
Developer Manual

for

Lingua::Translit

Transliterate text between various writing systems.

This developer manual covers the 0.x series of Lingua::Translit.

Lingua::Translit Developer Manual, published April 11, 2014.

Copyright c© 2009-2014, Lingua-Systems Software GmbH

Lingua-Systems Software GmbH, Gerichtsstraße 42, 44649 Herne, Germany,
info@lingua-systems.com

All rights reserved, especially changing or publishing parts of this manual needs prior written permission
of the copyright owner.

The rights to reproduce and publish unchanged copies in any form, to translate or to present the manual
are granted.

Mentioned hard- and software as well as companies may be trademarks of their respective owners. Use
of a term in this manual should not be regarded as affecting the validity of any trademark or service mark.
A missing annotation of the trademark may not lead to the assumption that no trademark is claimed and
may thus be used freely.

Great effort has been made in writing this manual. However, faults cannot be excluded in general. For
any loss or damages caused or alleged to be caused directly or indirectly by errors or omissions in this
manual, the authors and the publisher assume no responsibility and cannot be held liable. Neither can
the authors or the publisher be held liable for the content or changes of content concerning the linked
websites. The links have been carefully chosen and proved at the preparation of the manual.

If you have problems using the links or get aware of any faults, feel free to give a brief hint on it via
perl@lingua-systems.com.

Contents

1. Conventions Used in this Manual 4

2. Adding Transliteration Tables 4

3. Writing a Transliteration Table 4
3.1. Unicode Notation . 5

3.2. Specifying a Context . 5

3.3. Multiple Characters . 6

4. Building a Development Version 7
4.1. Using xml2dump.pl . 7

4.2. Building a Temporary Lingua::Translit . 7

5. Testing a Transliteration Table 8
5.1. Hints on What to Test . 8

5.2. Running the Tests . 8

6. Integrating a New Table 9

7. Contributing Your Table 9

A. template.xml 10

B. template.t 11

C. References 12

1. Conventions Used in this Manual

Every non absolute path is relative to Lingua::Translit’s source code directory.

2. Adding Transliteration Tables

If you want to add a new transliteration to Lingua::Translit just. . .

→ . . . write an XML file (the "transliteration table")

→ . . . build a development version containing your table

→ . . . write and run some tests to check if your transliteration is working as expected

→ . . . integrate your table into the set of upstream tables and consider contributing it

3. Writing a Transliteration Table

Each XML transliteration table consists of meta data and a set of transliteration rules.

The meta data tags cover the name of the transliteration, a short description and the information
whether the transliteration can be used in both directions. For example:

<name>DIN 1460</name>

<desc>DIN 1460: Cyrillic to Latin</desc>

<reverse >true</reverse >

The rules can be simple one to one mappings:

<rule>

<from>X</from>

<to>Y</to>

</rule>

. . . but you can also specify a context in which the rule should be evaluated only:

<rule>

<from>A</from>

<to>B</to>

<context >

<after>x</after>

<before >y</before >

</context >

</rule>

To get an easy start, you can copy the file xml/template.xml (see appendix A), rename it as needed
and edit it right away. Additionally, xml/Common_DEU.xml may be used as a complete example.

Although editing an XML file is technically quite easy, some things have to be considered. The
most important thing to keep in mind is that the rules are applied in sequence - one after another.
Therefore the order of rules is important if you specify a context or transliterate multiple characters.

Page 4 Lingua::Translit Developer Manual

3.1. Unicode Notation

If you are determining characters that are non-ASCII characters, use an entity that represents the
Unicode code point in hex-notation to specify them and leave a comment on the character.

<rule>

<from>А</from> <!-- CYRILLIC CAPITAL LETTER A -->

<to>A</to>

</rule>

This assures that the correct character is transformed and it can be exactly determined, if it is not
represented correctly.

3.2. Specifying a Context

The context is evaluated as a Perl regular expression. So for specifying the context literal ASCII
characters, entities or meta characters can be used.

If a character has two mappings depending on the context, the context-sensitive rule must be
applied before the context-free rule. Otherwise every character is replaced at once through the
context-free rule and the context-sensitive rule will never match.

