This is ./gdb.info, produced by makeinfo version 4.0b from gdb.texinfo. INFO-DIR-SECTION Programming & development tools. START-INFO-DIR-ENTRY * Gdb: (gdb). The GNU debugger. END-INFO-DIR-ENTRY This file documents the GNU debugger GDB. This is the Ninth Edition, January 2002, of `Debugging with GDB: the GNU Source-Level Debugger' for GDB Version 5.1.1. Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with the Invariant Sections being "Free Software" and "Free Software Needs Free Documentation", with the Front-Cover Texts being "A GNU Manual," and with the Back-Cover Texts as in (a) below. (a) The Free Software Foundation's Back-Cover Text is: "You have freedom to copy and modify this GNU Manual, like GNU software. Copies published by the Free Software Foundation raise funds for GNU development."  File: gdb.info, Node: Files, Next: Symbol Errors, Up: GDB Files Commands to specify files ========================= You may want to specify executable and core dump file names. The usual way to do this is at start-up time, using the arguments to GDB's start-up commands (*note Getting In and Out of GDB: Invocation.). Occasionally it is necessary to change to a different file during a GDB session. Or you may run GDB and forget to specify a file you want to use. In these situations the GDB commands to specify new files are useful. `file FILENAME' Use FILENAME as the program to be debugged. It is read for its symbols and for the contents of pure memory. It is also the program executed when you use the `run' command. If you do not specify a directory and the file is not found in the GDB working directory, GDB uses the environment variable `PATH' as a list of directories to search, just as the shell does when looking for a program to run. You can change the value of this variable, for both GDB and your program, using the `path' command. On systems with memory-mapped files, an auxiliary file named `FILENAME.syms' may hold symbol table information for FILENAME. If so, GDB maps in the symbol table from `FILENAME.syms', starting up more quickly. See the descriptions of the file options `-mapped' and `-readnow' (available on the command line, and with the commands `file', `symbol-file', or `add-symbol-file', described below), for more information. `file' `file' with no argument makes GDB discard any information it has on both executable file and the symbol table. `exec-file [ FILENAME ]' Specify that the program to be run (but not the symbol table) is found in FILENAME. GDB searches the environment variable `PATH' if necessary to locate your program. Omitting FILENAME means to discard information on the executable file. `symbol-file [ FILENAME ]' Read symbol table information from file FILENAME. `PATH' is searched when necessary. Use the `file' command to get both symbol table and program to run from the same file. `symbol-file' with no argument clears out GDB information on your program's symbol table. The `symbol-file' command causes GDB to forget the contents of its convenience variables, the value history, and all breakpoints and auto-display expressions. This is because they may contain pointers to the internal data recording symbols and data types, which are part of the old symbol table data being discarded inside GDB. `symbol-file' does not repeat if you press again after executing it once. When GDB is configured for a particular environment, it understands debugging information in whatever format is the standard generated for that environment; you may use either a GNU compiler, or other compilers that adhere to the local conventions. Best results are usually obtained from GNU compilers; for example, using `gcc' you can generate debugging information for optimized code. For most kinds of object files, with the exception of old SVR3 systems using COFF, the `symbol-file' command does not normally read the symbol table in full right away. Instead, it scans the symbol table quickly to find which source files and which symbols are present. The details are read later, one source file at a time, as they are needed. The purpose of this two-stage reading strategy is to make GDB start up faster. For the most part, it is invisible except for occasional pauses while the symbol table details for a particular source file are being read. (The `set verbose' command can turn these pauses into messages if desired. *Note Optional warnings and messages: Messages/Warnings.) We have not implemented the two-stage strategy for COFF yet. When the symbol table is stored in COFF format, `symbol-file' reads the symbol table data in full right away. Note that "stabs-in-COFF" still does the two-stage strategy, since the debug info is actually in stabs format. `symbol-file FILENAME [ -readnow ] [ -mapped ]' `file FILENAME [ -readnow ] [ -mapped ]' You can override the GDB two-stage strategy for reading symbol tables by using the `-readnow' option with any of the commands that load symbol table information, if you want to be sure GDB has the entire symbol table available. If memory-mapped files are available on your system through the `mmap' system call, you can use another option, `-mapped', to cause GDB to write the symbols for your program into a reusable file. Future GDB debugging sessions map in symbol information from this auxiliary symbol file (if the program has not changed), rather than spending time reading the symbol table from the executable program. Using the `-mapped' option has the same effect as starting GDB with the `-mapped' command-line option. You can use both options together, to make sure the auxiliary