
Using LinkController

Michael De La Rue

Copyright c© 1997-2001 Michael De La Rue
Published by ...
Permission is granted to distribute and change this manual under the terms of the GNU
public license.
This is the alpha version of this manual and is very incomplete.

Introduction 1

Introduction

LinkController is a system for checking links.
Most HTML pages contain references to other HTML pages (links). These allow the

readers of those pages to locate other related resources (web pages etc.). Unfortunately
the location of ‘resources’1 can change, resources can disappear completely or the system
providing the resource can break. When this happens, the link which used to find them will
no longer work. The only reliable way to detect this problem is to periodically check over
the resources and take corrective action for the ones that have gone missing.

LinkController is designed to make that task much more efficient. It automates the task
of checking which links have been broken for a period of time and then of finding which
documents they occur in.

LinkController is copyrighted software and is distributed under the GNU Public License
which should have been included as the file ‘COPYING’ in the distribution.

1 resource is a general term for HTML pages and all of the other things that can be
referenced by URLs

2 Using LinkController

Chapter 1: Getting Started 3

1 Getting Started

This section of the manual assumes that the programs that make up LinkController
are already installed and working on your computer. If not, then See Section B.2 [URLs],
page 47. We assume the standard setup where your system administrator runs the link
checking for you. Other setups will need slightly different behaviour. Speak to the person
who set up link controller.

The first thing to do is to run configure-link-control to configure the system. This
will ask a series of questions about your configuration and create a configuration file which
will be used by the various programs which make up LinkController.

Next you have to work out which links you are interested in. Do this by extracting the
links from your web pages (see Chapter 5 [Extracting Links], page 13). The output file from
this with the list of links found will be stored in the location you gave during configuration.

Assuming that you have the default install, your links will be automatically copied and
checked over time following that.

After a short time (about a day) you will begin to get information about links which
didn’t work with link-report --not-perfect. After some more time (a week or so) you
can use link-report to find out which links are really broken.

4 Using LinkController

Chapter 2: Configuration 5

2 Configuration

2.1 Setting Configuration Variables

The configure-link-control program can be used by users to configure LinkCon-
troller. This will ask you a series of questions and then generate a configuration in your
home directory.

The configuration that is controlled by this program is related to reporting and fixing
links. For other configuration see See Chapter 14 [Administration], page 31.

2.2 Setting Configuration Variables

All of the variable information is stored in the file ‘.link-control.pl’ in your home
directory or ‘/etc/link-control.pl’ for system wide configuration. The configuration files
are written directly in Perl (the programming language LinkController is written in). You
can set the configuration variables by putting lines like this.

$::links=’/var/lib/link_database.bdbm’;

Please note the semi colon at the end of the line and the use of single quotes so that
Perl doesn’t do anything strange to your values.

2.3 Link Control Configuration Variables

$::user_address
is the email address which the robot declares to the world as it goes around
checking links. If you want to check links yourself, you must set this to a valid
email address, because if something goes badly wrong, it is the only way for a
user at another site to know how to contact you.

$::base_dir
This is the base directory for all of the configuration files. If this variable is
defined then the other variables will default as given below and do not need to
be set individually.

$::links tells you what file is being used to store information about links. This could
easily be a shared database used by everyone on your system. Defaults to
‘$::base_dir/links.bdbm’.

$::schedule
tells the system where to find the schedule file used to decide which links should
be checked next and when that should be. You will need to set this and create
the file in order to do link checking. Defaults to ‘$::base_dir/schedule.bdbm’.

6 Using LinkController

$::page_index
tells the system where to find the schedule file used to decide which links should
be checked next and when that should be. You will need to set this and create
the file in order to do link checking. Defaults to ‘$::base_dir/page_has_link.cdb’.

$::link_index
tells the system where to find the schedule file used to decide which links should
be checked next and when that should be. You will need to set this and create
the file in order to do link checking. Defaults to ‘$::base_dir/link_on_page.cdb’.

$::infostrucs
This variable points to the configuration file where definitions of infostructures
are should be put See Section 2.4 [Infostructure Configuration], page 6. Defaults
to ‘$::base_dir/infostrucs’.

$::link_stat_log
This variable is the name of a file where important link status changes will
be logged. The current definition is links which have just been discovered to
be broken. This can be used in email notification. See Section 7.1 [Email
Reporting], page 18.

2.4 Configuring Infostructures

The infostructure configuration is used to find links within the pages when we are build-
ing our databases. It is kept in a separate file defined by the $::infostrucs configuration
variable.

