See ??).

8 Chapter 4. Using the Synchronization Client

ownCloud Client Manual, Release

4.2.1 Adding a Folder

The Add a Folder ... button enables you to add a new folder to the syncrhonization process.

To add a new folder:

1. Click the Add a Folder ... button in the Account window.

The Add Folder... window opens

2. Specify a unique path and alias name to the folder or use the Choose... button to locate the new folder on
your system to which you want to synchronize.

..note:: Nested synchronizations are not supported. In other words, you cannot add a folder that is
already contained within another synchronized folder. In addition, you cannot add a higher level
(parent) folder that contains a folder to which you are already synchronizing. By default, the own-
Cloud Set Up Wizard syncrhonizes your entire ownCloud account to the root folder of the ownCloud
server. Due to this default setup, you must first remove the top-level folder prior to specifying new
synchronizations.

3. Click ‘Next’ to continue.

A window opens prompting you to select a remote destination folder on the ownCloud server to which
you want to synchronize.

scale 50 %

‘‘Add Folder...‘‘ window (remote destination)

4. Select a folder on the ownCloud server to which you want to synchronize your newly added folder.

..note:: A server folder can only be synchronized with a particular client once. If you attempt to
sync the root directory, you cannot sync with other folders on the server. Similarly, if you sync
with folder /a, you cannot create another sync with /a/b, since b is already being synched.

4.2. Using the Account Settings Window 9

ownCloud Client Manual, Release

4.2.2 Editing Ignored Files

The Ignored Files Editor provides a list of preconfigured files that are ignored (that is, not synchronized) by the client
and server during synchronizations. The Ignored Files Editor enables you to add patterns for files or directories that
you want to exclude from the synchronization process. In addition to using standard characters, the Ignored Files
Editor enables you to use wild cards (for example, using an asterisk ‘*’ to indicate multiple characters or a question
mark ‘?’ to incidate a single character).

For additional information about this editor, see Using the Ignored Files Editor

4.3 Using the Activity Settings Window

The Activity window provides an in-depth account of recent synchronization activity. It shows files that have not been
synchronized because they are on the ignored files list or because they cannot be synced in a cross-platform manner
due to containing special characters that cannot be stored on certain file systems.

You can open the Activity window in one of the following ways:

• Click ‘Activity’ in the left frame of the ownCloud Settings window.

• Invoke the window from the ownCloud Desktop Client menu by selecting Recent Changes >
Details.... (See Using the Desktop Client Menu.)

4.4 Using the General Settings Window

The General settings window enables you to set general settings for the ownCloud Desktop Client and provides infor-
mation about the software version, its creator, and the existance of any updates.

The settings and information contained in this window are as follows:

• Launch on System Startup checkbox: Provides the option to check (enable) or uncheck (disable)
whether the ownCloud Desktop Client launches upon system startup. By default, this option is enabled
(checked)once you have configured your account.

• Show Desktop Nofications checkbox: Provides the option to check (enable) or uncheck (disable) bub-
ble notifications alerting you as to when a set of synchronization operations is performed.

• Use Monochrome Icons checkbox: Provides the option to check (enable) or uncheck (disable) the use
of monochrome (visually less obtrusive) icons.

Note: This option can be useful on MAC OSX platforms.

• About field: Provides information about the software authors along with pertinent build conditions.

Note: Information in this field can be valuable when submitting a support request.

• Updates field: Provides information about any available updates for the ownCloud Desktop Client.

4.5 Using the Network Settings Window

The Network settings window enables you to define network proxy settings as well as limit the download and upload
bandwidth utilization of file synchronizations.

10 Chapter 4. Using the Synchronization Client

ownCloud Client Manual, Release

4.5.1 Specifying Proxy Settings

A proxy server is a server (for example, a computer system or an application) that functions as an intermediary contact
for requests from clients that are seeking resources from other servers. For the ownCloud Desktop Client, you can
define the following proxy settings:

• No Proxy option: Specifies that the ownCloud Client circumvent the default proxy configured on the system.

• Use system proxy option: Default setting. Follows the systems proxy settings. On Linux systems, this
setting uses the value of the variable http_proxy.

• Specify proxy manually as option: Enables you to specify the following custom proxy settings: -
HTTP(S): Used when you are required to use an HTTP(S) proxy server (for example, Squid or Microsoft
Forefront TMG). - SOCKSv5: Typically used in special company LAN setups, or in combination with the
OpenSSH dynamic application level forwarding feature (see ssh -D). - Host: Host name or IP address of the
proxy server along with the port number. HTTP proxies

typically listen over Ports 8080 (default) or 3128. SOCKS servers typically listen over port 1080.

• Proxy Server requires authentication checkbox: Provides the option to check (enable/require)
or uncheck (disable/not require) proxy server authentication. When not checked, the proxy server must be
configured to allow anonymous usage. When checked, a proxy server username and password is required.

4.5.2 Bandwidth Limiting

Synchronization of files between a client and server can utilized a lot of bandwidth. Bandwidth limiting can assist
in shaping the total download or upload bandwidth (or both) of your client/server connection to a more manageable
level. By limiting your bandwidth usage, you can maintain free bandwidth for other applications to use.

