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How does it look like?

Scenario
• Digital library with more than 2000 texts, in-

cluding full-length books

• Long term archiving (not fire and forget texts),
control revision

• Quality output required (read: LaTeX output)

• Imposing of PDF for home-printing

• EPUB output for mobile devices
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• Preference for a flat file storage (like ikiwiki or
MoinMoin)

• Creation of collections (like on mediawiki)

• One-man project

The lightweight markup
• No standard, even if Markdown seems to be

the winner (but with dialects)

• Emacs Muse: project kind of dead, but the
markup is compact and expressive, docu-
mented, and has a reference implementation.
https://www.gnu.org/software/emacs-
muse/

• Some incompatibilities have been introduced,
but they are documented (to address corner
cases where the syntax can be confusing).

• Bottom line: all these markups are easy to use
and it takes 5 minutes to learn one of them,
as long as it is documented.
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Our own dialect of Emacs
Muse

• Manual: http://www.amusewiki.org/
library/manual

• Module: Text::Amuse (produces LaTeX and
HTML)

• Ill-suited for technical papers, though. No
math support, no syntax highlight, but well-
suited for general prose and even poetry.

• It has every feature one could expect from a
lightweight markup: images, sectioning, foot-
notes, simple tables, bold, italics, subscript,
superscript, lists, verbatim, quotations.

• So far proved itself good and expressive.

Importing
• Legacy library had the texts in filtered HTML

• People usually have the texts in Word format
or copy and paste from HTML pages
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• The javascript HTML editor CKEditor has a
“paste from Word” feature http://ckeditor.
com/

• Need to convert the HTML to Muse, preserv-
ing as much as possible the logical structure
of the document (and discarding the noise).

• Need some common search-and-replace pat-
terns (like typographical quotes, text clean-
ing).

• Text::Amuse::Preprocessor

Compiling
• Templating for output: Template::Tiny

• PDF generation: XeTeX or LuaTeX (Unicode
aware, system fonts)

• EBook::EPUB::Lite (this is a port of
EBook::EPUB withou XS dependencies) using
Text::Amuse’s splat HTML output

• PDF::Imposition (written for this project
but it’s a general purpose module): put logi-
cal pages into a physical page according to a
schema (for booklets and home printing)
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• All the above glued together by
Text::Amuse::Compile

• muse-compile.pl script is shipped with
Text::Amuse::Compile, so you can generate
the formats from the command line.

Data storage
• Texts themselves are self-contained. All the in-

formation describing the text (like author, ti-
tle, categories) is stored in the header of the
text. 1 text (even a whole book), 1 file.

• Texts are stored in a Git archive

• Git integration on the site with cgit: http:
//www.amusewiki.org/git/amw/

• Full text search: Xapian (light, fast, fairly
simple to setup, well integrated in Perl with
Search::Xapian).

• Database integration: DBIx::Class
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Web backend
• A daemon takes care of all the operations

which are slow or somehow delicate where con-
current access could be a problem (text compi-
lation, publication, indexing, Git interaction).

• Formats are pregenerated, including the
HTML. The frontend just serves them.

• The backend and the frontend communicate
via a job queue in the database.

• Some message queue systems were examined,
but resorted to use the database because it was
the most straightforward and other solutions
looked like over-engineering.

Web Frontend
• Catalyst application: chaining, method-to-uri

mapping, actively developed, great commu-
nity, back-compatibility approach.

• Plack-able application (currently deployed via
nginx + FCGI)

• Template: Template Toolkit
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• Localization via Catalyst::Plugin::I18N
(plus local overriding via local JSON file).

• Localized for English, Italian, Croatian, Mace-
donian, Russian, Finnish, Swedish, German,
Spanish.

• Multisite: on one instance you can run as many
sites as you want (this was the most com-
pelling argument to write AmuseWiki).

User management
• Kept at minimum reusing existing solutions.

– Catalyst::Plugin::Authentication
– Catalyst::Plugin::Authorization::Roles
– DBIx::Class::PassphraseColumn

• No hierarchical structure: each librarian can
create other peer librarians (plus root for site
management) with the same level of privileges.

• Modes:
– private site
– blog site (only logged-in can edit)
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– moderated wiki (approval required)
– open wiki (undertested)

The Bookbuilder
The basic idea is like the Wikimedia’s book cre-

ator, but with goodies. Features:

• LaTeX output

• Font selection

• Paper size selection

• Imposition schema selection

• Cover images upload

• Custom files are compiled by the backend,
even if the users sees the live logs and the pro-
cess is pretty fast.

• EPUB output if required, with embedded
fonts.

• A basic question to keep robots away (proba-
bly will not scale, but so far works well)
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Some time left?
If we have some more time and no questions…

The past
• Drupal + filtered HTML, texts kept in sync

on a local Git repo with scripts. Obviously it
wasn’t a brilliant idea, to be generous.

• Same filtered HTML inherited from Drupal,
plus home-brewed CGI scripts. It kind of
worked.

• Dancer application and Emacs Muse markup,
no database. Worked, but didn’t scale with
multisite.

The future
• Slides (upcoming release)

• A better installer

• Teasers

• Decorative images
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