The format of the file is one line for each infostructure with configuration directives
separated by spaces. For example

directory http://example.com/manual /var/www/html/manual
www http://example.com/strange_database

The first directive describes how extract-links program should extract the links. It
currently has three possible values. The value www means to actually use the given URL to
download the web pages. The value directory means that extract-links should assume
that all of the files are stored in a directory and that the directory structure matches the
structure of the infostructure. The final value "advanced"

In the case where we use the directory directive, a third directive is present on each
line with the full path to the base directory of the infostructure.

More advanced configuration is possible by defining the information directly in Perl.

Chapter 3: Advanced Configuration 7

3 Advanced Configuration

There are various advanced ways to configure LinkController. These are mostly not
needed for simple checking of a small collection of web pages. For larger sites and special
situations however, they may well make life much easier.

3.1 Advanced Infostructure Configuration

Using more advanced configuration it is possible to skip over certain resources when we
are doing link extraction and to ignore some of the links. You may want to skip over this
section initially and come back to it only when you find that there are links or pages being
checked that you would rather avoid.

For this section, we assume that you already know how to make basic Perl code. If not,
then please read through the Perl manual pages ‘perl’, ‘perlsyn’ and ‘perldata’. You
may find that the examples given below are sufficient to get you started.

In order to get extract-links to extract links using an advanced infostructure, you
must use the advanced keyword. In the infostructure file. Infostructures not listed there
will be ignored, but won’t cause any harm.

Advanced configuration is in the ‘.link-controller.pl’ configuration file by making
definitions into the %::infostrucs hash. These look like the following

$::infostrucs{http://www.mypages.org/} = {
mode => "directory";
file_base => "/home/myself/www",
prune_re => "^(/home/myself/www/statistics)" #ignore referrals

. "|(cgi-bin)", #do CGIs separately
exclude_re => "\.secret$", #secrets shouldn’t get into link database

};

$::infostrucs{http://www.mypages.org/cgi-bin/} = {
mode => "www";
exclude_re => "query", #query space is infinite!!

};

There are a number of keywords that can be used.

‘mode’ This decides how to download the links. Either ‘www’ or ‘directory’.

‘file_base’
If defined, this defines the directory which matches the URL where the infos-
tructure is based. This must be defined if the mode is set to directory.

‘resource_include_re’
If defined, this regular expression must be matched by the URL for every re-
source before links will be extracted from it.

‘resource_exclude_re’
If defined, this regular expression must not be matched by the URL for every
resource before links will be extracted from it.

8 Using LinkController

‘link_include_re’
If defined, this regular expression must be matched by every URL found before
it will be extracted and saved.

‘link_exclude_re’
If defined, this regular expression must not be matched by every URL found
before it will be extracted and saved.

‘prune_re’
Used only in directory mode, this will completely exclude all files and sub-
directories of directories matched by the regular expression.

N.B. the exclude and include regular expression can be used together. For a match, the
include regular expression must match and the exclude must not match. In other words
excludes override includes.

In order for the infostructure to be used by extract-links an entry must still be made
in the ‘infostrucs’ file. For this use the advanced keyword. The second argument is a
URL used to look up the definition in the $::infostrucs hash.

advanced http://www.mypages.org/
advanced http://www.mypages.org/cgi-bin/

The URL used here must match exactly the one used in the hash. It is important to note
that ‘directory’ and ‘www’ definitions in the ‘infostrucs’ file will override any advanced
configuration given.

3.2 Authorisation Configuration

One problem when checking links, especially within an intranet situation is that some
pages can be protected with basic authentication. In order to extract links from those pages
or to simply know that they are there, we have to get through that authentication. By using
the advanced Authorisation Configuration we can give LinkController authority to access
these pages and allow link checking to work as normal.

Using this method to allow LinkController to work in an
environment with authentication is inherently a security issue since
authentication tokens must be stored, effectively in plaintext, in
files. This risk may, however, not be much higher than the one that you
currently accept, so this can be useful

We can store the authentication tokens simply in the %::credentials hash which we can
create in the ‘.link-controller.pl’ configuration file. The keys in the hash are the exact
realm string which will be sent by the web server. Each value of this hash is a hash with
a pair of keys. The ‘credentials’ key should be associated to the authentication token.
The ‘uri_re’ key should be a regular expression which matches the web pages you want to
visit. For security reasons it shouldn’t match any others.

$::credentials = {
my_realm => { uri_re => "https://myhost.example.com",

credential => "my_secret" }
});

Chapter 3: Advanced Configuration 9

As a minor sanity check, every ‘uri_re’ will be tested against the strings ‘http://3133t3hax0rs.rhere.com’
and ‘http://3133t3hax0rs.rhere.com/secretstuff/www.goodplace.com/’. If they
match then those credentials will be disallowed. The owners of ‘3133t3hax0rs.rhere.com’
will just have to hack the code..