The ownCloud Desktop Client enables you to limit (throttle) the bandwidth usage for both file downloads and file
uploads. The Download Bandwidth field (for data flowing from the ownCloud server to the client) provides the
following options:

• No limit option: The default setting for the client; specifies that there are no limit settings on the amount of
data downloaded from the server.

• Limit to <value> KBytes/s option: Limits (throttles) the bandwidth to a customized value (in
KBytes/second).

The Upload Bandwidth field (for data flowing from the ownCloud client to the server) provides the following options:

• No limit option: The default setting for the client; specifies that there are no limit settings on the amount of
data downloaded from the server.

• Limit automatically: When enabled, the ownCloud client surrenders available bandwidth to other ap-
plications. Use this option if there are issues with real time communication (for example, the use of IP phone or
live streaming) in conjunction with the ownCloud Client.

• Limit to <value> KBytes/s option: Limits (throttles) the bandwidth to a customized value (in
KBytes/second).

4.6 Using the Ignored Files Editor

You might have some files or directories that you do not want to backup and store on the server. To identify and
exclude these files or directories, you can use the Ignored Files Editor that is embedded in the ownCloud Desktop
Client.

4.6. Using the Ignored Files Editor 11

ownCloud Client Manual, Release

The Ignored Files Editor enables you to define customized patterns that the ownCloud Client uses to identify files
and directories that you want to exclude from the synchronization process. For your convenience, the editor is pre-
populated with a default list of typically ignore patterns. These patterns are contained in a system file (typically
sync-exclude.lst) located in the ownCloud Client application directory. You cannot modify these pre-populated
patterns directly from the editor. However, if necessary, you can hover over any pattern in the list to show the path and
filename associated with that pattern, locate the file, and edit the sync-exclude.lst file.

Note: Modifying the global exclude definition file might render the client unusable or result in undesired behavior.

Each line in the editor contains an ignore pattern string. When creating custom patterns, in addition to being able
to use normal characters to define an ignore pattern, you can use wildcards characters for matching values. As an
example, you can use an asterisk (*) to idenfify an arbitrary number of characters or a question mark (?) to identify a
single character.

Patterns that end with a slash character (/) are applied to only directory components of the path being checked.

Note: Custom entries are currently not validated for syntactical correctness by the editor, but might fail to load
correctly.

Each pattern string in the list is preceded by a checkbox. When the check box contains a check mark, in addition to
ignoring the file or directory component matched by the pattern, any matched files are also deemed “fleeting metadata”
and removed by the client.

In addition to excluding files and directories that use patterns defined in this list:

• The ownCloud Client always excludes files containing characters that cannot be synchronized to other file
systems.

• As of ownCloud Desktop Client version 1.5.0, files are removed that cause individual errors three times during
a synchronization. However, the client provides the option of retrying a synchronization three additional times
on files that produce errors.

For more detailed information see Ignored Files.

12 Chapter 4. Using the Synchronization Client

CHAPTER

FIVE

ADVANCED USAGE

5.1 Options

When invoking the client from the command line, the following options are supported:

-h, --help Displays all the options below or, when used on Windows, opens a window displaying all options.

--logwindow Opens a window displaying log output.

--logfile <filename> Write log output to the file specified. To write to stdout, specify - as the filename.

--logdir <name> Writes each synchronization log output in a new file in the specified directory.

--logexpire <hours> Removes logs older than the value specified (in hours). This command is used with
--logdir.

--logflush Clears (flushes) the log file after each write action.

--confdir <dirname> Uses the specified configuration directory.

5.2 Config File

The ownCloud Client reads a configuration file. You can locate this configuration files as follows:

On Linux distributions: $HOME/.local/share/data/ownCloud/owncloud.cfg

On Microsoft Windows systems: %LOCALAPPDATA%\ownCloud\owncloud.cfg

On MAC OS X systems: $HOME/Library/Application Support/ownCloud

The configuration file contains settings using the Microsoft Windows .ini file format. You can overwrite changes using
the ownCloud configuration dialog.

Note: Use caution when making changes to the ownCloud Client configuration file. Incorrect settings can produce
unintended results.

You can change the following configuration settings:

• remotePollInterval (default: 30000) – Specifies the poll time for the remote repository in milliseconds.

• maxLogLines (default: 20000) – Specifies the maximum number of log lines displayed in the log window.

13

ownCloud Client Manual, Release

5.3 ownCloud Commandline Client

The ownCloud Client packages contain a command line client that can be used to synchronize ownCloud files to client
machines. The command line client is called owncloudcmd.

owncloudcmd performs a single sync run and then exits the synchronization process. In this manner, owncloudcmd
processes the differences between client and server directories and propagates the files to bring both repositories to the
same state. Contrary to the GUI-based client, owncloudcmd does not repeat synchronizations on its own. It also does
not monitor for file system changes.

To invoke the owncloudcmd, you must provide the local and the remote repository urls using the following command:

owncloudcmd [OPTIONS...] sourcedir owncloudurl

where sourcedir is the local directory and owncloudurl is the server URL.

Note: Prior to the 1.6 version of owncloudcmd, the tool only accepted owncloud:// or ownclouds:// in place
of http:// and https:// as a scheme. See Examples for details.