1. rule:

<rule>

<from>Γ ;&# x03BA;</from> <!-- GREEK CAPITAL LETTER

GAMMA & SMALL LETTER

KAPPA -->

<to>Gk</to>

<context >

<after>\b</after> <!-- word initial -->

</context >

</rule>

2. rule:

<rule>

<from>Γ ;&# x03BA;</from> <!-- GREEK CAPITAL LETTER

GAMMA & SMALL LETTER

KAPPA -->

<to>Nk</to>

</rule>

The following pattern matching contexts are available:

→ <after>

if the transliteration rule should only be applied after a certain character (corresponds to Perl’s
lookbehind)

→ <before>

if the rule should only be applied before a certain character (corresponds to Perl’s lookahead)

→ <after> & <before>

if the rule should only be applied if the character is in between two characters

Lingua::Translit Developer Manual Page 5

3.3. Multiple Characters

As all rules are applied in sequence, and hence the order of rules is important, all rules concerning
multiple characters must precede all single character rules.

1. rule:

<rule>

<from>α ;&# x03C5;</from> <!-- GREEK SMALL LETTER ALPHA &

SMALL LETTER UPSILON -->

<to>au</to>

</rule>

2. rule:

<rule>

<from>α</from> <!-- GREEK SMALL LETTER ALPHA -->

<to>a</to>

</rule>

If you switch the order of the rules in the example above, every single "alpha" would be transliterated
first and the digraph pattern will never match.

Page 6 Lingua::Translit Developer Manual

4. Building a Development Version

Your new transliteration table has to be converted to a Perl data structure and stored in
xml/tables.dump in order to be put to use and tested as a development version of Lingua::Translit.

xml2dump.pl is a tool that processes XML transliteration table definitions and converts them to
Perl data structures. Normally, all stable transliteration tables are processed once and stored in
xml/tables.dump and included in the Lingua::Translit::Tables module at build time.

4.1. Using xml2dump.pl

To accomplish this task the xml2dump.pl tool comes in handy:

alinke$./ xml2dump.pl -v -o tables.dump mytable.xml

Parsing mytable.xml... (MyTable: rules=2, contexts =1)

1 transliteration table(s) dumped to tables.dump.

It reads an XML definition, processes it and dumps the resulting data structure to a given file (-o
switch).

Your transliteration table is now ready to be included by Lingua::Translit::Tables so it can be tested
and evaluated.

4.2. Building a Temporary Lingua::Translit

Use the standard toolchain to build a temporary development version of Lingua::Translit which
contains nothing but your new transliteration table.

alinke$ perl Makefile.PL && make

Given the resulting development version, it’s time to test the transliteration table for completeness
and correct functionality.

Lingua::Translit Developer Manual Page 7

5. Testing a Transliteration Table

To verify that your set of transliteration rules works correctly, you need to make some tests using
your favorite Perl test framework. For an easy and complete example that utilizes the Test::More
framework, have a look at t/11_tr_Common_DEU.t .

Lingua::Translit comes with a ready to use test template that you could use as a starting point and
suite it to your transliterations specific needs. It is located at t/xx_tr_template.t.pl (and provided in
appendix B) - to follow Lingua::Translit’s naming convention, rename it to NN_tr_NAME.t .

5.1. Hints on What to Test

→ If your transliteration is straight forward (only "1:1" mappings), just test a small text and have a
look at the result. At best, everything is correct and you are ready.

→ If the transliteration is reversible, you should check if both directions are transliterated correctly.

→ All the context-sensitive and multi-character transliterations should be tested explicitly, to assure,
that the error-prone mappings also work as expected.

5.2. Running the Tests

While testing it is convenient to define the environment variable PERL5LIB (have a look at
perlrun(1)) so that the Perl interpreter knows where your development version of Lingua::Translit
is located. The following example session assumes that you are using bash(1) or a similar shell:

alinke$ export PERL5LIB="blib/lib"

alinke$ perl t/66 _tr_mytest.t

1..2

ok 1 - MyTable: not reversible

ok 2 - MyTable: transliteration

If all tests work as expected and hence your transliteration table is ready for usage, clean up your
shell’s environment and prepare to integrate your table into the existing set of transliteration tables:

alinke$ unset PERL5LIB

Page 8 Lingua::Translit Developer Manual

6. Integrating a New Table

Change to the xml/ directory and let make(1) call xml2dump.pl in order to build a data structure
("tables.dump") from all available XML transliteration tables, including yours:

alinke$ make all -tables

Now, clean up the old files from the development version you used to write your tests. Change into
the source directory’s root and run

alinke$ make distclean && perl Makefile.PL && make

The result is a complete version of Lingua::Translit that contains all upstream tables, as well as your
own addition.

alinke$ make test

. . . assures everything is alright and ready for installation or packaging. Congratulations!