For more discussion about the security risks and how to mitigate them see the file
‘authorisation.pod’ included with the LinkController distribution. If you didn’t under-
stand the security risk from the above description then probably you should consider avoid-
ing using this mechanism.

10 Using LinkController

Chapter 4: Configuring CGI Programs 11

4 Configuring CGI Programs

The CGI programs have separate configuration variables and configuration.

‘$WWW::Link::Repair::infostrucbase’
The URL that gets to the base directory of the infostructure.

‘$WWW::Link::Repair::filebase’
The file-name of the directory which is equivalent to the URL

FIXME: this section needs to be rewritten.

12 Using LinkController

Chapter 5: Extracting Links 13

5 Extracting Links

This section is written assuming that you are using a standard HTML infostructure in
a directory or on the World Wide Web

The first part of using link controller is to extract the links. When doing this, a pair of
index files is built which list which URLs happen on which pages along with a file listing
all of the URLs in the infostructure.

FIXME: compare and contrast multi-user configuration with single user
The first stage of the process is done by extract-links1.
There are two modes for extract links directory and www. The key difference between

them is that the latter actually downloads from a server so it is less efficient but will work
in more circumstances and is more likely to represent your site as seen by users. This is
assuming that all of your WWW pages are interconnected so it can find them.

FIXME : need to describe modes of operation of extract link
extract-links creates three files. The first two files (‘*.cdb’) are the index files for

your infostructure and are located wherever you have configured them to by default they
are called ‘link_on_page.cdb’, ‘page_has_link.cdb’. The third file is the database file
‘links.db’. extract-links can also optionally create a text file which lists all of the URLs
in the infostructure, one per line.

1 the command names in link controller are quite long.. you might want to make your
life easier by using command completion which will finish what you have started.. once
you’ve typed a little of the command use escape escape or tab depending on your shell..
if this doesn’t work then you may like to upgrade to a newer shell such as bash or zsh.

14 Using LinkController

Chapter 6: Testing Links 15

6 Testing Links

If you are using someone else’s link information then you may be able to skip this part
and go straight on to the next one on generating reports.

Testing links takes a long time. To begin to detect broken ones will take about ten
days. This is a deliberate feature of LinkController. It is designed this way firstly to give
people at the other end of links a chance to repair their resources and secondly to reduce
the amount of network bandwidth LinkController uses at a given time and so its impact on
other people’s Internet usage.

The key program which you want to use is test-link. I run this from a shell script
which directs its output to a log file

FIXME actually I now just use a cron job.
#!/bin/sh
#this is just a little sample script of how I run the program.

LOGDIR=$HOME/log
test-link >> \

$LOGDIR/runlog-‘/bin/date +%Y-%m-%d‘.log 2>&1
#assumes the use of a gnu style date command which can print
#out full dates.

And I run this shell script from my ‘crontab’ with a command like this
42 02 * * * /..directories./run-daily-test.sh

The string /..directories./ should be replaced with the directory where you have the
script. Remember to make the script executable.

This will now run until completion each night. However, you should make sure that it
does actually finish. If you have too many links to check in the given time, then you can
end up with a backlog and the system will take a long time to stop. To avoid this, either
make testing less frequent or make checking run faster. This will have to be done by editing
the program itself at present.

16 Using LinkController

Chapter 7: Reporting Problems 17

7 Reporting Problems

The easiest way to find out which links are broken is to use the command line interface.
The simplest report you can generate is just a list of all the known broken links. Do this
like so:

link-report

On the system I’m testing on right now, this gives:
broken:- file://ftp.ncsa.uiuc.edu/Web/httpd/Unix/ncsa_httpd/cgi

http://www.ippt.gov.pl/docs-1.4/cgi/examples.html
broken:- file://ftp.ncsa.uiuc.edu/Web/httpd/Unix/ncsa_httpd/curr
ent/httpd_1.4_irix5.2.Z

http://www.ippt.gov.pl/docs-1.4/setup/PreExec.html
broken:- file://ftp.ncsa.uiuc.edu/Web/httpd/Unix/ncsa_httpd/curr
ent/httpd_1.4_linux.Z

http://www.ippt.gov.pl/docs-1.4/setup/PreExec.html
broken:- file://ftp.ncsa.uiuc.edu/Web/httpd/Unix/ncsa_httpd/curr
ent/httpd_1.4_osf3.0.Z

http://www.ippt.gov.pl/docs-1.4/setup/PreExec.html
broken:- file://ftp.ncsa.uiuc.edu/Web/httpd/Unix/ncsa_httpd/curr
ent/httpd_1.4_solaris2.4.Z

http://www.ippt.gov.pl/docs-1.4/setup/PreExec.html
broken:- file://ftp.ncsa.uiuc.edu/Web/httpd/Unix/ncsa_httpd/curr
ent/httpd_1.4_solaris2.4.tar.Z

http://www.ippt.gov.pl/docs-1.4/setup/PreCompiled.html
Sorry, couldn’t find info for url file://ftp.ncsa.uiuc.edu/Web/httpd/U
nix/ncsa_httpd/current/httpd_1.4_source.tar.Z
please remember to check you have put it in full format
broken:- file://ftp.ncsa.uiuc.edu/Web/httpd/Unix/ncsa_httpd/docu
ments/usage.ps

http://www.ippt.gov.pl/docs-1.4/postscript-docs/Overview.html
..etc...