Other comand line switches supported by owncloudcmd include the following:

--user, -u [user] Use user as the login name.

--password, -p [password] Use password as the password.

-n Use netrc (5) for login.

--non-interactive Do not prompt for questions.

--silent, -s Inhibits verbose log output.

--trust Trust any SSL certificate, including invalid ones.

--httpproxy http://[user@pass:]<server>:<port> Uses the specified server as the HTTP proxy.

5.3.1 Credential Handling

By default, owncloudcmd reads the client configuration and uses the credentials of the GUI syncrhonization client.
If no client is configured, or if you choose to use a different user to synchronize, you can specify the user password
setting with the usual URL pattern. For example:

https://user:secret@192.168.178.2/remote.php/webdav

5.3.2 Example

To synchronize the ownCloud directory Music to the local directory media/music, through a proxy listening on
port 8080, and on a gateway machine using IP address 192.168.178.1, the command line would be:

$ owncloudcmd --httpproxy http://192.168.178.1:8080 \
$HOME/media/music \
https://server/owncloud/remote.php/webdav/Music

owncloudcmd will enquire user name and password, unless they have been specified on the command line or -n
has been passed.

Using the legacy scheme, the command line would be:

14 Chapter 5. Advanced Usage

ownCloud Client Manual, Release

$ owncloudcmd --httpproxy http://192.168.178.1:8080 \
$HOME/media/music \
ownclouds://server/owncloud/remote.php/webdav/Music

5.3. ownCloud Commandline Client 15

ownCloud Client Manual, Release

16 Chapter 5. Advanced Usage

CHAPTER

SIX

THE AUTOMATIC UPDATER

To ensure that you are always using the latest version of the ownCloud client, an auto-update mechanism has been
added in Version 1.5.1. The Automatic Updater ensures that you automatically profit from the latest features and
bugfixes.

Note: The Automatic Updater functions differently, depending on the operating system.

6.1 Basic Workflow

The following sections describe how to use the Automatic Updater on different operating systems:

6.1.1 Windows

The ownCloud client checks for updates and downloads them when available. You can view the update status under
Settings -> General -> Updates in the ownCloud client.

If an update is available, and has been successfully downloaded, the ownCloud client starts a silent update prior to its
next launch and then restarts itself. Should the silent update fail, the client offers a manual download.

Note: Administrative privileges are required to perform the update.

6.1.2 Mac OS X

If a new update is available, the ownCloud client initializes a pop-up dialog to alert you of the update and requesting
that you update to the latest version. Due to their use of the Sparkle frameworks, this is the default process for Mac
OS X applications.

6.1.3 Linux

Linux distributions provide their own update tool, so ownCloud clients that use the Linux operating system do not
perform any updates on their own. Linux operating systems do, however, check for the latest version of the ownCloud
client and passively notify the user (Settings -> General -> Updates) when an update is available.

17

ownCloud Client Manual, Release

6.2 Preventing Automatic Updates

In controlled environments, such as companies or universities, you might not want to enable the auto-update mech-
anism, as it interferes with controlled deployment tools and policies. To address this case, it is possible to disable
the auto-updater entirely. The following sections describe how to disable the auto-update mechanism for different
operating systems.

6.2.1 Preventing Automatic Updates in Windows Environents

You can prevent automatic updates from occuring in Windows environments using one of two methods. The first
method allows users to override the automatic update check mechanism whereas the second method prevents any
manual overrides.

To prevent automatic updates, but allow manual overrides:

1. Migrate to the following directory:

(a) (32-bit) HKEY_LOCAL_MACHINE\Software\ownCloud\ownCloud

(b) (64-bit) HKEY_LOCAL_MACHINE\Software\Wow6432Node\ownCloud\ownCloud

2. Add the key skipUpdateCheck (of type DWORD).

3. Specify a value of 1 to the machine.

To manually override this key, use the same value in HKEY_CURRENT_USER.

To prevent automatic updates and disallow manual overrides:

1. Migrate to the following directory:

HKEY_LOCAL_MACHINE\Software\Policies\ownCloud\ownCloud

2. Add the key skipUpdateCheck (of type DWORD).

3. Specify a value of 1 to the machine.

6.2.2 Preventing Automatic Updates in Mac OS X Environments

You can disable the automatic update mechanism in MAC OS X operating systems using the system-wide .plist
file. To access this file:

1. Using the Windows explorer, migrate to the following location:

/Library/Preferences/

2. Locate and open the following file:

com.owncloud.desktopclient.plist

3. Add a new root level item of type bool.

4. Name the item skipUpdateCheck.

5. Set the item to true.

Alternatively, you can copy the file owncloud.app/Contents/Resources/deny_autoupdate_com.owncloud.desktopclient.plist
to /Library/Preferences/com.owncloud.desktopclient.plist.