symbol file has all the symbol information for your program. The auxiliary symbol file for a program called MYPROG is called `MYPROG.syms'. Once this file exists (so long as it is newer than the corresponding executable), GDB always attempts to use it when you debug MYPROG; no special options or commands are needed. The `.syms' file is specific to the host machine where you run GDB. It holds an exact image of the internal GDB symbol table. It cannot be shared across multiple host platforms. `core-file [ FILENAME ]' Specify the whereabouts of a core dump file to be used as the "contents of memory". Traditionally, core files contain only some parts of the address space of the process that generated them; GDB can access the executable file itself for other parts. `core-file' with no argument specifies that no core file is to be used. Note that the core file is ignored when your program is actually running under GDB. So, if you have been running your program and you wish to debug a core file instead, you must kill the subprocess in which the program is running. To do this, use the `kill' command (*note Killing the child process: Kill Process.). `add-symbol-file FILENAME ADDRESS' `add-symbol-file FILENAME ADDRESS [ -readnow ] [ -mapped ]' `add-symbol-file FILENAME -sSECTION ADDRESS' The `add-symbol-file' command reads additional symbol table information from the file FILENAME. You would use this command when FILENAME has been dynamically loaded (by some other means) into the program that is running. ADDRESS should be the memory address at which the file has been loaded; GDB cannot figure this out for itself. You can additionally specify an arbitrary number of `-sSECTION ADDRESS' pairs, to give an explicit section name and base address for that section. You can specify any ADDRESS as an expression. The symbol table of the file FILENAME is added to the symbol table originally read with the `symbol-file' command. You can use the `add-symbol-file' command any number of times; the new symbol data thus read keeps adding to the old. To discard all old symbol data instead, use the `symbol-file' command without any arguments. `add-symbol-file' does not repeat if you press after using it. You can use the `-mapped' and `-readnow' options just as with the `symbol-file' command, to change how GDB manages the symbol table information for FILENAME. `add-shared-symbol-file' The `add-shared-symbol-file' command can be used only under Harris' CXUX operating system for the Motorola 88k. GDB automatically looks for shared libraries, however if GDB does not find yours, you can run `add-shared-symbol-file'. It takes no arguments. `section' The `section' command changes the base address of section SECTION of the exec file to ADDR. This can be used if the exec file does not contain section addresses, (such as in the a.out format), or when the addresses specified in the file itself are wrong. Each section must be changed separately. The `info files' command, described below, lists all the sections and their addresses. `info files' `info target' `info files' and `info target' are synonymous; both print the current target (*note Specifying a Debugging Target: Targets.), including the names of the executable and core dump files currently in use by GDB, and the files from which symbols were loaded. The command `help target' lists all possible targets rather than current ones. All file-specifying commands allow both absolute and relative file names as arguments. GDB always converts the file name to an absolute file name and remembers it that way. GDB supports HP-UX, SunOS, SVr4, Irix 5, and IBM RS/6000 shared libraries. GDB automatically loads symbol definitions from shared libraries when you use the `run' command, or when you examine a core file. (Before you issue the `run' command, GDB does not understand references to a function in a shared library, however--unless you are debugging a core file). On HP-UX, if the program loads a library explicitly, GDB automatically loads the symbols at the time of the `shl_load' call. `info share' `info sharedlibrary' Print the names of the shared libraries which are currently loaded. `sharedlibrary REGEX' `share REGEX' Load shared object library symbols for files matching a Unix regular expression. As with files loaded automatically, it only loads shared libraries required by your program for a core file or after typing `run'. If REGEX is omitted all shared libraries required by your program are loaded. On HP-UX systems, GDB detects the loading of a shared library and automatically reads in symbols from the newly loaded library, up to a threshold that is initially set but that you can modify if you wish. Beyond that threshold, symbols from shared libraries must be explicitly loaded. To load these symbols, use the command `sharedlibrary FILENAME'. The base address of the shared library is determined automatically by GDB and need not be specified. To display or set the threshold, use the commands: `set auto-solib-add THRESHOLD' Set the autoloading size threshold, in megabytes. If THRESHOLD is nonzero, symbols from all shared object libraries will be loaded automatically when the inferior begins execution or when the dynamic linker informs GDB that a new library has been loaded, until the symbol table of the program and libraries exceeds this threshold. Otherwise, symbols must be loaded manually, using the `sharedlibrary' command. The default threshold is 100 megabytes. `show auto-solib-add' Display the current autoloading size threshold, in megabytes.  