Which just tells you which links are broken. (In this chapter examples are folded at the
70th row, so that they fit well on narrow screens and in TEX. I wanted to use real text
rather than making something up.)

We also know which page they are broken on and can go and look at that on the World
Wide Web or directly as a file on the server.

You can get a complete list of options for link-report (or any other program which is
part of LinkController) using

link-report -h

For more advanced reporting and editing of documents with broken links you may want
to use the Emacs interface (see Chapter 12 [Emacs], page 27).

7.1 Email Reporting of Newly Broken Links

18 Using LinkController

It’s possible to arrange automatic reporting by email of links which have become newly
broken. This is done by getting test-link to make a list of links that become broken
using the $::link stat log variable (see Section 2.3 [Link Variables], page 5) and calling
link-report to report on those links.

Typically, you may don’t want to have a report every time that test-link runs, but
probably once a day instead. In this case, run a script like the following from your crontab.

#!/bin/sh
STAT_LOG=$HOME/link-data/stat-log
WORK=$STAT_LOG.work
EMAIL=me@example.com
mv $STAT_LOG $WORK
if [-s $WORK]
then

link-report --broken --url-file=$STAT_LOG --infostructure |
mail -s "link-report for ‘date‘" $EMAIL

fi

Every time that this script is run, it will rename the status change log file and then mail
a report with all of the new broken links to the specified email address.

In future this feature may be folded into link-report directly.

Chapter 8: Examining Individual Files 19

8 Examining Individual Files

When you have just written an HTML page, you often want to check it before you put
it up for use. You can do this immediately using the check-page program. Simply run
something like

check-page filename.html

And it will list all of the links that it is unsure about along with the line number the
problem occurred on. This program works particularly well when you editing with Emacs
(see Section 12.2 [check-page in Emacs], page 27).

20 Using LinkController

Chapter 9: Repairing Links 21

9 Repairing Links

The program responsible for repairing links is fix-link. It simply accepts two URLs
and changes all of the occurrences of the first link in your documents into the second link.
It assumes that you have permission to edit all of the problem files and that there is a
replacement link. For example

fix-link http://www.ed.ac.uk/~mikedlr/climbing/ \
http://www.tardis.ed.ac.uk/~mikedlr/climbing/

Typed at the shell prompt would have updated the location of my Climbing pages when
they moved some while ago and

fix-link http://www.tardis.ed.ac.uk/~mikedlr/climbing/ \
http://www.tardis.ed.ac.uk/climb/

Will change them to the very latest location.
At present, there’s no facility for automatically updating the databases when you do this.

Instead, you have to run extract-links regularly so that new links are noticed. Maybe a
later version of LinkController will change this.

22 Using LinkController

Chapter 10: Making Suggestions 23

10 Making Suggestions

A link in the database can have suggestions associated with it. These are normally
alternative URLs which somebody or something has decided would make a good replacement
for the URL of the Link. Humans can add to the database with the suggest program. For
example use:

suggest file://ftp.ncsa.uiuc.edu/Web/httpd/Unix/ncsa_httpd/current/htt
pd_1.4_linux.Z \

http://delete.me.org/
Link suggestion accepted. Thank you

If you try the same thing again you get
suggest file://ftp.ncsa.uiuc.edu/Web/httpd/Unix/ncsa_httpd/current/htt
pd_1.4_linux.Z \

http://delete.me.org/
Already knew about that suggestion. Thanks though.

These suggestions will make it easier for others to repair links, especially if they are
using the CGI interface.

24 Using LinkController

Chapter 11: CGI Interface 25

11 CGI Interface

The CGI interface is not fully developed and has a number of issues related to security
to be considered. I have however used it and shown that it can work, so if you want to you
could try the same. The two programs fix-link.cgi and link-report.cgi replace the
normal ones fix-link and link-report. They should be interfaced through an HTML
page which feeds the needed information to link-report.cgi.

The main security question is how to do authentication of the user. This will have to be
set up using the features of the web server.

26 Using LinkController

Chapter 12: The Emacs Interface 27

12 The Emacs Interface

LinkController’s reporting system is designed to be independent of the interface to it,
and often the shell interface will be all that is needed. However another convenient interface
is through emacs. There are two parts to this integration.