18 Chapter 6. The Automatic Updater

ownCloud Client Manual, Release

6.2.3 Preventing Automatic Updates in Linux Environments

Because Linux does not provide automatic updating functionality, there is no need to remove the automatic-update
check. However, if you want to disable this check:

1. Locate and open the following file:

/etc/ownCloud/ownCloud.conf

2. Add the following content to the file:

[General]
skipUpdateCheck=true

6.2. Preventing Automatic Updates 19

ownCloud Client Manual, Release

20 Chapter 6. The Automatic Updater

CHAPTER

SEVEN

APPENDIX A: BUILDING THE CLIENT

This section explains how to build the ownCloud Client from source for all major platforms. You should read this
section if you want to develop for the desktop client.

Note: Building instruction are subject to change as development proceeds. Please check the version for which you
want to build.

The instructions contained in this topic were updated to work with version 1.7 of the ownCloud Client.

7.1 Linux

1. Add the ownCloud repository from OBS.

2. Install the dependencies (as root, or using sudo) using the following commands for your specific Linux distri-
bution:

• Debian/Ubuntu: apt-get update; apt-get build-dep owncloud-client

• openSUSE: zypper ref; zypper si -d owncloud-client

• Fedora/CentOS: yum install yum-utils; yum-builddep owncloud-client

3. Follow the generic build instructions.

4. (Optional) Call make install to install the client to the /usr/local/bin directory.

Note: This step requires the mingw32-cross-nsis packages be installed on Windows.

7.2 Mac OS X

In additon to needing XCode (along with the command line tools), developing in the MAC OS X environment requires
extra dependencies. You can install these dependencies through MacPorts or Homebrew. These dependencies are
required only on the build machine, because non-standard libs are deployed in the app bundle.

The tested and preferred way to develop in this environment is through the use of HomeBrew. The ownCloud team
has its own repository containing non-standard recipes.

To set up your build enviroment for development using HomeBrew:

1. Add the ownCloud repository using the following command:

brew tap owncloud/owncloud

21

http://software.opensuse.org/download/package?project=isv:ownCloud:desktop&package=owncloud-client
http://www.macports.org
http://mxcl.github.com/homebrew/
http://mxcl.github.com/homebrew/
http://mxcl.github.com/homebrew/

ownCloud Client Manual, Release

2. Install any missing dependencies:

brew install $(brew deps mirall)

3. Add Qt from brew to the path:

export PATH=/usr/local/Cellar/qt5/5.x.y/bin/qmake

Where x.z is the current version of Qt 5 that brew has installed on your machine.

5. For compilation of mirall, follow the generic build instructions.

6. In the build directory, run admin/osx/create_mac.sh <build_dir> <install_dir>. If you
have a developer signing certificate, you can specify its Common Name as a third parameter (use quotes) to
have the package signed automatically.

Note: Contrary to earlier versions, ownCloud 1.7 and later are packaged as a pkg installer. Do not call “make
package” at any time when compiling for OS X, as this will build a disk image, and will not work correctly.

7.3 Windows (Cross-Compile)

Due to the large number of dependencies, building the client for Windows is currently only supported on openSUSE,
by using the MinGW cross compiler. You can set up openSUSE 12.1, 12.2, or 13.1 in a virtual machine if you do not
have it installed already.

To cross-compile:

1. Add the following repositories using YaST or zypper ar (adjust when using openSUSE 12.2 or 13.1):

zypper ar http://download.opensuse.org/repositories/windows:/mingw:/win32/openSUSE_13.1/windows:mingw:win32.repo
zypper ar http://download.opensuse.org/repositories/windows:/mingw/openSUSE_13.1/windows:mingw.repo

2. Install the cross-compiler packages and the cross-compiled dependencies:

zypper install cmake make mingw32-cross-binutils mingw32-cross-cpp mingw32-cross-gcc \
mingw32-cross-gcc-c++ mingw32-cross-pkg-config mingw32-filesystem \
mingw32-headers mingw32-runtime site-config mingw32-libqt4-sql \
mingw32-libqt4-sql-sqlite mingw32-sqlite mingw32-libsqlite-devel \
mingw32-dlfcn-devel mingw32-libssh2-devel kdewin-png2ico \
mingw32-libqt4 mingw32-libqt4-devel mingw32-libgcrypt \
mingw32-libgnutls mingw32-libneon-openssl mingw32-libneon-devel \
mingw32-libbeecrypt mingw32-libopenssl mingw32-openssl \
mingw32-libpng-devel mingw32-libsqlite mingw32-qtkeychain \
mingw32-qtkeychain-devel mingw32-dlfcn mingw32-libintl-devel \
mingw32-libneon-devel mingw32-libopenssl-devel mingw32-libproxy-devel \
mingw32-libxml2-devel mingw32-zlib-devel

3. For the installer, install the NSIS installer package:

zypper install mingw32-cross-nsis

4. Install the following plugin:

mingw32-cross-nsis-plugin-processes mingw32-cross-nsis-plugin-uac

Note: This plugin is typically required. However, due to a current bug in mingw, the plugins do not
currently build properly from source.