7. Contributing Your Table

If you like to contribute your transliteration table under the terms of the GPL/Artistic License, it can
be included in the official upstream version. To accomplish this, create a patch of your changes and
send it along with a description and comments to perl@lingua-systems.com.

Lingua::Translit Developer Manual Page 9

A. template.xml

Shortend, have a look at xml/template.xml for the full template.

<?xml version="1.0" encoding="UTF -8"?>

<!DOCTYPE translit SYSTEM "translit.dtd">

<!--

Transliteration definitions for XXX.

Copyright 200x ... <...>

-->

<translit >

<name></name>

<desc></desc>

<reverse ></reverse >

<rules>

<!-- Without context ... -->

<!-- ... using ASCII characters -->

<rule>

<from>X</from>

<to>Y</to>

</rule>

<!-- ... using Unicode codepoints (hexadecimal) -->

<rule>

<from>ä</from>

<to>ae</to>

</rule>

<!-- ... using Unicode codepoints (decimal) -->

<rule>

<from>ä </from>

<to>ae</to>

</rule>

<!-- With context ... -->

<!-- ... specified as after , before or both (= between) -->

<rule>

<from>A</from>

<to>B</to>

<context >

<after>x</after>

<before >y</before >

</context >

</rule>

</rules>

</translit >

Page 10 Lingua::Translit Developer Manual

B. template.t

This template is located at t/xx_tr_template.t.pl .

use strict;

use Test::More tests => 3; # number of tests

my $name = ""; # transliterations name

my $reversible = 0; # is the transliteration reversible?

my $input = ""; # short corpus ...

my $output_ok = ""; # ...its correct transliteration

my $context = ""; # context -sensitive example

my $context_ok = ""; # ...its correct transliteration

use Lingua :: Translit;

my $tr = new Lingua :: Translit($name);

my $output = $tr ->translit($input);

1

is($tr ->can_reverse (), $reversible , "$name: reversibility");

2

is($output , $output_ok , "$name: transliteration");

$output = $tr ->translit($context);

3

is($output , $context_ok , "$name: transliteration " .

"(context -sensitive)");

Lingua::Translit Developer Manual Page 11

C. References

→ Lingua-Systems’ Lingua::Translit website,
http://www.lingua-systems.com/translit/

→ Lingua::Translit on CPAN,
http://search.cpan.org/dist/Lingua-Translit/

→ ISO 9 Standard (1995) "Transliteration of Cyrillic characters into Latin characters",
http://www.iso.org/iso/iso_catalogue.htm

→ ISO 843 Standard (1997) "Conversion of Greek characters into Latin characters",
http://www.iso.org/iso/iso_catalogue.htm

→ DIN 1460 Standard (1982) "Conversion of cyrillic alphabets of slavic languages",
http://www.nabd.din.de/

→ DIN 31634 Standard (1982) "Conversion of the Greek alphabet",
http://www.nabd.din.de/

→ Streamlined Sytem (1995) "Romanization of Bulgarian",
http://members.lycos.co.uk/rre/Streamlined.html

http://www.lingua-systems.com/translit/

Page 12 Lingua::Translit Developer Manual

http://www.lingua-systems.com/translit/
http://search.cpan.org/dist/Lingua-Translit/
http://www.iso.org/iso/iso_catalogue.htm
http://www.iso.org/iso/iso_catalogue.htm
http://www.nabd.din.de/
http://www.nabd.din.de/
http://members.lycos.co.uk/rre/Streamlined.html
http://www.lingua-systems.com/translit/

	Conventions Used in this Manual
	Adding Transliteration Tables
	Writing a Transliteration Table
	Unicode Notation
	Specifying a Context
	Multiple Characters

	Building a Development Version
	Using xml2dump.pl
	Building a Temporary Lingua::Translit

	Testing a Transliteration Table
	Hints on What to Test
	Running the Tests

	Integrating a New Table
	Contributing Your Table
	template.xml
	template.t
	References