12.1 Finding Files with Broken Links

There is a special Emacs mode called link-report-dired written for locating files with
broken links. The mode is based on find-dired and works very similarly. It runs the
program link-report with an option which makes it list file names in the same way as the
ls program does. The user can then move around the buffer as normal in Emacs and enter
files using a single key press (normally f).

12.2 Finding Broken Links in Files Within Emacs

The program check-page was specially designed so that it outputs in a format which
can be read by Emacs’ compile mode. You can use it within Emacs and then step from
error to error correcting them.

To do this, after you have set up your system and completed link checking use the
command M-x compile check-page filename. You will now see another buffer open up
with all of the errors shown there. You can use the key M-‘ (that’s a real back quote, not
an apostrophe) to step between errors.

28 Using LinkController

Chapter 13: Setting up LinkController 29

13 Setting up LinkController

This chapter is aimed at administrators setting up LinkController or who want to have
a better understanding of the way that their installation is set up.

The first stage is to actually build and install the programs. This is covered in the
document ‘INSTALL’ which is included with the distribution.

Once you have installed the software, the next step is to configure LinkController so
that it knows where you have all of your data. The program default-install provides
one model of this.

30 Using LinkController

Chapter 14: Administration 31

14 Administration

There are various aspects of administration. This is mostly related to testing links.

14.1 Default Installation

Running default-install -all should set everything up correctly. There are various
variations on this command which do different things, but the summary is
• Create a linkcont user-id and group which will be used for running programs
• Create a working directory where LinkController will keep it’s data
• Create configuration files, especially /etc/link-control.pl
• Create cron scripts which will run LinkController automatically.

Using this command it is also possible to activate users and groups e.g. default-install
-user username or default-install -group groupname in which case the specified users
will become a member of the linkcont group.

14.2 User Administration

User administration is really only needed if you are running link testing centrally for
your users. This makes sense since it means that if several users have a link to the same
place (likely in any given site) then you will only have to check that link once.

In this case, the important question is which links are copied into the checking database.
This is controlled by the program copy-links-from-users and decides copies data from
users which are in the lnctusr group.

The command default-install can be used to manipulate which users are in the group
e.g. default-install --user username or default-install -group groupname in which
case the specified users will become a member of the lcntusr group.

Another form of user administration is limitation on which users have access to the
database. This can be done with normal file permissions. There isn’t any specific control
to stop users from seeing which links other users have put into the database.

14.3 Cron Scripts

In order to be effective, link testing should be done every day. Furthermore, it is a good
idea to do the testing at low usage times, which normally means at night. For this reason
normally a cron script will be used.
• copy the links from each user with copy-links-from-users

• add them to the database with extract-links --in-url-list

• build a schedule for testing the links with build-schedule

32 Using LinkController

• test the links with test-link

The other thing which is done is to remove old links from the database. This only needs
to be done weekly.

The program default-install can create these scripts.

Chapter 15: Robots and Sensible Behaviour 33

15 Robots and Sensible Behaviour

The most important thing about a program like this is to realise that if you set it up
incorrectly and used it in the wrong way, you could upset a large number of people who
have set up their web servers in the assumption that they would be used normally by human
beings browsing through on Netscape.

Probably it’s true that the only way forward is for every WWW site to begin to set up
robot defences and detect when someone starts to download from at an unreasonable rate
and then cut off the person doing the downloading. I suggest that you don’t do this for at
least two reasons.
• respect for the person’s time
• a wish not to be the person who is cut off

There are probably many other reasons, but that’s one for the good side in you and one
for the selfish. What more do you need.

For suggestions about what constitutes ‘correct’ behaviour, it’s worth seeing the Robots
World Wide Web page. http://info.webcrawler.com/mak/projects/robots/robots.html

There are a number of points which make LinkController relatively safe as a link. These
are all related to the design and limitations on test-link.
• test-link does not recurs. It only tests links that are specifically listed in the schedule

database.
• There is a limit to the number of links that will be tested in one run. This defaults to

1000, but can be configured.
• The schedule for link testing is designed to spread the testing of links across time
• The testing system will not test links at a given site faster than a certain rate.

The last limitation is inherited from the LWP::RobotUA module and the documentation
for that covers the details of how it works. test-link tries to re-order testing of links as
needed so that a limit on the rate of visits to one site does not cause a limit on overall
testing speed.

http://info.webcrawler.com/mak/projects/robots/robots.html
http://info.webcrawler.com/mak/projects/robots/robots.html

34 Using LinkController

Chapter 16: Link Database Maintenance 35

16 Link Database Maintenance

For the most part the link database shouldn’t need much maintenance. There are a
number of cases where it might, however. If it becomes corrupt, you may try the db recover
command. Probably, however, it’s just better to recover the database and link checking
schedule from a recent backup. Time is not really critical since the work is normally easy
to regenerate. You should make sure that link checking doesn’t run in at the time you do
backups, however.