22 Chapter 7. Appendix A: Building the Client

ownCloud Client Manual, Release

5. Manually download and install the following files using rpm -ivh <package>:

Note: These files also work for more recent openSUSE versions!

rpm -ivh http://download.tomahawk-player.org/packman/mingw:32/openSUSE_12.1/x86_64/mingw32-cross-nsis-plugin-processes-0-1.1.x86_64.rpm
rpm -ivh http://download.tomahawk-player.org/packman/mingw:32/openSUSE_12.1/x86_64/mingw32-cross-nsis-plugin-uac-0-3.1.x86_64.rpm

6. Follow the generic build instructions

Note: When building for Windows platforms, you must specify a special toolchain file that en-
ables cmake to locate the platform-specific tools. To add this parameter to the call to cmake, enter
-DCMAKE_TOOLCHAIN_FILE=../mirall/admin/win/Toolchain-mingw32-openSUSE.cmake.

7. Build by running make.

Note: Using make package produces an NSIS-based installer, provided the NSIS mingw32 packages
are installed.

7.4 Generic Build Instructions

Compared to previous versions, building Mirall has become easier. Unlike earlier versions, CSync, which is the sync
engine library of Mirall, is now part of the Mirall source repository and not a separate module.

You can download Mirall from the ownCloud Client Download Page.

To build the most up to date version of the client:

1. Clone the latest versions of Mirall from Git as follows:

git clone git://github.com/owncloud/mirall.git

2. Create build directories:

mkdir mirall-build

3. Build mirall:

cd ../mirall-build cmake -DCMAKE_BUILD_TYPE="Debug" ../mirall

..note:: You must use absolute paths for the include and library directories.

..note:: On Mac OS X, you need to specify -DCMAKE_INSTALL_PREFIX=target, where
target is a private location, i.e. in parallel to your build dir by specifying ../install.

4. Call make.

The owncloud binary appear in the bin directory.

The following are known cmake parameters:

• QTKEYCHAIN_LIBRARY=/path/to/qtkeychain.dylib -DQTKEYCHAIN_INCLUDE_DIR=/path/to/qtkeychain/:
Used for stored credentials. When compiling with Qt5, the library is called qt5keychain.dylib.
You need to compile QtKeychain with the same Qt version.

• WITH_DOC=TRUE: Creates doc and manpages through running make; also adds install statements, providing
the ability to install using make install.

• CMAKE_PREFIX_PATH=/path/to/Qt5.2.0/5.2.0/yourarch/lib/cmake/: Builds using Qt5.

• BUILD_WITH_QT4=ON: Builds using Qt4 (even if Qt5 is found).

7.4. Generic Build Instructions 23

http://owncloud.org/sync-clients/
http://git-scm.com

ownCloud Client Manual, Release

• CMAKE_INSTALL_PREFIX=path: Set an install prefix. This is mandatory on Mac OS

24 Chapter 7. Appendix A: Building the Client

CHAPTER

EIGHT

APPENDIX B: HISTORY AND ARCHITECTURE

ownCloud provides desktop sync clients to synchronize the contents of local directories from computers, tablets, and
handheld devices to the ownCloud server.

Synchronization is accomplished using csync, a bidirectional file synchronizing tool that provides both a command
line client as well as a library. A special module for csync was written to synchronize with the ownCloud built-in
WebDAV server.

The ownCloud sync client is based on a tool called mirall, initially written by Duncan Mac Vicar. Later Klaas Freitag
joined the project and enhanced it to function with the ownCloud server.

The ownCloud Client software is written in C++ using the Qt Framework. As a result, the ownCloud Client runs on
Linux, Windows, and MacOS.

8.1 The Synchronization Process

The process of synchronization keeps files in two separate repositories the same. When syncrhonized:

• If a file is added to one repository it is copied to the other synchronized repository.

• When a file is changed in one repository, the change is propagated to any syncrhonized other repositories- If a
file is deleted in one repository, it is deleted in any other.

It is important to note that the ownCloud synchronization process does not use a typical client/server system where the
server is always master. This is a major difference between the ownCloud syncrhonizatin process and other systems
like a file backup, where only changes to files or folders and the addition of new files are propagated, but these files
and folders are never deleted unless explicitly deleted in the backup.

During synchronization, the ownCloud Client checks both repositories for changes frequently. This process is referred
to as a sync run. In between sync runs, the local repository is monitored by a file system monitoring process that starts
a sync run immediately if something was edited, added, or removed.

8.2 Synchronization by Time versus ETag

Until the release of ownCloud 4.5 and ownCloud Client 1.1, the ownCloud synchronization process employed a single
file property – the file modificatin time – to decide which file was newer and needed to be synchronized to the other
repository.

The modification timestamp is part of the files metadata. It is available on every relevant filesystem and is the typical
indicator for a file change. Modification timestamps do not require special action to create, and have a general meaning.
One design goal of csync is to not require a special server component. This design goal is why csync was chosen as
the backend component.

25

http://www.csync.org
http://www.qt-project.org

ownCloud Client Manual, Release

To compare the modification times of two files from different systems, csync must operate on the same base. Before
ownCloud Client version 1.1.0, csync required both device repositories to run on the exact same time. This requirement
was achieved through the use of enterprise standard NTP time synchronisation on all machines.

Because this timing strategy is rather fragile without the use of NTP, ownCloud 4.5 introduced a unique number (for
each file?) that changes whenever the file changes. Although this number is a unique value, it is not a hash of the file.
Instead, it is a randomly chosen number, that is transmitted in the Etag field. Because the file number changes if the file
changes, its use is guaranteed to determine if one of the files has changed and, thereby, launching a synchronization
process.