File: gdb.info, Node: Symbol Errors, Prev: Files, Up: GDB Files Errors reading symbol files =========================== While reading a symbol file, GDB occasionally encounters problems, such as symbol types it does not recognize, or known bugs in compiler output. By default, GDB does not notify you of such problems, since they are relatively common and primarily of interest to people debugging compilers. If you are interested in seeing information about ill-constructed symbol tables, you can either ask GDB to print only one message about each such type of problem, no matter how many times the problem occurs; or you can ask GDB to print more messages, to see how many times the problems occur, with the `set complaints' command (*note Optional warnings and messages: Messages/Warnings.). The messages currently printed, and their meanings, include: `inner block not inside outer block in SYMBOL' The symbol information shows where symbol scopes begin and end (such as at the start of a function or a block of statements). This error indicates that an inner scope block is not fully contained in its outer scope blocks. GDB circumvents the problem by treating the inner block as if it had the same scope as the outer block. In the error message, SYMBOL may be shown as "`(don't know)'" if the outer block is not a function. `block at ADDRESS out of order' The symbol information for symbol scope blocks should occur in order of increasing addresses. This error indicates that it does not do so. GDB does not circumvent this problem, and has trouble locating symbols in the source file whose symbols it is reading. (You can often determine what source file is affected by specifying `set verbose on'. *Note Optional warnings and messages: Messages/Warnings.) `bad block start address patched' The symbol information for a symbol scope block has a start address smaller than the address of the preceding source line. This is known to occur in the SunOS 4.1.1 (and earlier) C compiler. GDB circumvents the problem by treating the symbol scope block as starting on the previous source line. `bad string table offset in symbol N' Symbol number N contains a pointer into the string table which is larger than the size of the string table. GDB circumvents the problem by considering the symbol to have the name `foo', which may cause other problems if many symbols end up with this name. `unknown symbol type `0xNN'' The symbol information contains new data types that GDB does not yet know how to read. `0xNN' is the symbol type of the uncomprehended information, in hexadecimal. GDB circumvents the error by ignoring this symbol information. This usually allows you to debug your program, though certain symbols are not accessible. If you encounter such a problem and feel like debugging it, you can debug `gdb' with itself, breakpoint on `complain', then go up to the function `read_dbx_symtab' and examine `*bufp' to see the symbol. `stub type has NULL name' GDB could not find the full definition for a struct or class. `const/volatile indicator missing (ok if using g++ v1.x), got...' The symbol information for a C++ member function is missing some information that recent versions of the compiler should have output for it. `info mismatch between compiler and debugger' GDB could not parse a type specification output by the compiler.  File: gdb.info, Node: Targets, Next: Configurations, Prev: GDB Files, Up: Top Specifying a Debugging Target ***************************** A "target" is the execution environment occupied by your program. Often, GDB runs in the same host environment as your program; in that case, the debugging target is specified as a side effect when you use the `file' or `core' commands. When you need more flexibility--for example, running GDB on a physically separate host, or controlling a standalone system over a serial port or a realtime system over a TCP/IP connection--you can use the `target' command to specify one of the target types configured for GDB (*note Commands for managing targets: Target Commands.). * Menu: * Active Targets:: Active targets * Target Commands:: Commands for managing targets * Byte Order:: Choosing target byte order * Remote:: Remote debugging * KOD:: Kernel Object Display  File: gdb.info, Node: Active Targets, Next: Target Commands, Up: Targets Active targets ============== There are three classes of targets: processes, core files, and executable files. GDB can work concurrently on up to three active targets, one in each class. This allows you to (for example) start a process and inspect its activity without abandoning your work on a core file. For example, if you execute `gdb a.out', then the executable file `a.out' is the only active target. If you designate a core file as well--presumably from a prior run that crashed and coredumped--then GDB has two active targets and uses them in tandem, looking first in the corefile target, then in the executable file, to satisfy requests for memory addresses. (Typically, these two classes of target are complementary, since core files contain only a program's read-write memory--variables and so on--plus machine status, while executable files contain only the program text and initialized data.) When you type `run', your executable file becomes an active process target as well. When a process target is active, all GDB commands requesting memory addresses refer to that target; addresses in an active core file or executable file target are obscured while the process target is active. Use the `core-file' and `exec-file' commands to select a new core file or executable target (*note Commands to specify files: Files.). To specify as a target a process that is already running, use the `attach' command (*note Debugging an already-running process: Attach.).  