The other thing is that occasionally you may want to recover space in the link database
by dumping and un-dumping it. See the Berkeley database documentation for more details.

16.1 Link Ageing

Sometimes we have a link which is no longer in use within our infostructure. However,
it’s not a good idea to throw away information about it immediately. It could be that
certain files have been temporarily deleted and will come back. Alternatively, a link could
have been found broken and been corrected, but someone has a copy of the old page. When
they re-install the copy, we will have to deal with that link again.

If we had not kept that link around and they immediately do a link check on their
document they may see nothing wrong, and, because of the nature of link-controller, we
won’t start reporting the link as broken until we have confirmed that it really is, some days
later.

If, on the other hand, we keep checking all of the links which are aged, we will cause
ourselves considerable extra work.

To handle this, links are aged. Once a link has reached greater than a certain age, the
link will not be checked any more. Once the link has reached a much larger age, it will be
completely deleted from the link database. The age is reset each time the link is extracted
from the infostructure, so links which are still in use will continue to be checked.

In the meantime, the link will still be repeatedly scheduled based to it’s normal checking
time. This causes us to examine it quite regularly, but that is okay, since we will do almost
no work when we look at it.

By default links which have not been refreshed will be ignored after one week and will
be deleted from the database after two months.

36 Using LinkController

Chapter 17: Bugs and bug reporting 37

17 Bugs and bug reporting

This version of LinkController is still in early development. There are many changes to
come. Undoubtedly there are many bugs in the software already and will soon be more.

A bug is when
• the software doesn’t do something the documentation says it should
• the software does something the documentation says it shouldn’t
• the software does something surprising and that isn’t documented
• the software does something strange but the documentation doesn’t explain why
• it is difficult or impossible to understand what the documentation is trying to say

some of these mean fixing the documentation and some the software. All of them are
bugs and should be reported and fixed.

If you find a bug, I will be grateful to hear about it. Even if you don’t know how to fix
it or anything, it is useful to know what is wrong so that other people don’t get caught out
but read the BUGS file first please. If the bug is listed there then the only useful thing that
you can do is fix it. If you do this and contribute it to me then that is very useful.

When you report a bug, please tell me what release of link controller you were using.
This is the number which was in the name of the file that LinkController came in. If your
problem was with a specific program, please also run ‘program --version’ and send the
output. This tells me exactly which version of that program you were running.

Since this is a developers release, I’d hope most users would be able to make some level
of fixes. If you do this, send me context differences (use ‘diff -u’ if it works or try ‘diff
-c’ otherwise). I use CVS, so as long as I know which version you have I will be able to find
the original file and see your changes. However it’s also important to explain them because
I won’t be able to use them unless I (relatively stupid computer type) understand them.

Send bug reports to the address you get by changing words into punctuation in the
following.

link minus controller at scotclimb dot org dot uk

This mailing address is sent only to me right now, but may become a list in future.
Use my (Michael De La Rue) personal address to contact me please. N.B. I am extremely
inefficient about answering email. Don’t worry if you don’t get a reply.

The ideas, and history

38 Using LinkController

Chapter 18: History 39

18 History

LinkController was originally inspired by MOMspider and having the MOMspider code
available was very useful when starting the creation of this kit, but, it shares almost no
code with MOMspider, other than what has comes to it from the LibWWW-Perl library.

Philosophically, the MOMspider heritage is obvious in the wish to handle big jobs ef-
ficiently. In the working practice there are far more differences than similarities, partly
caused by Perl language changes.

I decided to completely separate the exploration of the local infostructure, looking for
links to be checked, from the actual checking process. This means that checking can be
spread over a large number of days and still run efficiently.

The basic aim of this link checking kit is to be able to efficiently handle any size of link
checking job. At the bottom end we have checking new pages as they are written. Here
we want to use information from previous checks to avoid having to check all of each page
every time. At the other end we have massive info structures (sites) which deal in many
thousands of links and could not possibly all be checked in one day. For this latter case
the aim is to be able to efficiently spread the link checking load into all available low usage
periods.

My primary aim in writing this was not to write very efficient code for the small scale
case (takes minimum time to do everything), but rather code which would scale well. If
your system can check 1000 links in two days, it will hopefully be able to check almost 7000
links in two weeks. I’m trying to make sure all data structures which grow with the number
of links are kept on disk.

40 Using LinkController

Chapter 19: Acknowledgements 41

19 Acknowledgements

Although I wrote this system by myself, this would not have been nearly as easy and
almost certainly wouldn’t have been finished without the help of the following people and
organisations.