Note: ownCloud Client release 1.1 and later requires file ID capabilities on the ownCloud server. Servers that run
with release earlier than 4.5.0 do not support using the file ID functionality.

Before the 1.3.0 release of the Desktop Client, the synchronization process might create faux conflict files if time
deviates. Original and changed files conflict only in their timestamp, but not in their content. This behaviour was
changed to employ a binary check if files differ.

Like files, directories also hold a unique ID that changes whenever one of the contained files or directories is modified.
Because this is a recursive process, it significantly reduces the effort required for a synchronization cycle, because the
client only analyzes directories with a modified ID.

The following table outlines the different synchronization methods used, depending on server/client combination:

Server Version Client Version Sync Methods
4.0.x or earlier 1.0.5 or earlier Time Stamp
4.0.x or earlier 1.1 or later n/a (incompatible)
4.5 or later 1.0.5 or earlier Time Stamp
4.5 or later 1.1 or later File ID, Time Stamp

We strongly recommend using ownCloud Server release 4.5 or later when using ownCloud Client 1.1 or later. Us-
ing incompatible time stamp-based synchronization mechanism can lead to data loss in rare cases, especially when
multiple clients are involved and one utilizes a non-synchronized NTP time.

8.3 Comparison and Conflict Cases

As mentioned above, during a sync run the client must first detect if one of the two repositories have changed files. On
the local repository, the client traverses the file tree and compares the modification time of each file with an expected
value stored in its database. If the value is not the same, the client determines that the file has been modified in the
local repository.

Note: On the local side, the modificaton time a good attribute to use for detecting changes, because

the value does not depend on time shifts and such.

For the remote (that is, ownCloud server) repository, the client compares the ETag of each file with its expected value.
Again, the expected ETag value is queried from the client database. If the ETag is the same, the file has not changed
and no synchronization occurs.

In the event a file has changed on both the local and the remote repository since the last sync run, it can not easily
be decided which version of the file is the one that should be used. However, changes to any side be lost. Instead, a
conflict case is created. The client resolves this conflic by creating a conflict file of the older of the two files and saving
the newer file under the original file name. Conflict files are always created on the client and never on the server. The
conflict file uses the same name as the original file, but is appended with the timestamp of the conflict detection.

26 Chapter 8. Appendix B: History and Architecture

http://en.wikipedia.org/wiki/Network_Time_Protocol
http://en.wikipedia.org/wiki/HTTP_ETag

ownCloud Client Manual, Release

8.4 Ignored Files

The ownCloud Client supports the ability to exclude or ignore certain files from the synchronization process. Some
system wide file patterns that are used to exclude or ignore files are included with the client by default and the
ownCloud Client provides the ability to add custom patterns.

By default, the ownCloud Client ignores the following files:

• Files matched by one of the patterns defined in ignoredFilesEditor-label.

• Files containing characters that do not work on certain file systems (, :, ?, *, ”, >, <, |).

• Files starting in .csync_journal.db*, as these files are reserved for journalling.

If a pattern selected using a checkbox in the ignoredFilesEditor-label (or if a line in the exclude file starts with the
character] directly followed by the file pattern), files matching the pattern are considered fleeting meta data. These
files are ingored and removed by the client if found in the synchronized folder. This is suitable for meta files created
by some applications that have no sustainable meaning.

If a pattern ends with the backslash (/) character, only directories are matched. The pattern is only applied for directory
components of filenames selected using the checkbox.

To match filenames against the exclude patterns, the unix standard C library function fn-
match is used. This procesx checks the filename against the specified pattern using standard
shell wildcard pattern matching. For more information, please refer to The opengroup website
<http://pubs.opengroup.org/onlinepubs/009695399/utilities/xcu_chap02.html#tag_02_13_01>.

The path that is checked is the relative path under the sync root directory.

Pattern and File Match Examples:

Pattern File Matches
~$* ~$foo, ~$example.doc
fl?p flip, flap
moo/ map/moo/, moo/

8.5 The Sync Journal

The client stores the ETag number in a per-directory database, called the journal. This database is a hidden file
contained in the directory to be synchronized.

If the journal database is removed, the ownCloud Client CSync backend rebuilds the database by comparing the files
and their modification times. This process ensures that both server and client are synchronized using the appropriate
NTP time before restarting the client following a database removal.

Pressing F5 while in the Account Settings Dialog enables you to “reset” the journal. This function can be used to
recreate the journal database.

Note: We recommend that you use this function only when advised to do so by ownCloud support staff.

8.4. Ignored Files 27

ownCloud Client Manual, Release

28 Chapter 8. Appendix B: History and Architecture

CHAPTER

NINE

APPENDIX C: TROUBLESHOOTING

The following two general issues can result in failed synchronization:

• The server setup is incorrect.

• The client contains a bug.

When reporting bugs, it is helpful if you first determine what part of the system is causing the issue.

