
AmuseWiki: a library
oriented wiki engine

(talk)

Marco Pessotto (melmothX)

September 3, 2015, Granada

Contents
How does it look like? 3
Scenario 3
The lightweight markup 4
Our own dialect of Emacs Muse 5
Importing 5
Compiling 6
Data storage 7
Web backend 8
Web Frontend 8
User management 9
The Bookbuilder 10
Some time left? 11
The past 11
The future 11

2

How does it look like?

Scenario
• Digital library with more than 2000 texts, in-

cluding full-length books

• Long term archiving (not fire and forget texts),
control revision

• Quality output required (read: LaTeX output)

• Imposing of PDF for home-printing

• EPUB output for mobile devices

3

• Preference for a flat file storage (like ikiwiki or
MoinMoin)

• Creation of collections (like on mediawiki)

• One-man project

The lightweight markup
• No standard, even if Markdown seems to be

the winner (but with dialects)

• Emacs Muse: project kind of dead, but the
markup is compact and expressive, docu-
mented, and has a reference implementation.
https://www.gnu.org/software/emacs-
muse/

• Some incompatibilities have been introduced,
but they are documented (to address corner
cases where the syntax can be confusing).

• Bottom line: all these markups are easy to use
and it takes 5 minutes to learn one of them,
as long as it is documented.

4

https://www.gnu.org/software/emacs-muse/
https://www.gnu.org/software/emacs-muse/

Our own dialect of Emacs
Muse

• Manual: http://www.amusewiki.org/
library/manual

• Module: Text::Amuse (produces LaTeX and
HTML)

• Ill-suited for technical papers, though. No
math support, no syntax highlight, but well-
suited for general prose and even poetry.

• It has every feature one could expect from a
lightweight markup: images, sectioning, foot-
notes, simple tables, bold, italics, subscript,
superscript, lists, verbatim, quotations.

• So far proved itself good and expressive.

Importing
• Legacy library had the texts in filtered HTML

• People usually have the texts in Word format
or copy and paste from HTML pages

5

http://www.amusewiki.org/library/manual
http://www.amusewiki.org/library/manual
https://metacpan.org/pod/Text::Amuse

• The javascript HTML editor CKEditor has a
“paste from Word” feature http://ckeditor.
com/

• Need to convert the HTML to Muse, preserv-
ing as much as possible the logical structure
of the document (and discarding the noise).

• Need some common search-and-replace pat-
terns (like typographical quotes, text clean-
ing).

• Text::Amuse::Preprocessor

Compiling
• Templating for output: Template::Tiny

• PDF generation: XeTeX or LuaTeX (Unicode
aware, system fonts)

• EBook::EPUB::Lite (this is a port of
EBook::EPUB withou XS dependencies) using
Text::Amuse’s splat HTML output

• PDF::Imposition (written for this project
but it’s a general purpose module): put logi-
cal pages into a physical page according to a
schema (for booklets and home printing)

6

http://ckeditor.com/
http://ckeditor.com/
https://metacpan.org/pod/Text::Amuse::Preprocessor
https://metacpan.org/pod/Template::Tiny
https://metacpan.org/pod/EBook::EPUB::Lite
https://metacpan.org/pod/EBook::EPUB
https://metacpan.org/pod/PDF::Imposition

• All the above glued together by
Text::Amuse::Compile

• muse-compile.pl script is shipped with
Text::Amuse::Compile, so you can generate
the formats from the command line.

Data storage
• Texts themselves are self-contained. All the in-

formation describing the text (like author, ti-
tle, categories) is stored in the header of the
text. 1 text (even a whole book), 1 file.

• Texts are stored in a Git archive

• Git integration on the site with cgit: http:
//www.amusewiki.org/git/amw/

• Full text search: Xapian (light, fast, fairly
simple to setup, well integrated in Perl with
Search::Xapian).

• Database integration: DBIx::Class

7

https://metacpan.org/pod/Text::Amuse::Compile
http://www.amusewiki.org/git/amw/
http://www.amusewiki.org/git/amw/
https://metacpan.org/pod/Search::Xapian
https://metacpan.org/pod/DBIx::Class

Web backend
• A daemon takes care of all the operations

which are slow or somehow delicate where con-
current access could be a problem (text compi-
lation, publication, indexing, Git interaction).

• Formats are pregenerated, including the
HTML. The frontend just serves them.

• The backend and the frontend communicate
via a job queue in the database.

• Some message queue systems were examined,
but resorted to use the database because it was
the most straightforward and other solutions
looked like over-engineering.

Web Frontend
• Catalyst application: chaining, method-to-uri

mapping, actively developed, great commu-
nity, back-compatibility approach.

• Plack-able application (currently deployed via
nginx + FCGI)

• Template: Template Toolkit

8

https://metacpan.org/pod/Template

• Localization via Catalyst::Plugin::I18N
(plus local overriding via local JSON file).

• Localized for English, Italian, Croatian, Mace-
donian, Russian, Finnish, Swedish, German,
Spanish.

• Multisite: on one instance you can run as many
sites as you want (this was the most com-
pelling argument to write AmuseWiki).

User management
• Kept at minimum reusing existing solutions.

– Catalyst::Plugin::Authentication
– Catalyst::Plugin::Authorization::Roles
– DBIx::Class::PassphraseColumn

• No hierarchical structure: each librarian can
create other peer librarians (plus root for site
management) with the same level of privileges.

• Modes:
– private site
– blog site (only logged-in can edit)

9

https://metacpan.org/pod/Catalyst::Plugin::I18N
https://metacpan.org/pod/Catalyst::Plugin::Authentication
https://metacpan.org/pod/Catalyst::Plugin::Authorization::Roles
https://metacpan.org/pod/DBIx::Class::PassphraseColumn

– moderated wiki (approval required)
– open wiki (undertested)

The Bookbuilder
The basic idea is like the Wikimedia’s book cre-

ator, but with goodies. Features:

• LaTeX output

• Font selection

• Paper size selection

• Imposition schema selection

• Cover images upload

• Custom files are compiled by the backend,
even if the users sees the live logs and the pro-
cess is pretty fast.

• EPUB output if required, with embedded
fonts.

• A basic question to keep robots away (proba-
bly will not scale, but so far works well)

10

Some time left?
If we have some more time and no questions…

The past
• Drupal + filtered HTML, texts kept in sync

on a local Git repo with scripts. Obviously it
wasn’t a brilliant idea, to be generous.

• Same filtered HTML inherited from Drupal,
plus home-brewed CGI scripts. It kind of
worked.

• Dancer application and Emacs Muse markup,
no database. Worked, but didn’t scale with
multisite.

The future
• Slides (upcoming release)

• A better installer

• Teasers

• Decorative images

11

AMuseWiki

Marco Pessotto (melmothX)
AmuseWiki: a library oriented wiki engine (talk)

September 3, 2015, Granada

amusewiki.org

	How does it look like?
	Scenario
	The lightweight markup
	Our own dialect of Emacs Muse
	Importing
	Compiling
	Data storage
	Web backend
	Web Frontend
	User management
	The Bookbuilder
	Some time left?
	The past
	The future