Esoterica Internet Portugal

Esoterica provided me with full access to the Internet in Portugal and use of their
computers for free which allowed me to keep up on both this software and the Linux Access
HOWTO. In particular I’d like to thank all of the members of staff who helped me very
much. These people include Mario Francisco Valente (the instigator of Mini Linux) who
first agreed to me using their kit, set me up to use their machines, and along with Luis
Sequeira provided a sounding board for some ideas. Luis also provided the odd lift home
in the evening. Also Martim de Magalhaes Pereira and Mr Mendes. See them all on

http://www.esoterica.pt/esoterica/quemsomos.html

For more about esoterica (Internet Services in Portugal) see:

http://www.esoterica.pt/esoterica/

These pages are in Portugese1 of course.

IPPT PAN Poland

Thanks go to IPPT PAN (part of PAN - Polska Akademia Naukowa) in Poland and
in particular Piotr Pogorzelski who allowed me use of facilities for testing this software,
provided a willing victim for having his web pages tested and made a number of suggestions
which have been incorporated into the software.

The Tardis Project

Supported by the Computing Science department of the University of Edinburgh, the
Tardis project provides an experimental framework in which students, former students and
other related people to do their own work on fully Internet connected Unix and Linux hosts.

The use of the facilities of the Tardis Project has made it much easier for me to develop
software like this. In particular, the large amount of disk space the administrators have
allow me to use is very useful.

1 Whilst the above names are mangled here. See the correct versions in the original texinfo
or on the Web pages.

http://www.esoterica.pt/esoterica/quemsomos.html
http://www.esoterica.pt/esoterica/

42 Using LinkController

Other Free Software Authors

It is through the software provided by the Free Software Foundation (such as the gcc
C compiler, Emacs, the file utilities), the authors of the various packages which make up a
working Linux System (Linux by Linus Torvalds, Alan Cox, etc.... filesystems and support
by Theodore Tytso, Stefan Tweedie etc.. Linux-Libc by HJ Lu, based on GNU glibc from
the FSF.. the list is indefinite) and the authors of Perl and its modules, especially Gisle
Aas and Martijn Kostler for LibWWW-Perl that I was able to set this up.

I’d particularly like to thank Tim Goodwin the author of the Perl CDB module who
made and accepted a number of alterations to that, at my request. These alterations made
this package simpler to write and easier to maintain.

The Free Software Foundation web pages are at
http://www.gnu.ai.mit.edu/

http://www.gnu.ai.mit.edu/

Appendix A: Invoking the LinkController Programs 43

Appendix A Invoking the LinkController
Programs

Because they use the Perl Getopt::Mixed module, all of the LinkController command
line programs respond to the standard POSIX style command line options. At least the
following two options will be implemented.

‘--help’ This option will give a list of all of the options understood by the program along
with brief explanations of what they do. At present it may lie a little, but that
is being corrected.

‘--version’
This option will give some version information for the program.

You can use the ‘--help’ option to get help on each program, for example:
extract-links --help

will give something like
extract-links [arguments] [url-base [file-base]]

-V --version Give version information for this program
-h --help --usage Describe usage of this program.

--help-opt=OPTION Give help information for a given option
-v --verbose[=VERBOSITY] Give information about what the program is doing. Set

value to control what information is given.

-e --exclude-regex=REGEX Exclude expression for excluding files.
-p --prune-regex=REGEX Regular expression for excluding entire directories.
-d --default-infostrucs handle all default infostrucs (as well as ones listed

on command line)

-l --link-database=FILENAME Database to create link records into.
-c --config-file=FILENAME Load in an additional configuration file

-o --out-url-list=FILENAME File to output the url of each link found to
-i --in-url-list=FILENAME File to input urls from to create links

Extract the link and index information from a directory containing
HTML files or from a set of WWW pages with URLs which begin with the
given URL and which can be found by starting from that URL and
searching other such pages.

You can then use that information to get the program to do what you want.

44 Using LinkController

Chapter 20: Packages Which Can Be Useful with LinkController 45

20 Packages Which Can Be Useful with
LinkController

20.1 The CDB utilities

In order to have LinkController working you must have installed these. It is worth
looking at the utilities that are provided, especially cdbdump which will let you look at the
contents of the file. You should be aware that cdbget program which is provided won’t be
able to get at the full contents of the index files since they contain repeated keys.

More information on cdb and new releases can be got from the www page.
http://pobox.com/~djb/cdb.html

20.2 The Tie-Transact-Hash Perl Module and Programmes

This is a Perl module written by myself which includes a program which allows direct
examination and editing of Berkeley databases. It can be useful for debugging and correcting
problems in the LinkController Link database or schedule file.