9.1 Identifying Basic Functionality Problems

Performing a general ownCloud Server test The first step in troubleshooting synchronization issues is
to verify that you can log on to the ownCloud web application. To verify connectivity to the own-
Cloud server:

• Open a browser window and enter the server address to your own server in the location/address
bar.

For example, if your ownCloud instance is installed at URL address
http://yourserver.com/owncloud, enter http://yourserver.com/owncloud/
into your browsers location/address bar.

If you are not prompted for your username and password, or if a red warning box appears on the
page, your server setup requires modification. Please verify that your server installation is working
correctly.

Ensure the WebDAV API is working If all desktop clients fail to connect to the ownCloud Server, but
access using the web interface functions properly, the problem is often a misconfiguration of the
WebDAV API.

The ownCloud Client uses the built-in WebDAV access of the server content. Verify that you can
log on to ownClouds WebDAV server. To verify connectivity with the ownCloud WebDAV server:

• Open a browser window and enter the address to the ownCloud WebDAV server.

For example, if your ownCloud instance is installed at
http://yourserver.com/owncloud, your WebDAV server address is
http://yourserver.com/owncloud/remote.php/webdav.

If you are prompted for your username and password but, after providing the correct credentials,
authentication fails, please ensure that your authentication backend is configured properly.

Use a WebDAV command line tool to test A more sophisticated test method for troubleshooting syn-
crhonization issues is to use a WebDAV command line client and log into the ownCloud WebDAV
server. One such command line client – called cadaver – is available for Linux distributions. You can

29

ownCloud Client Manual, Release

use this application to further verify that the WebDAV server is running properly using PROPFIND
calls.

As an example, after installing the cadaver app, you can issue the propget command to obtain
various properties pertaining to the current directory and also verify WebDAV server connection.

9.2 Isolating other issues

Other issues can affect synchronization of your ownCloud files:

• If you find that the results of the synchronizations are unreliable, please ensure that the folder to which you are
synchronizing is not shared with other synchronization applications.

Note: Synchronizing the same directory with ownCloud and other

synchronization software such as Unison, rsync, Microsoft Windows Offline Folders, or other cloud services
such as DropBox or Microsoft SkyDrive is not supported and should not be attempted. In the worst case, it is
possible that synchronizing folders or files using ownCloud and other synchronization software or services can
result in data loss.

• If you find that only specific files are not synrchronized, the synchronization protocol might be having an effect.
Some files are automatically ignored because they are system files, other files might be ignored because their
filename contains characters that are not supported on certain file systems. For more information about ignored
files, see _ignored-files-label.

• If you are operating your own server, and use the local storage backend (the default), make sure that ownCloud
has exclusive access to the directory.

Note: The data directory on the server is exclusive to ownCloud and must not be modified manually.

If you are using a different file backend on the server, you can try to exclude a bug in the backend by reverting
to the built-in backend.

9.3 Log Files

Effectively debugging software requires as much relative information as can be obtained. To assist the ownCloud
support personnel, please try to provide as many relevant logs as possible. Log output can help with tracking down
problems and, if you report a bug, log output can help to resolve an issue more quickly.

9.3.1 Obtaining the Client Log File

To obtain the client log file:

1. Open the ownCloud Desktop Client.

2. Press F12 on your keyboard.

The Log Output window opens.

30 Chapter 9. Appendix C: Troubleshooting

ownCloud Client Manual, Release

3. Click the ‘Save’ button.

The Save Log File window opens.

4. Migrate to a location on your system where you want to save your log file.

5. Name the log file and click the ‘Save’ button.

The log files is saved in the location specifed.

Alternatively, you can launch the ownCloud Log Output window using the --logwindow command. After issuing
this command, the Log Output window opens to show the current log. You can then follow the same procedures
mentioned above to save the log to a file.

9.3. Log Files 31

ownCloud Client Manual, Release

Note: You can also open a log window for an already running session, by restarting the client using the
following command:

• Windows: C:\Program Files (x86)\ownCloud\owncloud.exe --logwindow

• Mac OS X: /Applications/owncloud.app/Contents/MacOS/owncloud
--logwindow

• Linux: owncloud --logwindow

9.3.2 Saving Files Directly

The ownCloud client enables you to save log files directly to a predefined file or directory. This is a useful option for
troubleshooting sporadic issues as it enables you to log large amounts of data and bypasses the limited buffer settings
associated with the log window.

To save log files to a file or a directory:

1. To save to a file, start the client using the --logfile <file> command, where <file> is the filename to
which you want to save the file.

2. To save to a directory, start the client using the --logdir <dir> command, where <dir> is an existing
directory.

When using the --logdir command, each sync run creates a new file. To limit the amount of data that accumu-
lates over time, you can specify the --logexpire <hours> command. When combined with the --logdir
command, the client automatically erases saved log data in the directory that is older than the specified number of
hours.

As an example, to define a test where you keep log data for two days, you can issue the following command:

‘ owncloud --logdir /tmp/owncloud_logs --logexpire 48 ‘

9.3.3 ownCloud server Log File

The ownCloud server also maintains an ownCloud specific log file. This log file must be enabled through the ownCloud
Administration page. On that page, you can adjust the log level. We recommend that when setting the log file level
that you set it to a verbose level like Debug or Info.