File: gdb.info, Node: Target Commands, Next: Byte Order, Prev: Active Targets, Up: Targets Commands for managing targets ============================= `target TYPE PARAMETERS' Connects the GDB host environment to a target machine or process. A target is typically a protocol for talking to debugging facilities. You use the argument TYPE to specify the type or protocol of the target machine. Further PARAMETERS are interpreted by the target protocol, but typically include things like device names or host names to connect with, process numbers, and baud rates. The `target' command does not repeat if you press again after executing the command. `help target' Displays the names of all targets available. To display targets currently selected, use either `info target' or `info files' (*note Commands to specify files: Files.). `help target NAME' Describe a particular target, including any parameters necessary to select it. `set gnutarget ARGS' GDB uses its own library BFD to read your files. GDB knows whether it is reading an "executable", a "core", or a ".o" file; however, you can specify the file format with the `set gnutarget' command. Unlike most `target' commands, with `gnutarget' the `target' refers to a program, not a machine. _Warning:_ To specify a file format with `set gnutarget', you must know the actual BFD name. *Note Commands to specify files: Files. `show gnutarget' Use the `show gnutarget' command to display what file format `gnutarget' is set to read. If you have not set `gnutarget', GDB will determine the file format for each file automatically, and `show gnutarget' displays `The current BDF target is "auto"'. Here are some common targets (available, or not, depending on the GDB configuration): `target exec PROGRAM' An executable file. `target exec PROGRAM' is the same as `exec-file PROGRAM'. `target core FILENAME' A core dump file. `target core FILENAME' is the same as `core-file FILENAME'. `target remote DEV' Remote serial target in GDB-specific protocol. The argument DEV specifies what serial device to use for the connection (e.g. `/dev/ttya'). *Note Remote debugging: Remote. `target remote' supports the `load' command. This is only useful if you have some other way of getting the stub to the target system, and you can put it somewhere in memory where it won't get clobbered by the download. `target sim' Builtin CPU simulator. GDB includes simulators for most architectures. In general, target sim load run works; however, you cannot assume that a specific memory map, device drivers, or even basic I/O is available, although some simulators do provide these. For info about any processor-specific simulator details, see the appropriate section in *Note Embedded Processors: Embedded Processors. Some configurations may include these targets as well: `target nrom DEV' NetROM ROM emulator. This target only supports downloading. Different targets are available on different configurations of GDB; your configuration may have more or fewer targets. Many remote targets require you to download the executable's code once you've successfully established a connection. `load FILENAME' Depending on what remote debugging facilities are configured into GDB, the `load' command may be available. Where it exists, it is meant to make FILENAME (an executable) available for debugging on the remote system--by downloading, or dynamic linking, for example. `load' also records the FILENAME symbol table in GDB, like the `add-symbol-file' command. If your GDB does not have a `load' command, attempting to execute it gets the error message "`You can't do that when your target is ...'" The file is loaded at whatever address is specified in the executable. For some object file formats, you can specify the load address when you link the program; for other formats, like a.out, the object file format specifies a fixed address. `load' does not repeat if you press again after using it.  File: gdb.info, Node: Byte Order, Next: Remote, Prev: Target Commands, Up: Targets Choosing target byte order ========================== Some types of processors, such as the MIPS, PowerPC, and Hitachi SH, offer the ability to run either big-endian or little-endian byte orders. Usually the executable or symbol will include a bit to designate the endian-ness, and you will not need to worry about which to use. However, you may still find it useful to adjust GDB's idea of processor endian-ness manually. `set endian big' Instruct GDB to assume the target is big-endian. `set endian little' Instruct GDB to assume the target is little-endian. `set endian auto' Instruct GDB to use the byte order associated with the executable. `show endian' Display GDB's current idea of the target byte order. Note that these commands merely adjust interpretation of symbolic data on the host, and that they have absolutely no effect on the target system.  