Tie::TransactHash can be downloaded from CPAN, the Comprehensive Perl Archive
Network get there via:

http://www.perl.com/perl/info/software.html

http://pobox.com/~djb/cdb.html
http://www.perl.com/perl/info/software.html

46 Using LinkController

Appendix B: Terms 47

Appendix B Terms

B.1 Resource

A resource is almost anything. ‘It’ can range from a person to an HTML file to a
computer to a database or presumably eventually to phone numbers, possibly physical
hardware. This generality is a very important concept for the World Wide Web. Really the
key thing about a resource is that it can be ‘identified’. See Section B.2 [URLs], page 47,
for more details.

B.2 URLs

A URL or ‘Uniform Resource Locator’ are the essence of the World Wide Web. Ap-
proximately, they are addresses through which ‘resources’ can be located. The idea is that
almost anything can be given some kind of address in a form that a machine can work with.
By defining a set of rules, this can then be converted into a URL. A URL has two parts.
The first tells us what rules to use and the second tells us what the address is.

B.3 Infostructure

An infostructure is a concept which was introduced in Link Checking in the MOMspider
package. It is a collection of related resources.

B.4 Link

The term link in LinkController is used for a connection between two resources. It’s
existence really comes from the ‘class’ or piece of type of computer data which is used to
store information about ‘links’. Properties of a link include:
• Knowing what the URL of the target resource of the connection is.
• Knowing whether the connection to the target resource has been working recently.
• Knowing when the connection to the target resource was last checked.

Within the programs, a link is different from a URL in that it is specifically aimed at
checking connections, where a URL just specifies what the connection should be if it is
working.

48 Using LinkController

Program and Variable Name Index 49

Program and Variable Name Index

Perl variables, which use :: to separate the different parts, are separated here using /
instead to make it easier to work in info with this file.

$
$base_dir. 5

$infostrucs . 6

$Link/Repair/filebase . 11

$Link/Repair/infostrucbase 11

$link_index . 6

$links . 5

$page_index . 6

$schedule. 5

$user_address . 5

C
check-page, in emacs . 27

E
extract-links . 13

F
fix-link . 21

fix-link.cgi . 25

L
link-report . 17

link-report-dired . 18, 27

link-report.cgi . 25

S
suggest . 23

T
test-link, using . 15

50 Using LinkController

Concept Index 51

Concept Index

A
acknowledgements . 41

authentication . 25

authentication, basic . 8

authorisation . 8

B
bandwidth . 33

basic authentication . 8

broken links, finding . 17

broken links, finding in Emacs 18, 27

C
CGI interface . 25

CGI, configuration . 11

checking individual pages . 19

configuration . 5

configuration variables . 5

configuration, infostructure . 6

crontab, example . 15

D
dangers . 33

E
Emacs interface . 27

extracting links . 13

F
file, individual, checking . 19

filtering links . 7

H
history MOMspider . 39

HTML pages, groups of . 47

I
infostructure . 47

infostructure, configuration . 7

interface, CGI . 25

interface, Emacs . 27

L
link index, creating . 13

links, examining . 17

links, examining, in Emacs 18, 27

links, extracting . 13

links, repairing . 21

P
page index, creating . 13

page, checking . 19

R
regular expression, exclude . 7

regular expression, include . 7

repairing links . 21

reports . 17

resource . 47

robots . 33

S
security . 8

setting variables . 5

suggestions . 23

U
URL . 47

V
variables, configuration . 5

variables, setting . 5

W
WWW . 47

52 Using LinkController

	Introduction
	Getting Started
	Configuration
	Setting Configuration Variables
	Setting Configuration Variables
	Link Control Configuration Variables
	Configuring Infostructures

	Advanced Configuration
	Advanced Infostructure Configuration
	Authorisation Configuration

	Configuring CGI Programs
	Extracting Links
	Testing Links
	Reporting Problems
	Email Reporting of Newly Broken Links

	Examining Individual Files
	Repairing Links
	Making Suggestions
	CGI Interface
	The Emacs Interface
	Finding Files with Broken Links
	Finding Broken Links in Files Within Emacs

	Setting up LinkController
	Administration
	Default Installation
	User Administration
	Cron Scripts

	Robots and Sensible Behaviour
	Link Database Maintenance
	Link Ageing

	Bugs and bug reporting
	History
	Acknowledgements
	Esoterica Internet Portugal
	IPPT PAN Poland
	The Tardis Project
	Other Free Software Authors
	Invoking the LinkController Programs
	Packages Which Can Be Useful with LinkController
	The CDB utilities
	The Tie-Transact-Hash Perl Module and Programmes

	Terms
	Resource
	URLs
	Infostructure
	Link

	Program and Variable Name Index
	Concept Index