You can view the server log file using the web interface or you can open it directly from the file system in the ownCloud
server data directory.

Todo
Need more information on this. How is the log file accessed? Need to explore procedural steps in access and in saving
this file ... similar to how the log file is managed for the client. Perhaps it is detailed in the Admin Guide and a link
should be provided from here. I will look into that when I begin heavily editing the Admin Guide.

9.3.4 Webserver Log Files

It can be helpful to view your webservers error log file to isolate any ownCloud-related problems. For Apache on
Linux, the error logs are typically located in the /var/log/apache2 directory. Some helpful files include the
following:

• error_log – Maintains errors associated with PHP code.

32 Chapter 9. Appendix C: Troubleshooting

ownCloud Client Manual, Release

• access_log – Typically records all requests handled by the server; very useful as a debugging tool because
the log line contains information specific to each request and its result.

You can find more information about Apache logging at http://httpd.apache.org/docs/current/logs.html.

9.4 Core Dumps

On MAC OS X and Linux systems, and in the unlikely event the client software crashes, the client is able to write a
core dump file. Obtaining a core dump file can assist ownCloud Customer Support tremendously in the debugging
process.

To enable the writing of core dump files, you must define the OWNCLOUD_CORE_DUMP environment variable on the
system.

For example:

‘ OWNCLOUD_CORE_DUMP=1 owncloud ‘

This command starts the client with core dumping enabled and saves the files in the current working directory.

Note: Core dump files can be fairly large. Before enabling core dumps on your system, ensure that you have enough
disk space to accommodate these files. Also, due to their size, we strongly recommend that you properly compress
any core dump files prior to sending them to ownCloud Customer Support.

9.4. Core Dumps 33

ownCloud Client Manual, Release

34 Chapter 9. Appendix C: Troubleshooting

CHAPTER

TEN

FAQ

Issue:

Some files are continuously uploaded to the server, even when they are not modified.

Resolution:

It is possible that another program is changing the modification date of the file.

If the file is uses the .eml extention, Windows automatically and continually changes all files, unless you remove
‘‘HKEY_LOCAL_MACHINESOFTWAREMicrosoftWindowsCurrentVersionPropertySystemPropertyHandlers‘
from the windows registry.

See http://petersteier.wordpress.com/2011/10/22/windows-indexer-changes-modification-dates-of-eml-files/ for more
information.

35

http://petersteier.wordpress.com/2011/10/22/windows-indexer-changes-modification-dates-of-eml-files/

ownCloud Client Manual, Release

36 Chapter 10. FAQ

CHAPTER

ELEVEN

GLOSSARY

mtime, modification time, file modification time File property used to determine whether the servers’ or the clients’
file is more recent. Standard procedure in oCC 1.0.5 and earlier, used by oCC 1.1 and later only when no sync
database exists and files already exist in the client directory.

ownCloud Server The server counter part of ownCloud Client as provided by the ownCloud community.

ownCloud Sync Client, ownCloud Client Name of the official ownCloud syncing client for desktop, which runs on
Windows, Mac OS X and Linux. It is based Mirall, and uses the CSync sync engine for synchronization with
the ownCloud server.

unique id, ETag ID assigned to every file starting with ownCloud server 4.5 and submitted via the HTTP Etag.
Used to check if files on client and server have changed.

37

ownCloud Client Manual, Release

38 Chapter 11. Glossary

INDEX

A
account settings, 8
activity, 10
Advanced Usage, 13
architecture, 25
auto start, 10

B
bandwith, 10

C
command line, 13
command line switches, 13
compatiblity table, 26
config file, 13

D
desktop notifications, 10

E
ETag, 37
etag, 25
exclude files, 11

F
file modification time, 37
file times, 25

G
general settings, 10

I
ignored files, 11

L
limiting, 10

M
modification time, 37
mtime, 37

N
navigating, 7

O
options, 13
ownCloud Client, 37
ownCloud Server, 37
ownCloud Sync Client, 37
owncloudcmd, 14

P
parameters, 13
password, 8
pattern, 11
proxy settings, 10

R
recent changes, 10

S
Server URL, 8
SOCKS, 10
startup, 10
sync activity, 10

T
throttling, 10
time stamps, 25

U
unique id, 25, 37
usage, 7
user, 8

39

	Introduction
	Installing the Synchronization Client
	Setting up an Account
	Using the Synchronization Client
	Using the Desktop Client Menu
	Using the Account Settings Window
	Using the Activity Settings Window
	Using the General Settings Window
	Using the Network Settings Window
	Using the Ignored Files Editor

	Advanced Usage
	Options
	Config File
	ownCloud Commandline Client

	The Automatic Updater
	Basic Workflow
	Preventing Automatic Updates

	Appendix A: Building the Client
	Linux
	Mac OS X
	Windows (Cross-Compile)
	Generic Build Instructions

	Appendix B: History and Architecture
	The Synchronization Process
	Synchronization by Time versus ETag
	Comparison and Conflict Cases
	Ignored Files
	The Sync Journal

	Appendix C: Troubleshooting
	Identifying Basic Functionality Problems
	Isolating other issues
	Log Files
	Core Dumps

	FAQ
	Glossary
	Index