File: gdb.info, Node: Remote, Next: KOD, Prev: Byte Order, Up: Targets Remote debugging ================ If you are trying to debug a program running on a machine that cannot run GDB in the usual way, it is often useful to use remote debugging. For example, you might use remote debugging on an operating system kernel, or on a small system which does not have a general purpose operating system powerful enough to run a full-featured debugger. Some configurations of GDB have special serial or TCP/IP interfaces to make this work with particular debugging targets. In addition, GDB comes with a generic serial protocol (specific to GDB, but not specific to any particular target system) which you can use if you write the remote stubs--the code that runs on the remote system to communicate with GDB. Other remote targets may be available in your configuration of GDB; use `help target' to list them. * Menu: * Remote Serial:: GDB remote serial protocol  File: gdb.info, Node: Remote Serial, Up: Remote The GDB remote serial protocol ------------------------------ To debug a program running on another machine (the debugging "target" machine), you must first arrange for all the usual prerequisites for the program to run by itself. For example, for a C program, you need: 1. A startup routine to set up the C runtime environment; these usually have a name like `crt0'. The startup routine may be supplied by your hardware supplier, or you may have to write your own. 2. A C subroutine library to support your program's subroutine calls, notably managing input and output. 3. A way of getting your program to the other machine--for example, a download program. These are often supplied by the hardware manufacturer, but you may have to write your own from hardware documentation. The next step is to arrange for your program to use a serial port to communicate with the machine where GDB is running (the "host" machine). In general terms, the scheme looks like this: _On the host,_ GDB already understands how to use this protocol; when everything else is set up, you can simply use the `target remote' command (*note Specifying a Debugging Target: Targets.). _On the target,_ you must link with your program a few special-purpose subroutines that implement the GDB remote serial protocol. The file containing these subroutines is called a "debugging stub". On certain remote targets, you can use an auxiliary program `gdbserver' instead of linking a stub into your program. *Note Using the `gdbserver' program: Server, for details. The debugging stub is specific to the architecture of the remote machine; for example, use `sparc-stub.c' to debug programs on SPARC boards. These working remote stubs are distributed with GDB: `i386-stub.c' For Intel 386 and compatible architectures. `m68k-stub.c' For Motorola 680x0 architectures. `sh-stub.c' For Hitachi SH architectures. `sparc-stub.c' For SPARC architectures. `sparcl-stub.c' For Fujitsu SPARCLITE architectures. The `README' file in the GDB distribution may list other recently added stubs. * Menu: * Stub Contents:: What the stub can do for you * Bootstrapping:: What you must do for the stub * Debug Session:: Putting it all together * Protocol:: Definition of the communication protocol * Server:: Using the `gdbserver' program * NetWare:: Using the `gdbserve.nlm' program  File: gdb.info, Node: Stub Contents, Next: Bootstrapping, Up: Remote Serial What the stub can do for you ............................ The debugging stub for your architecture supplies these three subroutines: `set_debug_traps' This routine arranges for `handle_exception' to run when your program stops. You must call this subroutine explicitly near the beginning of your program. `handle_exception' This is the central workhorse, but your program never calls it explicitly--the setup code arranges for `handle_exception' to run when a trap is triggered. `handle_exception' takes control when your program stops during execution (for example, on a breakpoint), and mediates communications with GDB on the host machine. This is where the communications protocol is implemented; `handle_exception' acts as the GDB representative on the target machine. It begins by sending summary information on the state of your program, then continues to execute, retrieving and transmitting any information GDB needs, until you execute a GDB command that makes your program resume; at that point, `handle_exception' returns control to your own code on the target machine. `breakpoint' Use this auxiliary subroutine to make your program contain a breakpoint. Depending on the particular situation, this may be the only way for GDB to get control. For instance, if your target machine has some sort of interrupt button, you won't need to call this; pressing the interrupt button transfers control to `handle_exception'--in effect, to GDB. On some machines, simply receiving characters on the serial port may also trigger a trap; again, in that situation, you don't need to call `breakpoint' from your own program--simply running `target remote' from the host GDB session gets control. Call `breakpoint' if none of these is true, or if you simply want to make certain your program stops at a predetermined point for the start of your debugging session.  File: gdb.info, Node: Bootstrapping, Next: Debug Session, Prev: Stub Contents, Up: Remote Serial What you must do for the stub ............................. The debugging stubs that come with GDB are set up for a particular chip architecture, but they have no information about the rest of your debugging target machine. First of all you need to tell the stub how to communicate with the serial port. `int getDebugChar()' Write this subroutine to read a single character from the serial port. It may be identical to `getchar' for your target system; a different name is used to allow you to distinguish the two if you wish. `void putDebugChar(int)' Write this subroutine to write a single character to the serial port. It may be identical to `putchar' for your target system; a different name is used to allow you to distinguish the two if you wish. If you want GDB to be able to stop your program while it is running, you need to use an interrupt-driven serial driver, and arrange for it to stop when it receives a `^C' (`\003', the control-C character). That is the character which GDB uses to tell the remote system to stop. Getting the debugging target to return the proper status to GDB probably requires changes to the standard stub; one quick and dirty way is to just execute a breakpoint instruction (the "dirty" part is that GDB reports a `SIGTRAP' instead of a `SIGINT'). Other routines you need to supply are: `void exceptionHandler (int EXCEPTION_NUMBER, void *EXCEPTION_ADDRESS)' Write this function to install EXCEPTION_ADDRESS in the exception handling tables. You need to do this because the stub does not have any way of knowing what the exception handling tables on your target system are like (for example, the processor's table might be in ROM, containing entries which point to a table in RAM). EXCEPTION_NUMBER is the exception number which should be changed; its meaning is architecture-dependent (for example, different numbers might represent divide by zero, misaligned access, etc). When this exception occurs, control should be transferred directly to EXCEPTION_ADDRESS, and the processor state (stack, registers, and so on) should be just as it is when a processor exception occurs. So if you want to use a jump instruction to reach EXCEPTION_ADDRESS, it should be a simple jump, not a jump to subroutine. For the 386, EXCEPTION_ADDRESS should be installed as an interrupt gate so that interrupts are masked while the handler runs. The gate should be at privilege level 0 (the most privileged level). The SPARC and 68k stubs are able to mask interrupts themselves without help from `exceptionHandler'. `void flush_i_cache()' On SPARC and SPARCLITE only, write this subroutine to flush the instruction cache, if any, on your target machine. If there is no instruction cache, this subroutine may be a no-op. On target machines that have instruction caches, GDB requires this function to make certain that the state of your program is stable. You must also make sure this library routine is available: `void *memset(void *, int, int)' This is the standard library function `memset' that sets an area of memory to a known value. If you have one of the free versions of `libc.a', `memset' can be found there; otherwise, you must either obtain it from your hardware manufacturer, or write your own. If you do not use the GNU C compiler, you may need other standard library subroutines as well; this varies from one stub to another, but in general the stubs are likely to use any of the common library subroutines which `gcc' generates as inline code.  File: gdb.info, Node: Debug Session, Next: Protocol, Prev: Bootstrapping, Up: Remote Serial Putting it all together ....................... In summary, when your program is ready to debug, you must follow these steps. 1. Make sure you have defined the supporting low-level routines (*note What you must do for the stub: Bootstrapping.): `getDebugChar', `putDebugChar', `flush_i_cache', `memset', `exceptionHandler'. 2. Insert these lines near the top of your program: set_debug_traps(); breakpoint(); 3. For the 680x0 stub only, you need to provide a variable called `exceptionHook'. Normally you just use: void (*exceptionHook)() = 0; but if before calling `set_debug_traps', you set it to point to a function in your program, that function is called when `GDB' continues after stopping on a trap (for example, bus error). The function indicated by `exceptionHook' is called with one parameter: an `int' which is the exception number. 4. Compile and link together: your program, the GDB debugging stub for your target architecture, and the supporting subroutines. 5. Make sure you have a serial connection between your target machine and the GDB host, and identify the serial port on the host. 6. Download your program to your target machine (or get it there by whatever means the manufacturer provides), and start it. 7. To start remote debugging, run GDB on the host machine, and specify as an executable file the program that is running in the remote machine. This tells GDB how to find your program's symbols and the contents of its pure text. 8. Establish communication using the `target remote' command. Its argument specifies how to communicate with the target machine--either via a devicename attached to a direct serial line, or a TCP port (usually to a terminal server which in turn has a serial line to the target). For example, to use a serial line connected to the device named `/dev/ttyb': target remote /dev/ttyb To use a TCP connection, use an argument of the form `HOST:port'. For example, to connect to port 2828 on a terminal server named `manyfarms': target remote manyfarms:2828 Now you can use all the usual commands to examine and change data and to step and continue the remote program. To resume the remote program and stop debugging it, use the `detach' command. Whenever GDB is waiting for the remote program, if you type the interrupt character (often ), GDB attempts to stop the program. This may or may not succeed, depending in part on the hardware and the serial drivers the remote system uses. If you type the interrupt character once again, GDB displays this prompt: Interrupted while waiting for the program. Give up (and stop debugging it)? (y or n) If you type `y', GDB abandons the remote debugging session. (If you decide you want to try again later, you can use `target remote' again to connect once more.) If you type `n', GDB goes back to waiting.